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Abstract—We encounter uncertainty in many areas. In
decision-making, it is an aspect that allows for better modeling
of real-world problems. However, many methods rely on crisp
numbers in their calculations. It makes it necessary to use
techniques that perform this conversion. In this paper, we
address the problem of score functions assessment regarding
their effectiveness and usefulness in the decision-making field.
The selected methods were used to convert the intuitionistic
fuzzy set matrix into crisp data, then used in the multi-criteria
assessment. Managing the theoretical problem showed that the
used techniques provide high similarity values. Moreover, they
proved to be helpful when dealing with intuitionistic fuzzy sets
in the decision-making area.

I. INTRODUCTION

Many multi-criteria decision-making problems are consid-
ered in areas where data are represented using crisp num-
bers [1]. However, uncertainty problems are difficult to rep-
resent using this approach. Therefore, many tools based on
classical arithmetic methods have been developed to model
uncertainty in decision problems [2]. Such tools allow us
to model real-world problems more accurately and reflect
uncertain knowledge flexibly. Uncertainty modeling tools are
often used in multi-criteria decision-making problems due to
their high reliability [3].

Several popular tools can be used to represent uncertain
knowledge. Among the classical approaches are fuzzy sets
(FS), based on the idea related to partial membership [4]. Over
the years, fuzzy sets have seen many developments: Hesitant
Fuzzy Sets (HFS) [5], Fermatean Fuzzy Sets (FFS) [6], Picture
Fuzzy Sets (PFS) [7], or Intuitionistic Fuzzy Sets (IFS) [8].
Indeed, the main advantage of the generalization of fuzzy sets
is a new approach to uncertainty modeling that considers new
degrees of membership, which gives the expert the ability to
adapt to the characteristics of the problem [9].

One of the most popular tools based on the idea of fuzzy
sets is Intuitionistic Fuzzy Sets. This tool introduces the
possibility of determining the degree of membership and non-
membership, thanks to which it is helpful in many areas such
as decision-making and medical diagnosis [10], [11]. The wide
use of Intuitionistic Fuzzy Sets has led to the development of
this approach. A new similarity measure between intuitionistic
fuzzy sets was proposed by Gohain et al. [12]. Szmidt et al.

proposed a new proposal for attribute selection in models
expressed by intuitionistic fuzzy sets [13]. Thao proposed
new divergence measures of intuitionistic fuzzy sets from
Archimedean t-conorm operators [14].

Using an extension of multi-criteria decision-making meth-
ods with fuzzy logic makes it possible to change the problem
environment from crisp to uncertain. However, most Multi-
Criteria Decision-Making (MCDM) related approaches operate
in an environment based on crisp numbers [15]. To convert
fuzzy data to crisp data, one can use point functions, whose
idea in multi-criteria decision making was originally proposed
by Chen and Tan [16]. However, the existence of multiple
scoring functions means that their use within the same problem
may be characterized by obtaining different results [17]. It cre-
ates a research gap that needs to be filled and determines which
score function to select so that the results are satisfactory.

In this paper, we used five different score functions to
convert Intuitionistic Fuzzy Sets to crisp values and assess the
obtained decision matrix with the Measurement Alternatives
and Ranking according to COmpromise Solution (MARCOS)
method. The simulated data was used as the inputs to show
the performance of the presented approach in the theoretical
problem. Obtained results were then compared with selected
correlation coefficients to point out the similarity of the used
paths. The purpose of the study is to indicate the influence of
the used score function regarding the differences obtained in
multi-criteria ranking.

The rest of the paper is organized as follows. Section 2
presents the preliminaries of the IFS, the scores functions,
the MARCOS method and selected similarity coefficients. In
Section 3, the study case is shown, where the theoretical
problem of the functioning of the different scores function
is raised. Section 4 includes the description of the results
obtained from the examined research. Finally, in Section 5,
the summary is presented, and the conclusions are drawn.

II. PRELIMINARIES

A. Intuitionistic Fuzzy Sets

Definition II.1. An IFS A in a universe X is defined as an
object of the following form:
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A = {ïxj , µj , νjð | xj * X} (1)

where µ : X ³ [0, 1] and ν : X ³ [0, 1] such that 0 �

µj+νj � 1 for all xj * X . The values of µj and νj represent
the degrees of membership and non-membership of xj * X

in A respectively [17].
For every A * IFS(X) (the class of IFSs in the universe

X), the value of

πj = 12 µj 2 νj (2)

represents the degree of hesitation (or uncertainty) associ-
ated with the membership of element xj * X in IFS A, where
0 � πj � 1.

B. Score Functions

The purpose of the score function is to convert the uncertain
data representation to a crisp value. Different approaches to
performing such an action obtain diverse values as a final
output. Selected score functions and the formulas for their
calculations are presented below [17], [18], [19].

SI (Xij) = µij 2 vij (3)

SII (Xij) = µij 2 vij · πij (4)

SIII (Xij) = µij 2

�

vij + πij

2

�

(5)

SIV (Xij) =

�

µij + vij

2

�

2 πij (6)

SV (Xij) = γ · µij + (12 γ) · (12 vij) , γ * [0, 1] (7)

where SI(Xij), SII(Xij), SV (Xij) * [21, 1], SIII(Xij) *
[20.5, 1], and SIV (Xij) * [21, 0.5].

C. MARCOS method

The Measurement Alternatives and Ranking according to
COmpromise Solution (MARCOS) method was introduced
by Željko Stević in 2020 [20] as new multi-criteria decision
making method, which was presented on study case of sustain-
able supplier selection in healthcare industries. This method
provides new approach to solve decision problems, as it
considers an anti-ideal and ideal solution at the initial steps of
consideration of the problem. Moreover it proposes new way
to determine utility functions and their further aggregation,
while maintaining stability in the problems requiring large set
of alternatives and criteria.

Step 1. The initial step requires to define set of n criteria
and m alternatives to create decision matrix.

Step 2. Next, the extended initial matrix X should be
formed by defining ideal (AI) and anti-ideal(AAI) solution.

X =

AII

A1

A2

· · ·

Am

AI

þ

ÿ

ÿ

ÿ

ÿ
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ÿ

ø

xaa1 xaa2 . . . xaan

x11 x12 · · · x1n

x21 x22 . . . x2n

· · · · · · · · · · · ·
xm1 x22 · · · xmn

xai1 xai2 · · · xain

ù

ú

ú

ú

ú

ú

ú

û

(8)

The anti-ideal solution (AAI) which is the worst alternative
is defined by equation (9), whereas the ideal solution (AI)
is the best alternative in the problem at hand defined by
equation (10).

AAI = min
i

xij if j * B and max
i

xij if j * C (9)

AI = max
i

xij if j * B and min
i

xij if j * C (10)

where B is a benefit group of criteria and C is a group of cost
criteria.

Step 3. After defining anti-ideal and ideal solutions, the
extended initial matrix X needs to be normalized, by applying
equations (11) and (12) creating normalized matrix N .

nij =
xai

xij

if j * C (11)

nij =
xij

xai

if j * B (12)

Step 4. The weight for each criterion needs to be defined to
present its importance in accordance to others. The weighted
matrix V needs to be calculated by multiplying the normalized
matrix N with the weight vector through equation (13).

vij = nij × wj (13)

.Step 5. Next, the utility degree K of alternatives in relation
to the anti-ideal and ideal solutions needs to by calculated by
using equations (14) and (15)

K−

i =

"n

i=1
vij

"n

i=1
vaai

(14)

K+

i =

"n

i=1
vij

"n

i=1
vai

(15)

Step 6. The utility function f of alternatives, which is the
compromise of the observed alternative in relation to the ideal
and anti-ideal solution, needs to be determined. Its done using
equation (16).

f (Ki) =
K+

i +K−

i

1 +
1−f(K+

i )
f(K+

i )
+

1−f(K−

i )
f(K−

i )

(16)

where f
"

K−

i

"

represents the utility function in relation to the
anti-ideal solution and f

"

K+

i

"

represents the utility function
in relation to the ideal solution.
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Utility functions in relation to the ideal and anti-ideal
solution are determined by applying equations (17) and (18).

f
"

K−

i

"

=
K+

i

K+

i +K−

i

(17)

f
"

K+

i

"

=
K−

i

K+

i +K−

i

(18)

Step 7. Finally, rank alternatives accordingly to the values
of the utility functions. The higher the value the better is an
alternative.

D. Rank similarity coefficients

In order to compare the performance of the score functions,
it would be useful to compare the rankings obtained after
evaluating the values calculated using these functions. For
this purpose, one can use rank similarity coefficients, which
are often used in the literature to compare the resulting
rankings. In the case of our study, we decided to use weighted
Spearman’s correlation coefficient, which allows comparing
rankings considering alternatives rated the best as more sig-
nificant, and the WS ranking similarity coefficient, which the
main assumption that the positions of top of the rankings has
a more significant influence on similarity. The formulas for
calculation of both coefficients are presented below in equation
(19) for weighted Spearman’s correlation and equation (20) for
WS rank similarity coefficient.

rw = 12
6 ·

"n

i=1
(xi 2 yi)

2
((N 2 xi + 1) + (N 2 yi + 1))

n · (n3 + n2 2 n2 1)
(19)

WS = 12
n
�

i=1

�

2−xi
|xi 2 yi|

max {|xi 2 1| , |xi 2N |}

�

(20)

III. STUDY CASE

The use of fuzzy sets in multi-criteria problems is a popular
approach to solving problems where uncertainty arises. It
allows greater flexibility in modeling input data, thus ensuring
that the actual values that determine the parameters can be
represented. However, in many cases, the criteria are not
considered in a binary way, or the corresponding values are
not known precisely. Fuzzy sets are one of the possible ways
to represent uncertainty [21]. In the following, we focus our
attention on the problem of using Intuitionistic Fuzzy Sets
and different score functions to point out differences and
similarities in the results obtained by using these tools.

A randomly generated decision matrix of 6 alternatives
and 4 criteria was used in the study. Each matrix element
is represented in the form of an IFS, where the first value
indicates the value of decisiveness, while the second deter-
mines the degree of indecisiveness. Then, based on the score
functions described above, conversions of the uncertain matrix
to a matrices represented in the form of sharp numbers were
performed. The generated matrix is shown in Table I.

The purpose of this operation is the need to indicate how a
given score function affects the process of converting the data
to a crisp form. Furthermore, it is crucial to determine whether
the obtained matrices influence the obtained result through a
multi-criteria analysis.

IV. RESULTS

A. Small example

Each type of previously presented score function was used
to calculate crisp values for the matrix, which were shown
in Tables respective to the used function. Table II presents
values obtained by use of score function SI . In the case of
this score function, the spread of values in the range [21, 1]
is around 1.69, which might mean that this specific score
function differentiates well between alternative values.

TABLE II
CRISP SMALL DECISION MATRIX CALCULATED WITH SI SCORE

FUNCTION.

Ai C1 C2 C3 C4

A1 -0.039081 0.137740 -0.351916 0.691538
A2 -0.558417 -0.455956 -0.649449 0.010564
A3 -0.405613 -0.006527 0.361583 0.244181
A4 -0.211142 -0.122171 -0.596428 0.159583
A5 0.479454 -0.860203 0.830694 -0.110298
A6 0.375293 0.328710 -0.797545 -0.822696

In Table III values calculated through execution of score
function SII are presented. This function is defined as the de-
gree of membership minus the product of the non-membership
and hesitation degrees, and even though it provides values
from the same range as SI , it can be seen that there are less
negative values. Moreover, it is clear that in this example, the
spread of calculated values is significantly smaller, as in this
case, it’s around 0.99.

TABLE III
CRISP SMALL DECISION MATRIX CALCULATED WITH SII SCORE

FUNCTION.

Ai C1 C2 C3 C4

A1 0.041174 0.510925 0.243452 0.726737
A2 0.205952 0.075299 0.021391 0.089091
A3 -0.041371 0.060761 0.568287 0.587950
A4 -0.141754 0.392034 0.001438 0.324662
A5 0.506242 -0.056156 0.849442 0.389249
A6 0.383334 0.368876 -0.004356 -0.014798

The values obtained through the equation of score function
SIII are shown in Table IV. This specific function operates
in the range [20.5, 1] and is similar to the previous one
but subtracts the arithmetic mean of the non-membership
and hesitation degrees. As a result, provided values spread
around 1.24, which translates into a high differentiation of the
individual IFS values from the initial decision matrix.
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TABLE I
SMALL DECISION MATRIX REPRESENTED BY INTUITIONISTIC FUZZY SETS.

Ai

C1 C2 C3 C4

(µ, ν) (µ, ν) (µ, ν) (µ, ν)

A1 (0.17125,0.21033) (0.53664,0.39890) (0.28872,0.64063) (0.73657,0.04503)
A2 (0.21496,0.77338) (0.18588,0.64183) (0.11440,0.76385) (0.20609,0.19553)
A3 (0.13443,0.54004) (0.17854,0.18506) (0.60514,0.24356) (0.60220,0.35801)
A4 (0.03524,0.24638) (0.41634,0.53851) (0.11939,0.71582) (0.40974,0.25016)
A5 (0.52621,0.04675) (0.02438,0.88458) (0.85215,0.02146) (0.41781,0.52811)
A6 (0.39471,0.01942) (0.41035,0.08164) (0.06241,0.85995) (0.05100,0.87369)

TABLE IV
CRISP SMALL DECISION MATRIX CALCULATED WITH SIII SCORE

FUNCTION.

Ai C1 C2 C3 C4

A1 -0.243131 0.304959 -0.066927 0.604858
A2 -0.177553 -0.221182 -0.328406 -0.190864
A3 -0.298357 -0.232197 0.407707 0.403293
A4 -0.447136 0.124515 -0.320909 0.114611
A5 0.289310 -0.463433 0.778231 0.126715
A6 0.092065 0.115525 -0.406387 -0.423503

The function SIV is defined as the arithmetic mean of the
membership and non-membership degrees minus the hesitation
degree, which operates in the range [21, 0.5]. The spread of
the values obtained is around 1.06, which is slightly less than
the previous function, but still shows that the IFS values are
significantly differentiated from each other.

TABLE V
CRISP SMALL DECISION MATRIX CALCULATED WITH SIV SCORE

FUNCTION.

Ai C1 C2 C3 C4

A1 -0.427641 0.403307 0.394019 0.172409
A2 0.482520 0.241570 0.317362 -0.397573
A3 0.011706 -0.454602 0.273041 0.440315
A4 -0.577559 0.432286 0.252824 -0.010152
A5 -0.140560 0.363438 0.310422 0.418877
A6 -0.378809 -0.262015 0.383544 0.387039

Values for last score function, namely SV are presented in
Table VI. This function represents a mixed result of positive
and negative outcome expectations and operates in the same
range as SI and SII . In this case, no negative values were
received even though the range in which operates this function
includes negative values. The spread of values received from
this function is around 0.85, which is the lowest of presented
score functions, considering its range.

TABLE VI
CRISP SMALL DECISION MATRIX CALCULATED WITH SV SCORE

FUNCTION.

Ai C1 C2 C3 C4

A1 0.480460 0.568870 0.324042 0.845769
A2 0.220791 0.272022 0.175275 0.505282
A3 0.297193 0.496736 0.680791 0.622091
A4 0.394429 0.438915 0.201786 0.579791
A5 0.739727 0.069898 0.915347 0.444851
A6 0.687646 0.664355 0.101228 0.088652

Table VII presents preference values calculated by execution
of MARCOS method. The values of preference for respective
alternatives show the differences between considered score
functions. The function SI has irregular distribution, where
only one value is significantly higher than the rest. But in the
case of this function, the difference between the highest and
lowest value is almost 0.3, which shows that the values do not
have a high spread. On the contrary, the score function SII

provides a higher spread of 0.426, which might be preferable
as it better distinguishes the differences between alternatives.

Score function SIII provides the smallest spread of values
of all functions, namely 0.047. In such a case, it may be
perceived as the difference between alternatives is insignifi-
cant, which is rarely preferable in case of decision problems.
Evaluated values from score function SIV yielded values that
spread around 0.23, which is not the highest of presented score
functions but might be useful in some cases. The last score
function SV provided the highest values in this Table, which
might be visually better perceived by some decision-makers,
as the differences between the alternatives are more readily
apparent. The spread is around 0.33, which is the second-
highest. Considering those values, functions SII and SV are
the most representative and might be preferred by numerous
decision-makers.

TABLE VII
PREFERENCES FOR SMALL DECISION MATRIX COMPUTED WITH

MARCOS METHOD FOR SI -SV SCORE FUNCTIONS.

Ai SI SII SIII SIV SV

A1 -0.064287 0.584944 -0.017914 0.174813 0.700419
A2 0.233428 0.173407 0.034649 0.177619 0.366605
A3 0.005450 0.374305 0.010045 0.080901 0.643830
A4 0.091397 0.231148 0.022694 0.051248 0.514291
A5 0.054616 0.599214 -0.011511 0.278166 0.644428
A6 0.025817 0.359104 0.008765 0.056061 0.525352
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Figure 1 presents alternatives ranked by preference obtained
through considered score functions. On the graph, the dif-
ferences in evaluation are clearly visible as, for example,
the score function SIII and SI ranked alternative A1 as the
worst. In contrast, score function SV ranked this alternative
as the worst. On the other hand, almost all functions placed
alternative A6 fourth.

A1

A2

A3

A4

A5

A6

1
2
3
4
5
6

SI
SII
SIII
SIV
SV

Fig. 1. Radar chart of MARCOS rankings.

To better visualize differences between presented score
functions, rankings obtained by execution of the MARCOS
method were compared using similarity coefficients. The first
coefficient, namely Weighted Spearman’s correlation coeffi-
cient, is presented in Figure 2 as a correlation matrix in the
form of a heatmap. This coefficient shows high similarities of
rankings, which resulted through execution of score functions
SII and SV . The previous examination showed that those two
functions behave rather similarly, resulting in crisp values of
IFS. The next pair of functions that are quite similar is SIII

and SI .

SI SII SIII SIV SV

S I

S II

S III

S IV

S V

1.00 -0.62 0.80 0.18 -0.82

-0.62 1.00 -0.89 0.51 0.91

0.80 -0.89 1.00 -0.19 -0.94

0.18 0.51 -0.19 1.00 0.34

-0.82 0.91 -0.94 0.34 1.00

Correlation: rw

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fig. 2. Weighted Spearman’s correlation heatmap of MARCOS rankings for
small decision matrix.

Additionally, the rankings were compared using the WS
rank similarity coefficient, which as well is presented as a
correlation matrix in the form of a heatmap as Figure 3. This
coefficient shows which pair of compared rankings are not
symmetrical, meaning that rankings are not identical neither
the change in position is between exactly the same alternatives.
As it can be seen once again, the pair SI and SIII and pair
SII and SV are characterized by a high degree of similarity.
Moreover, comparing SII and SIV where SII is treated as
yields high similarity.

SI SII SIII SIV SV

S I

S II

S III

S IV

S V

1.00 0.20 0.90 0.53 0.24

0.43 1.00 0.31 0.85 0.84

0.90 0.27 1.00 0.55 0.27

0.57 0.68 0.37 1.00 0.53

0.32 0.84 0.27 0.65 1.00

Correlation: WS

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 3. WS correlation heatmap of MARCOS rankings for small decision
matrix.

B. Big example

The next example that was taken into consideration consists
of twenty alternatives and six criteria, which created the deci-
sion matrix presented in Table VIII. This approach provides a
view of how specific score functions behave in larger multi-
criteria decision problems.

Similarly to the smaller example, for a decision matrix
consisting of IFS, crisp matrix was calculated using score

BARTŁOMIEJ KIZIELEWICZ ET AL.: TOWARDS THE IDENTIFICATION OF MARCOS MODELS BASED ON INTUITIONISTIC FUZZY SCORE FUNCTIONS 793



TABLE VIII
BIG DECISION MATRIX REPRESENTED BY INTUITIONISTIC FUZZY SETS.

Ai

C1 C2 C3 C4 C5 C6

(µ, ν) (µ, ν) (µ, ν) (µ, ν) (µ, ν) (µ, ν)

A1 (0.09095,0.71850) (0.13774,0.49164) (0.20716,0.00628) (0.06600,0.90771) (0.93253,0.01122) (0.17497,0.50594)
A2 (0.19634,0.76889) (0.05385,0.74241) (0.07135,0.15414) (0.44855,0.19833) (0.15521,0.30392) (0.41031,0.09120)
A3 (0.02148,0.09223) (0.37886,0.44763) (0.20687,0.35686) (0.11724,0.55262) (0.15676,0.80864) (0.28854,0.00747)
A4 (0.80399,0.04354) (0.10795,0.17483) (0.80161,0.11037) (0.49469,0.30475) (0.18160,0.29511) (0.02199,0.37757)
A5 (0.59997,0.06593) (0.52386,0.23834) (0.25322,0.03477) (0.86408,0.08472) (0.14660,0.03157) (0.35019,0.03213)
A6 (0.17915,0.01657) (0.35069,0.17044) (0.23634,0.71446) (0.71924,0.26769) (0.16976,0.73265) (0.13227,0.62576)
A7 (0.39394,0.41539) (0.59632,0.02533) (0.28756,0.53541) (0.03969,0.82749) (0.44033,0.44300) (0.18513,0.47813)
A8 (0.09366,0.55802) (0.78447,0.18155) (0.15418,0.51586) (0.51218,0.19691) (0.54950,0.29227) (0.78470,0.19383)
A9 (0.20754,0.11127) (0.02822,0.77145) (0.11259,0.43723) (0.10478,0.83100) (0.43970,0.01513) (0.36435,0.54747)
A10 (0.53145,0.38788) (0.51920,0.27552) (0.47281,0.39902) (0.29417,0.18583) (0.44656,0.32535) (0.56993,0.28041)
A11 (0.41454,0.55076) (0.60336,0.17182) (0.25771,0.20216) (0.43993,0.40186) (0.34019,0.46780) (0.28601,0.21097)
A12 (0.00178,0.27447) (0.21928,0.08916) (0.22282,0.15183) (0.52120,0.09153) (0.10013,0.27936) (0.44117,0.20162)
A13 (0.57693,0.40495) (0.07804,0.58253) (0.54650,0.08093) (0.67845,0.08846) (0.19737,0.36442) (0.72426,0.00283)
A14 (0.03320,0.27491) (0.17390,0.71133) (0.78701,0.18097) (0.15871,0.82272) (0.68930,0.04541) (0.16032,0.47469)
A15 (0.14737,0.32855) (0.62481,0.01155) (0.34158,0.62958) (0.61442,0.01856) (0.85899,0.08471) (0.29505,0.22883)
A16 (0.46437,0.49039) (0.46334,0.19572) (0.20792,0.70879) (0.08940,0.36645) (0.00819,0.58278) (0.04862,0.11211)
A17 (0.17621,0.05731) (0.39896,0.25935) (0.54071,0.45444) (0.11264,0.77514) (0.70301,0.02073) (0.40974,0.52313)
A18 (0.03117,0.46166) (0.48374,0.35310) (0.09871,0.32470) (0.15036,0.08845) (0.25587,0.41844) (0.03895,0.57066)
A19 (0.37151,0.06187) (0.29695,0.33688) (0.03437,0.25546) (0.63877,0.03488) (0.87320,0.08054) (0.37052,0.44601)
A20 (0.26295,0.58775) (0.32911,0.29911) (0.08203,0.25447) (0.74980,0.20059) (0.26421,0.04034) (0.46111,0.50190)

functions. The resultant matrix with crisp values is presented
in Table IX.

TABLE IX
PREFERENCES FOR BIG DECISION MATRIX COMPUTED WITH MARCOS

METHOD FOR SI -SV SCORE FUNCTIONS.

Ai SI SII SIII SIV SV

A1 -0.036549 0.190882 -0.085154 -0.041990 0.451390
A2 -0.030858 0.146254 -0.109542 0.059565 0.465973
A3 -0.028761 0.126735 -0.129638 0.081650 0.459555
A4 0.033628 0.355654 0.068392 0.049577 0.658271
A5 0.067533 0.500764 0.122542 0.119319 0.763359
A6 -0.019921 0.272210 -0.038713 -0.046104 0.489817
A7 -0.019389 0.278088 -0.007072 -0.101019 0.487457
A8 0.029940 0.462223 0.143382 -0.127860 0.643773
A9 -0.050486 0.130363 -0.126984 0.004657 0.411298
A10 0.030223 0.483942 0.140541 -0.105493 0.646673
A11 0.013713 0.371025 0.056929 -0.055130 0.590749
A12 0.014285 0.170247 -0.078569 0.216041 0.596157
A13 0.036599 0.465783 0.134680 -0.048441 0.671756
A14 -0.020070 0.282331 -0.011157 -0.077203 0.501384
A15 0.045216 0.480237 0.126290 -0.027890 0.697439
A16 -0.030772 0.129525 -0.105932 0.042165 0.452381
A17 0.005362 0.395817 0.049615 -0.063564 0.574704
A18 -0.033528 0.026981 -0.153698 0.105713 0.449290
A19 0.034387 0.394112 0.073114 0.025449 0.672488
A20 0.005835 0.327543 0.020393 -0.003544 0.576575

The first function, namely SI yielded results presented in
Table X. In this case, the standard deviation is 0.411, which is
pretty high considering the range of this function, and it tells
us that this specific function provided differentiated results.
Moreover, the spread of those values is 1.76, which once again,
as in the smaller numerical example, shows that this function
makes use of a significant part of the range it operates in.

TABLE X
CRISP BIG DECISION MATRIX CALCULATED WITH SI SCORE FUNCTION.

Ai C1 C2 C3 C4 C5 C6

A1 -0.6276 -0.3539 0.2009 -0.8417 0.9213 -0.3310
A2 -0.5725 -0.6886 -0.0828 0.2502 -0.1487 0.3191
A3 -0.0708 -0.0688 -0.1500 -0.4354 -0.6519 0.2811
A4 0.7605 -0.0669 0.6912 0.1899 -0.1135 -0.3556
A5 0.5340 0.2855 0.2184 0.7794 0.1150 0.3181
A6 0.1626 0.1802 -0.4781 0.4516 -0.5629 -0.4935
A7 -0.0215 0.5710 -0.2478 -0.7878 -0.0027 -0.2930
A8 -0.4644 0.6029 -0.3617 0.3153 0.2572 0.5909
A9 0.0963 -0.7432 -0.3246 -0.7262 0.4246 -0.1831
A10 0.1436 0.2437 0.0738 0.1083 0.1212 0.2895
A11 -0.1362 0.4315 0.0555 0.0381 -0.1276 0.0750
A12 -0.2727 0.1301 0.0710 0.4297 -0.1792 0.2395
A13 0.1720 -0.5045 0.4656 0.5900 -0.1670 0.7214
A14 -0.2417 -0.5374 0.6060 -0.6640 0.6439 -0.3144
A15 -0.1812 0.6133 -0.2880 0.5959 0.7743 0.0662
A16 -0.0260 0.2676 -0.5009 -0.2770 -0.5746 -0.0635
A17 0.1189 0.1396 0.0863 -0.6625 0.6823 -0.1134
A18 -0.4305 0.1306 -0.2260 0.0619 -0.1626 -0.5317
A19 0.3096 -0.0399 -0.2211 0.6039 0.7927 -0.0755
A20 -0.3248 0.0300 -0.1724 0.5492 0.2239 -0.0408

The results obtained using the SII function are presented
in the Table XI. In this case, values are characterized by a
standard deviation of 0.29 and a spread of 1.16. Because
this function operates in the same interval as SI , namely
[21, 1], they can be easily compared. And just as in the small
numerical example, here too, the function SII achieves smaller
values of spread and standard deviation.

794 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



TABLE XI
CRISP BIG DECISION MATRIX CALCULATED WITH SII SCORE FUNCTION.

Ai C1 C2 C3 C4 C5 C6

A0 -0.0460 -0.0445 0.2022 0.0421 0.9319 0.0135
A1 0.1696 -0.0974 -0.0480 0.3785 -0.0092 0.3648
A2 -0.0603 0.3012 0.0512 -0.0652 0.1288 0.2833
A3 0.7974 -0.0174 0.7919 0.4336 0.0272 -0.2047
A4 0.5779 0.4672 0.2285 0.8597 0.1207 0.3303
A5 0.1658 0.2691 0.2012 0.7157 0.0983 -0.0191
A6 0.3147 0.5867 0.1928 -0.0702 0.3887 0.0241
A7 -0.1007 0.7783 -0.0160 0.4549 0.5033 0.7805
A8 0.1317 -0.1263 -0.0842 0.0514 0.4315 0.3161
A9 0.5002 0.4626 0.4217 0.1975 0.3724 0.5280
A10 0.3954 0.5647 0.1485 0.3763 0.2504 0.1799
A11 -0.1969 0.1576 0.1279 0.4858 -0.0732 0.3691
A12 0.5696 -0.1197 0.5163 0.6578 0.0377 0.7235
A13 -0.1570 0.0923 0.7812 0.1434 0.6773 -0.0129
A14 -0.0248 0.6206 0.3234 0.6076 0.8542 0.1861
A15 0.4422 0.3966 0.1489 -0.1100 -0.2302 -0.0455
A16 0.1323 0.3103 0.5385 0.0256 0.6973 0.3746
A17 -0.2030 0.4261 -0.0885 0.0830 0.1196 -0.1838
A18 0.3365 0.1736 -0.1470 0.6274 0.8695 0.2887
A19 0.1752 0.2179 -0.0868 0.7399 0.2362 0.4425

The score function SIII yielded values presented in Table
XII. This function operates in a different range than the two
previous. Considering the operative range of this function,
the standard deviation value of 0.35 and spread of 1.39 are
definitely high values. Results similar to those obtained in the
small numerical example show that this function is stable and,
at the same time, uses a large part of the interval in which it
operates, providing relatively different values for the different
alternatives.

TABLE XII
CRISP BIG DECISION MATRIX CALCULATED WITH SIII SCORE FUNCTION.

Ai C1 C2 C3 C4 C5 C6

0 -0.3636 -0.2934 -0.1893 -0.4010 0.8988 -0.2375
1 -0.2055 -0.4192 -0.3930 0.1728 -0.2672 0.1155
2 -0.4678 0.0683 -0.1897 -0.3241 -0.2649 -0.0672
3 0.7060 -0.3381 0.7024 0.2420 -0.2276 -0.4670
4 0.3999 0.2858 -0.1202 0.7961 -0.2801 0.0253
5 -0.2313 0.0260 -0.1455 0.5789 -0.2454 -0.3016
6 0.0909 0.3945 -0.0687 -0.4405 0.1605 -0.2223
7 -0.3595 0.6767 -0.2687 0.2683 0.3243 0.6770
8 -0.1887 -0.4577 -0.3311 -0.3428 0.1595 0.0465
9 0.2972 0.2788 0.2092 -0.0587 0.1698 0.3549

10 0.1218 0.4050 -0.1134 0.1599 0.0103 -0.0710
11 -0.4973 -0.1711 -0.1658 0.2818 -0.3498 0.1618
12 0.3654 -0.3829 0.3197 0.5177 -0.2039 0.5864
13 -0.4502 -0.2391 0.6805 -0.2619 0.5339 -0.2595
14 -0.2789 0.4372 0.0124 0.4216 0.7885 -0.0574
15 0.1966 0.1950 -0.1881 -0.3659 -0.4877 -0.4271
16 -0.2357 0.0984 0.3111 -0.3310 0.5545 0.1146
17 -0.4532 0.2256 -0.3519 -0.2745 -0.1162 -0.4416
18 0.0573 -0.0546 -0.4484 0.4582 0.8098 0.0558
19 -0.1056 -0.0063 -0.3770 0.6247 -0.1037 0.1917

Table XIII presents results obtained using function SIV .
The calculated spread of values, being around 1.32, similar
to the functions SI and SIII shows significant use of the
range in which this function operates. Moreover, the standard
deviation value of about 0.36 is close to the value obtained by

the function SIII , which might indicate that those functions
might yield similar results.

TABLE XIII
CRISP BIG DECISION MATRIX CALCULATED WITH SIV SCORE FUNCTION.

Ai C1 C2 C3 C4 C5 C6

0 0.2142 -0.0559 -0.6798 0.4606 0.4156 0.0214
1 0.4478 0.1944 -0.6618 -0.0297 -0.3113 -0.2477
2 -0.8294 0.2397 -0.1544 0.0048 0.4481 -0.5560
3 0.2713 -0.5758 0.3680 0.1992 -0.2849 -0.4007
4 -0.0012 0.1433 -0.5680 0.4232 -0.7327 -0.4265
5 -0.7064 -0.2183 0.4262 0.4804 0.3536 0.1370
6 0.2140 -0.0675 0.2345 0.3008 0.3250 -0.0051
7 -0.0225 0.4490 0.0051 0.0636 0.2627 0.4678
8 -0.5218 0.1995 -0.1753 0.4037 -0.3178 0.3677
9 0.3790 0.1921 0.3077 -0.2800 0.1579 0.2755

10 0.4480 0.1628 -0.3102 0.2627 0.2120 -0.2545
11 -0.5856 -0.5373 -0.4380 -0.0809 -0.4308 -0.0358
12 0.4728 -0.0092 -0.0589 0.1504 -0.1573 0.0906
13 -0.5378 0.3278 0.4520 0.4721 0.1021 -0.0475
14 -0.2861 -0.0455 0.4567 -0.0505 0.4155 -0.2142
15 0.4321 -0.0114 0.3751 -0.3162 -0.1135 -0.7589
16 -0.6497 -0.0125 0.4927 0.3317 0.0856 0.3993
17 -0.2608 0.2553 -0.3649 -0.6418 0.0115 -0.0856
18 -0.3499 -0.0493 -0.5653 0.0105 0.4306 0.2248
19 0.2761 -0.0577 -0.4952 0.4256 -0.5432 0.4445

Table XIV presents values calculated using function SV .
The standard deviation of calculated values is 0.21, whereas
the spread value is 0.88. This function operates in the same
range as functions SI and SII , which makes it the worst in
diversifying values in comparison to those two. Even though a
small standard deviation and spread characterize those values,
this function might be useful when such values are expected.

TABLE XIV
CRISP BIG DECISION MATRIX CALCULATED WITH SV SCORE FUNCTION.

Ai C1 C2 C3 C4 C5 C6

0 0.1862 0.3231 0.6004 0.0791 0.9607 0.3345
1 0.2137 0.1557 0.4586 0.6251 0.4256 0.6596
2 0.4646 0.4656 0.4250 0.2823 0.1741 0.6405
3 0.8802 0.4666 0.8456 0.5950 0.4432 0.3222
4 0.7670 0.6428 0.6092 0.8897 0.5575 0.6590
5 0.5813 0.5901 0.2609 0.7258 0.2186 0.2533
6 0.4893 0.7855 0.3761 0.1061 0.4987 0.3535
7 0.2678 0.8015 0.3192 0.6576 0.6286 0.7954
8 0.5481 0.1284 0.3377 0.1369 0.7123 0.4084
9 0.5718 0.6218 0.5369 0.5542 0.5606 0.6448

10 0.4319 0.7158 0.5278 0.5190 0.4362 0.5375
11 0.3637 0.5651 0.5355 0.7148 0.4104 0.6198
12 0.5860 0.2478 0.7328 0.7950 0.4165 0.8607
13 0.3791 0.2313 0.8030 0.1680 0.8219 0.3428
14 0.4094 0.8066 0.3560 0.7979 0.8871 0.5331
15 0.4870 0.6338 0.2496 0.3615 0.2127 0.4683
16 0.5595 0.5698 0.5431 0.1687 0.8411 0.4433
17 0.2848 0.5653 0.3870 0.5310 0.4187 0.2341
18 0.6548 0.4800 0.3895 0.8019 0.8963 0.4623
19 0.3376 0.5150 0.4138 0.7746 0.6119 0.4796

The rankings obtained using the MARCOS method are
grouped in the barplot shown in Figure 4. As can be seen,
the obtained rankings differ significantly from each other,
highlighting how important it is to choose an appropriate score
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function. Additionally, it can be seen that on the podium of
the ranking, the functions SII , SIII , and SV behave similarly.
Still, in the further positions, significant discrepancies appear.

SI SII SIII SIV SV

S I

S II

S III

S IV

S V

1.00 0.87 0.86 -0.02 0.99

0.87 1.00 0.94 -0.39 0.87

0.86 0.94 1.00 -0.48 0.85

-0.02 -0.39 -0.48 1.00 -0.02

0.99 0.87 0.85 -0.02 1.00

Correlation: rw

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Weighted Spearman’s correlation heatmap of MARCOS rankings for
big decision matrix.

The correlations of the rankings obtained from the big deci-
sion matrix data are shown in Figures 5 and 6 using heatmaps.
The former, describing values for the weighted Spearman’s
correlation coefficient, shows high correlation values for all
scoring functions, excluding the SIV function. When it was
used, the rankings calculated using the MARCOS method were
significantly different.

SI SII SIII SIV SV

S I

S II

S III

S IV

S V

1.00 0.95 0.84 0.72 0.99

0.92 1.00 0.87 0.59 0.92

0.77 0.87 1.00 0.14 0.76

0.61 0.40 0.40 1.00 0.61

0.99 0.94 0.83 0.74 1.00

Correlation: WS

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 6. WS correlation heatmap of MARCOS rankings for big decision matrix

In contrast, the similarity of the rankings calculated with
WS coefficient, shown in Figure 6 also indicated that the SIV

function showed the least consistent results with the other
techniques used. The strongest similarity of rankings could
be observed for the pair of methods SI and SV , which is
0.99. In contrast, the lowest consistency of rankings is 0.14
for the pair of methods SIII and SIV . It indicates a significant
discrepancy, which confirms the importance of the influence
of the used scoring function on the obtained results.

C. WS comparison

To generalize the results and examine the similarities be-
tween the scoring functions used, 1000 simulations were
performed for randomly generated decision matrices. Each
of the generated matrices was subjected to the techniques
described earlier, and the resulting crisp matrices were used
in a multi-criteria analysis using the MARCOS method. The
figures and tables below show the values calculated for the
similarities of the obtained rankings. The WS rank similarity
coefficient determined their consistency.

Visualizations for selected scoring functions are presented
below, together with tables describing selected statistics of
the obtained data. Figure 7 shows the distribution of ranking
similarity values for the simulations performed. The rankings
obtained using the SII function were compared with the other
methods. It is worth noting that for the functions SIII and
SV, the similarity of the rankings was high and concentrated
in a narrow area. It shows a high consistency in how IFS
conversions to crisp values are performed, which translates
into high reproducibility in evaluating alternatives.

SI SIII SIV SV
Score function

0.2

0.4

0.6

0.8

1.0

W
S

SII

Fig. 7. Distribution of rankings similarity values using the SII score function.

Table XV contains the statistics calculated from the sim-
ulations, including a comparison of the performance of the
function SI with the others. The variance and standard devi-
ation were most negligible for the functions SIII and SV, as
confirmed by the data shown in Figure 7. On the other hand,
the most significant standard deviation (0.384707) was seen
when comparing the results obtained using the SI function.

TABLE XV
STATISTICS FOR RESULTS OBTAINED USING THE SII SCORE FUNCTION.

Si Standard deviation Variance Mean

SI 0.384707 0.147999 0.446851
SIII 0.098412 0.009685 0.967222
SIV 0.118155 0.013961 0.276578
SV 0.060845 0.003702 0.910355
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20
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11
12
13
14
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16
17
18
19
20

Ra
nk

SI SII SIII SIV SV

Fig. 4. MARCOS rankings for big decision matrix for SI -SV score functions.

Figure 8 shows the similarity distribution obtained for the
comparison of results using the SIII function together with the
other functions. As in the previous case, the highest similarity
of rankings was observed for the functions SII and SV. In
addition, the lowest consistency of results was noted when
comparing with the ranking obtained using SIV.

SI SII SIV SV
Score function

0.2

0.4

0.6

0.8

1.0

W
S

SIII

Fig. 8. Distribution of rankings similarity values using the SIII score function.

In turn, Table XVI describes the statistical values for the
data obtained when comparing the rankings of the functions
SIII with the others. The highest average ranking similarity
value is 0.968083 for the method pair SIII and SII. It demon-
strates the high consistency of the results and shows that the
two functions can be used interchangeably without much effect
on the rankings in most cases.

TABLE XVI
STATISTICS FOR RESULTS OBTAINED USING THE SIII SCORE FUNCTION.

Si Standard deviation Variance Mean

SI 0.391059 0.152927 0.452026
SII 0.098297 0.009662 0.968083
SIV 0.125697 0.015800 0.281541
SV 0.093363 0.008717 0.906154

A visualization of the similarity distribution of the rankings
obtained using the scoring function SIV compared to the other
functions is shown in Figure 9. It can be seen that none of the
techniques used gives a strong rankings correlation. Instead, it
causes the results obtained to vary, making it essential to bear
in mind that the choice of scoring function directly impacts
the results obtained.

SI SII SIII SV
Score function

0.2

0.4

0.6

0.8

W
S

SIV

Fig. 9. Distribution of rankings similarity values using the SIV score function.

The determined statistical features for the comparisons of
the function SIV with the others are listed in Table XVII.
The average correlation value oscillates between a value of
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0.284001 for feature SIII and 0.522578 for feature SV. It
shows that a low consistency of results is obtained regard-
less of the technique used. On the other hand, the standard
deviation for the similarity of the rankings is similar across
all functions. It shows that the quality of the correlation is
also affected by the input data, which can improve or worsen
the consistency of the rankings.

TABLE XVII
STATISTICS FOR RESULTS OBTAINED USING THE SIV SCORE FUNCTION.

Si Standard deviation Variance Mean

SI 0.145812 0.021261 0.491630
SII 0.124837 0.015584 0.289953
SIII 0.133394 0.017794 0.284001
SV 0.147851 0.021860 0.522578

The similarity results for the other functions used in the
study, i.e., SI and SV, show that the first function gives a
similar similarity of rankings to the other techniques. Still, it
oscillates within a value of 0.4, indicating low consistency of
the results. On the other hand, the second function shows a
high similarity of performance together with the functions SII

and SIII. It confirms the trend of possible interchangeable use
of these functions in converting IFS to crisp values in multi-
criteria problems.

V. CONCLUSION

Decision-making appears in many parts of life, so develop-
ing this particular branch of technology is crucial. However,
often in decision-making problems, the problem of uncertainty
and fuzzy values arise, which makes standard methods inap-
plicable. For this reason, it is worth taking a closer look at the
possibilities of defuzzification of such problems.

In the study carried out, five score functions that allow
achieving crisp values from intuitionistic fuzzy sets were
compared. Each of the functions allows obtaining completely
different values, which ultimately will significantly influ-
ence the results of the rankings. The study showed that in
the smaller problem, the functions SI and SIII should be
preferred in decision-making problems because of the high
distinction of individual values between them. However, the
more extensive problem and simulations for 1000 decision
matrices showed that functions SII, SIII and SV proved to
be the most coherent techniques. Moreover, those functions
presented high similarity in resulting rankings rendering them
equally capable.

In future studies, it would be meaningful to address this
issue regarding the reference ranking to compare the perfor-
mance of the used score functions to indicate their reliability in
practical problems. In addition, it would verify the usefulness
and effectiveness of presented score functions in the decision-
making process, which is obligatory to obtain credible results.
In addition, future research would need to consider real
decision-making tasks.
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fuzzy sets in multi-criteria group decision making problems using the
characteristic objects method,” Symmetry, vol. 12, no. 9, p. 1382, 2020.

[12] B. Gohain, R. Chutia, P. Dutta, and S. Gogoi, “Two new similarity
measures for intuitionistic fuzzy sets and its various applications,”
International Journal of Intelligent Systems, 2022.

[13] E. Szmidt, J. Kacprzyk, and P. Bujnowski, “Three term attribute de-
scription of atanassov’s intuitionistic fuzzy sets as a basis of attribute
selection,” in 2021 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE). IEEE, 2021, pp. 1–6.
[14] N. X. Thao, “Some new entropies and divergence measures of intu-

itionistic fuzzy sets based on archimedean t-conorm and application in
supplier selection,” Soft Computing, vol. 25, no. 7, pp. 5791–5805, 2021.

[15] S. Al-Humairi, A. Hizami, A. Zaidan, B. Zaidan, H. Alsattar, S. Qahtan,
O. Albahri, M. Talal, A. Alamoodi, and R. Mohammed, “Towards
sustainable transportation: A pavement strategy selection based on the
extension of dual-hesitant fuzzy multi-criteria decision-making meth-
ods,” IEEE Transactions on Fuzzy Systems, 2022.

[16] S.-M. Chen and J.-M. Tan, “Handling multicriteria fuzzy decision-
making problems based on vague set theory,” Fuzzy sets and systems,
vol. 67, no. 2, pp. 163–172, 1994.

[17] T.-Y. Chen, “A comparative analysis of score functions for multiple
criteria decision making in intuitionistic fuzzy settings,” Information

Sciences, vol. 181, no. 17, pp. 3652–3676, 2011.
[18] S. K. De, R. Biswas, and A. R. Roy, “An application of intuitionistic

fuzzy sets in medical diagnosis,” Fuzzy sets and Systems, vol. 117, no. 2,
pp. 209–213, 2001.

[19] A. Kharal, “Homeopathic drug selection using intuitionistic fuzzy sets,”
Homeopathy, vol. 98, no. 1, pp. 35–39, 2009.
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