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Abstract—High-level loop transformations are a key instru-
ment to effectively exploit the resource in modern architectures.
Energy consumption on multi-core architectures is one of the
major issues connected with high-performance computing. We
examine the impact of four loop transformation strategies on
performance and energy consumption. The investigated strate-
gies include: loop fission, loop interchange (permutation), strip-
mining, and loop tiling. Additionally, a column-wise and row-wise
store formats for dense matrices are considered. Parallelization
and vectorization are implemented using OpenMP directives. As
a test, the WZ factorization algorithm is used. The comparison
of selected strategies of the loop transformation is done for Intel
architecture, namely Cascade Lake. It has been shown that for
WZ factorization, which is an example of an application in which
we can use the loop transformation, optimization towards high-
performance can also be an effective strategy for improving
energy efficiency. Our results show also that block size selection
in loop tilling has a significant impact on energy consumption.

Keywords: energy saving, energy consumption, RAPL, WZ
factorization, multicore architecture

I. INTRODUCTION

W
ITH the growing demand for high-performance com-

puting, new architectures have emerged which unfortu-

nately consumes more and more energy. Reducing energy con-

sumption in these architectures is one of the major challenges.

The current research trends based on performance studies

[12], [13], [16] and comparisons are to develop hardware

and software to achieve the best performance and energy

compromise. One of the aspects of creating energy-aware

software is the optimization of implementation of complex

numerical algorithms. Such complex algorithms include loops,

in particular nested ones. Nested loops are an important

structure bearing a great deal of the parallelism and vector-

ization possibilities. However, to parallelize them efficiently,

the programmer has to make some decisions about applying

various transformations. An example of such loops is matrix

algorithms, like matrix multiplication or different kinds of

factorizations, widely investigated in the literature [3], [1].

In the work [2], we studied loop transformations for nested

loops on multicore architectures on the example of a fac-

torization similar to the LU factorization, namely, the WZ

factorization [19]. The WZ factorization has some nontrivial

data dependencies and the compiler is not able to efficiently

optimize the algorithm. We have chosen the following four:

loop fission, loop interchange (loop permutation), strip-mining,

and loop tiling.

In this article, we investigate the impact of these four loop

transformations on performance and energy consumption for

the WZ factorization on multicore architecture. We describe

in detail two block-related transformations (strip-mining and

loop tiling). We are making theoretical and experimental

considerations about the size of the blocks. Additionally, we

consider column-wise and row-wise storage formats for dense

matrices. The OpenMP standard is used for parallelization

and vectorization of the code. The Intel RAPL (Running

Average Power Limit) [7], [9] interface is used as a source

of information on energy consumption.

The main contributions of this article are the following:

• results of the tests from the evaluation of the execution

time and energy consumption for four loop transforma-

tions of the WZ factorization for various data sizes on

Intel architecture — namely, Cascade Lake;

• conclusions on the impact of the four loop transforma-

tions on the execution time and energy consumption;

• analysis of the correlation between performance and

energy consumption for four loop transformations.

This paper is organized as follows. Section II presents

a few related works on loop transformations and energy

consumption/performance analysis for modern computer ar-

chitectures and systems. Section III discusses the four loop

transformations applied here for the WZ factorization and

studies block size for tiled transformation. In Section IV,

we concentrate on the details of conducting tests and on

the discussion and explanation of the results. In Section V,

we present the conclusions of the numerical experiments and

further research directions.

II. RELATED WORKS

When high-performance computing is considered, energy

consumption is one of the most important challenges. These

challenges are analyzed on many levels. In particular, the

works of [11], [13], [16] dealt with the topic of energy
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Fig. 1: The output of the WZ factorization — forms of the

matrices W (left) and Z (right).

consumption in the context of using the OpenMP standard

for multi-core computers with shared memory.

The key to software optimization in terms of the per-

formance for algorithms that include nested loops is the

right choice of the appropriate loop transformations. Loop

transformations are a research topic for various automatic

optimization techniques [8], [10], [14], [15] as well as for

manual conversion of application code [5], [17], [18] so as

to obtain the best possible performance on modern multi-core

architectures.

In many numerical algorithms where dependencies between

data are very complicated, even such tools as efficient opti-

mizing compilers are not able to transform the code to use the

potential of modern processors. The authors of [3], [1], present

algorithms for solving systems of equations, trying to improve

their performance, in particular in parallel. Improvement in

performance was obtained by appropriate transformation of

the underlying algorithm using looping tiling and appropriate

data structures. There are currently not too many studies in

the literature about both efficiency and energy consumption in

the context of loop transformations. In our work, we study a

numerical algorithm (the WZ factorization), in which, loops

are transformed. This algorithm concerns numerical linear al-

gebra, in particular solving systems of equations on multi-core

architectures using OpenMP in the context of performance and

energy consumption.

III. WZ FACTORIZATION

The WZ factorization (Figure 1) was introduced in [4]. It

was a new method for parallel solving of systems of linear

equations on computers containing many data processing units

and it was an alternative to the well-known LU factorization.

The WZ factorization is based on the decomposition of the

square matrix A into two matrices: W i Z. All the matrices

which we consider are dense ones. They are stored as one-

dimensional arrays in one of the two formats: column-wise or

row-wise.

The basic algorithm for the WZ factorization for an even

size of the matrix (we only consider even sizes — without

loss of generality) is shown in Figure 2.

The loop transformation consists in replacing itself with

an equivalent loop containing the structured block. Some

for(k = 0; k < n/2-1; k++) {

p = n-k-1;

akk = a[k][k]; akp = a[k][p];

apk = a[p][k]; app = a[p][p];

detinv = 1 / (apk*akp - akk*app);

for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;

for(j = k+1; j < p; j++)

a[i][j] = a[i][j]

- w[i][k]*a[k][j]

- w[i][p]*a[p][j];

}

}

Fig. 2: The basic algorithm for the WZ factorization —

pseudocode.

for(k = 0; k < n/2-1; k++) {

. . .

for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;

}

for(i = k+1; i < p; i++)

for(j = k+1; j < p; j++)

a[i][j] = a[i][j]

- w[i][k]*a[k][j]

- w[i][p]*a[p][j];

}

Fig. 3: The algorithm after the fission of the i-loop —

pseudocode. This algorithm matches the row-wise layout.

well-known transformations considered are: loop fission, loop

interchange (permutation), strip-mining, tiling.

A. Loop fission and permutation

Loop fission (also called loop distribution) breaks a loop

into multiple loops over the same index range but each taking

only a part of the loop’s body. Its purpose is to achieve better

utilization of locality of reference — isolate parallelizable

loops create independent loops, hence creating separate tasks

Its result is shown in Figure 3.

In the fission algorithm (Figure 3) it is possible to use

the loop interchange (for the j-loop and the second i-loop).

The loop interchange transformation switches the order of

loops’ nesting (consists in replacing the internal loop with

the external one). The purpose of such a transformation is to

improve data locality or increase parallelism and vectorization.

The algorithm from Figure 3 is denoted as fission-ij. Its

result is shown in Figure 4.
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for(k = 0; k < n/2-1; k++) {

. . .

for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;

}

for(j = k+1; j < p; j++)

for(i = k+1; i < p; i++)

a[i][j] = a[i][j]

- w[i][k]*a[k][j]

- w[i][p]*a[p][j];

}

Fig. 4: The algorithm after the fission of the i-loop with

permutation loop — pseudocode. This algorithm matches the

row-wise layout.

B. Strip-mining and loop tiling

Access to the main memory in our algorithm takes a lot

of time. It is a well-known fact that the cost of accessing the

memory is much higher than the cost of computations. We can

even figure the number of memory reads and writes (CM ) and

compare it to the number of floating-point operations (CF ).

After some simple calculations we obtain:

CM =
7

6
n3 +O(n2),

CF =
2

3
n3 +O(n2).

Thus, the ratio of memory access to computations is:

CM

CF

≈

7

4
.

This means that we need a lot of memory access to perform

our algorithm — almost two memory accesses for one floating-

point operation. So, it is the main obstacle to utilizing the

computing power of modern processors fully. A manner to

solve this problem is to use the cache memory (which is much

faster than the main memory) efficiently. Of course, the size

of the cache memory is too small to house all the data needed

in the algorithm.

Strip-mining is a loop transformation that consists in replac-

ing one loop with two nested loops. One of them (inner) is

appropriate for vectorization (it is quite short and with a unit

stride), and another (outer) is longer and its step is equal to the

full number of iterations in the inner one. The transformation

pays only when the original loop is rather long.

A loop in the process of strip-mining is divided into two

loops, where the inner one has BLOCK_SIZE iterations and

the outer one has n/BLOCK_SIZE iterations (n is the number

of iterations in the original loop). The strip-mining alone can

have some positive impact on the performance (by easing the

automatic vectorization process).

One of the widely used techniques which allow for improv-

ing performance is loop tiling which consists in connecting

Fig. 5: Computing sequence after loop tiling (black: compu-

tations in blocks; red: order between blocks).

strip-mining with loop interchange. The main aim of this

technique is to reduce the number of reads from and writes

to the main memory by improving the spatial and temporal

data locality, and hence by better utilizing the hierarchy of

the memory — especially the cache memory by lessening the

rate of cache misses. It is also useful for vectorization — both

automatic and explicit — and for parallelization.

After such a transformation, the order of the computations

changes (see Figure 5), although without the change of the

result.

In such a process we improve the temporal and spatial

locality of the data. By dividing the data into pieces of

BLOCK_SIZE, we cause them to fit in cache memory (we

mean level 1 cache here) and stay there as long as needed to

conduct current computations. This minimizes the frequency

of cache memory swaps. Too big BLOCK_SIZE and the

data would not fit into the cache, too small BLOCK_SIZE

and the swapping frequency rises. Moreover, to facilitate the

vectorization, we wanted to make BLOCK_SIZE a multiple

of the SIMD register. Unfortunately, in most of the iterations

of both the i-loop and j-loop, the first and the last iteration is

chopped. For this reason, we broadened the first and the last

iteration to full BLOCK_SIZE. It does not change the results

of the algorithm (additional operations are beyond the non-

zero elements of the resulting matrices), although, it forces the

machine to make some more computations (in Figure 6, the

red color denotes the redundant computations) — the bigger

BLOCK_SIZE the more additional computations are needed.

The advantage is the possibility of vectorizing evenly all the

iterations.

To achieve this, we make every outer loop start with a

nearest full multiple of BLOCK_SIZE (rounded down) and we

make every inner loop iterate through a whole BLOCK_SIZE.

Moreover, all the matrices were allocated with the memory

alignment suitable for the used architecture.

Figure 7 shows the original algorithm after parallelization,

with strip-mining of the j-loop (the full loop tiling is impos-

sible due to the infeasibility of the loop interchange). Figure

8 presents the fission algorithm with full loop tiling. The

function RDTTNM() (stands for round down to the nearest
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Fig. 6: Computations in the kth step of the algorithm after

loop tiling (yellow: necessary computations; red: needless

computations).

for(k = 0; k < n/2-1; k++) {

. . .

for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;

start = RDTTNM(k+1, BLOCK_SIZE);

for(jj = start; jj < p;

jj += BLOCK_SIZE) {

__assume(jj % BLOCK_SIZE == 0);

for(j = jj; j < jj+BLOCK_SIZE;

++j)

a[i][j] = a[i][j]

- w[i][k]*a[k][j]

- w[i][p]*a[p][j];

...}

Fig. 7: Strip-mining in the basic algorithm — pseudocode.

multiple) can be defined as a macro:

#define RDTTNM(a, r) (((a)/(r))*(r))

In Figures 7 and 8, we use the compiler clause __assume

which tells the compiler that a given condition is fulfilled

— here, we declare that ii and jj are multiples of the

BLOCK_SIZE which facilitates the vectorization.

Table I shows the computation overhead for the algorithm

after loop tiling (red in Figure 6) — as a function of the size

n of the matrix and of the BLOCK_SIZE (b).
Figure 9 shows the dependencies (black arrows) between

the input data (green and blue dots) and the results (red dots)

of the innermost loop in the kth step of the WZ factorization.

We can see that — with no regard to the matrix memory

layout (even for more complex layouts [6]) — the results of

the computations depend on the data from various areas of the

memory, so the loop tiling can give very limited performance

improvements.

Here, the OpenMP standard is used for parallelization and

vectorization code for all loop transformations. The more outer

i-loop or ii-loop is parallelized with the pragma parallel

for(k = 0; k < n/2-1; k++) {

. . .

for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;

}

start = RDTTNM(k+1, BLOCK_SIZE);

for(ii = start; ii < p;

ii += BLOCK_SIZE) {

for(jj = start; jj < p;

jj += BLOCK_SIZE) {

__assume(ii % BLOCK_SIZE == 0);

for(i = ii; i < ii+BLOCK_SIZE;

++i) {

__assume(

jj % BLOCK_SIZE == 0);

for(j = jj; j < jj+BLOCK_SIZE;

++j)

a[i][j] =

a[i][j]

- w[i][k]*a[k][j]

- w[i][p]*a[p][j];

...}

Fig. 8: Loop tiling in the fission algorithm — pseudocode.

Fig. 9: The arrows show the data dependencies for updating

an element of the array a in the kth step. Grey, green and

yellow elements have their final values in the kth step; yellow

ones are needed to compute detinv in this step; blue ones

are elements of the array w computed in the middle loop of

this step; red ones are updated in the innermost loop with the

use of two blue elements and two green elements each.

loop and the most inner j-loop is vectorized with the pragma

simd — details in [2].

IV. NUMERICAL EXPERIMENT – METHODOLOGY AND

RESULTS ANALYSIS

A. Methodology

We test two types of versions of the WZ factorization

algorithm:

• the basic algorithm presented in Figure 2 for the ma-

trix stored in memory in two formats: a row-wise

(basic-row) and column-wise (basic-col);
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TABLE I: The ratio of the excess computations in the algorithm after loop tiling to the computations in the basic algorithm

(n is the size of the matrix; b is the BLOCK_SIZE).

b = 8 16 32 64 128 256 512

n = 1024 2.06% 4.44% 9.28% 19.24% 40.33% 87.21% 199.71%
2048 1.03% 2.21% 4.59% 9.42% 19.38% 40.48% 87.35%
3072 0.68% 1.47% 3.05% 6.24% 12.75% 26.29% 55.46%
4096 0.51% 1.10% 2.28% 4.66% 9.50% 19.46% 40.55%
5120 0.41% 0.88% 1.82% 3.72% 7.57% 15.44% 31.94%
6144 0.34% 0.73% 1.52% 3.10% 6.29% 12.80% 26.34%
7168 0.29% 0.63% 1.30% 2.65% 5.38% 10.93% 22.41%
8192 0.26% 0.55% 1.14% 2.32% 4.70% 9.53% 19.49%
9216 0.23% 0.49% 1.01% 2.06% 4.17% 8.46% 17.25%

10240 0.21% 0.44% 0.91% 1.85% 3.75% 7.60% 15.47%
11264 0.19% 0.40% 0.83% 1.68% 3.41% 6.89% 14.02%
12288 0.17% 0.37% 0.76% 1.54% 3.12% 6.31% 12.82%
13312 0.16% 0.34% 0.70% 1.42% 2.88% 5.82% 11.81%
14336 0.15% 0.31% 0.65% 1.32% 2.67% 5.40% 10.95%
15360 0.14% 0.29% 0.61% 1.23% 2.49% 5.04% 10.20%
16384 0.13% 0.27% 0.57% 1.16% 2.34% 4.72% 9.55%

. . . . . . . .
32768 0.06% 0.14% 0.28% 0.58% 1.17% 2.35% 4.73%

• the algorithms with the fission loop transformation and

loop interchange, that is: fission-row-ij (Figure

3) and fission-row-ji (Figure 4) for the row-wise

layout and fission-col-ij, fission-col-ji for

the column-wise layout;

and two types of versions of WZ factorization block algo-

rithms:

• the strip-mining algorithms: basic-row-sm-b,

basic-col-sm-b;

• the loop tiling algorithms: fission-row-ij-lt-b,

basic-row-ji-lt-b, fission-col-ij-lt-b,

fission-col-ji-lt-b.

In the notation sm is short for strip-mining, lt for loop

tiling, and b is the BLOCK_SIZE. The following block sizes

are checked: 8, 16, 32, 64, 128, 256, 512.

All versions have been implemented in C++ with vectoriza-

tion and parallelization.

For testing, we used a double-precision square matrix of

random values. The size of the smallest matrix is R (rows

times columns). All sizes are shown in Table II.

TABLE II: Characteristics of the test data sizes.

Data size
n Number of

[GB]
cells (n× n)

R 8192 67108864 0.5
2.25R 12288 150994944 1.125

4R 16384 268435456 2
16R 32768 1073741824 8

The performance and energy consumption tests of the

proposed versions of the WZ algorithm were carried out on the

following computing platform equipped with a modern multi-

core processor with the following parameters and software:

• processor: Intel(R) Xeon(R) Gold 5218R (2.10 GHz; HT;

2×20 cores;

• operating system: CentOS 7.5 with Linux kernel 3.10.0;

• compiler: Intel ICC 14.0.2 with compiler options

-qoenmp -03 -ipo -no-prec-div

-fp-model fast=2

To analyze the impact of all versions of the algorithm on

energy consumption, we used measurements from the RAPL

(Running Average Power Limit) interface. We used RAPL

because the article [9] has shown that it gives the correct

measurement results.

B. Execution Time. Matrix layout and loop interchange

First, we measure the execution time of the following

versions of WZ factorization algorithm: the basic algorithm

and the loop fission algorithm for the matrix stored in memory

in two formats: a row-wise and column-wise manner and loop

interchanged the order of the i-loop and j-loop. Therefore, we

test 6 versions of the algorithm:

• basic-row

• basic-col

• fission-row-ij

• fission-row-ji

• fission-col-ij

• fission-col-ji

We test all these versions on 40 threads as well as on 80

threads with running HT. The results are presented in Figure

10. Both graphs on the vertical axis have execution time and on

the horizontal axis the data size. Also, both of them show lines

with points indicating the time of the algorithm for different

data sizes. The graph in Figure 10a shows the runtime of

the algorithm running on 40 threads, whereas the graph in

Figure 10b shows the runtime of 80 threads, respectively.

In both graphs we see 6 lines, each of them concerns one

version of the algorithm according to the legend. Also in both

cases, the lines for the basic-row, fission-row-ij,

and fission-col-ji algorithms almost overlap. As we

can see from the graphs, the above-mentioned versions also

have the shortest runtime. Table III shows the speedup we get
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Fig. 10: Execution time of versions of WZ factorization algorithm for different data sizes.

on 80 threads compared to 40 threads for each version of the

tested WZ algorithm, which is defined as follows:

S =
T40th

T80th

where parameter T40th denotes the execution time of the

algorithm run on 40 threads and T80th denotes the execution

time of the algorithm run on 80 threads.

TABLE III: Relative speedup of versions of WZ algorithm

operating on 40 and 80 threads (T40th/T80th).

R 2.25R 4R 16R

basic-row 0.91 0.95 0.88 0.85
basic-col 1.21 1.15 1.26 1.49
fission-row-ij 0.93 0.81 0.70 0.85

fission-row-ji 1.11 1.03 1.21 1.41
fission-col-ij 1.22 0.88 1.15 1.44
fission-col-ji 0.96 0.89 0.90 0.96

Based on Table III, we can observe that, regardless of the

size of data, the acceleration of the operating time between

the operation on 40 threads and on 80 threads is of a similar

order. In Table III, the bold lines refer to the versions, which,

as we could see in the graphs in Figure 10, fared better in

terms of runtime, i.e. basic-row, fission-row-ij, and

fission-col-ji. We can see for them that running them

on 80 threads causes an increase in the runtime (values below

1), contrary to expectations. However, we can also notice that

some algorithms speed up when they are run on 80 threads

(values above 1) but this applies to versions which, as we could

see from the graphs in Figure 10, had a longer runtime. For

those versions of the algorithm that perform better in terms

of runtime, the machine parameters are sufficient, therefore

running HT for them does not improve their runtime. On the

other hand, for those that perform weaker in terms of runtime,

the capabilities of the machine are not sufficient, therefore HT

improves the runtime.

Although 80 threads give these versions some speedup,

they still perform worse in runtime than basic-row,

fission-row-ij or fission-col-ji. We can see that

the versions with the shortest runtimes, i.e. basic-row,

fission-row-ij, and fission-col-ji, perform better

in terms of time on 40 threads. Therefore, we will conduct

further tests only for the algorithm operating on 40 threads.

We will carry out further considerations by selecting one

version of the basic algorithm and one version of the fission

algorithm. In the case of the basic version of the algorithm,

we will choose the one for which we had a better runtime, i.e.

basic-row.

However, in the case of fission versions, we have two

versions, the runtime of which is better than the others and

comparable to fission-row-ij and fission-col-ji,

that is, those where the loop order was consistent with the

matrix layout, therefore it is not surprising that they perform

similarly. For further considerations, we will decide on any

one of them, e.g. fission-row-ij, with the same matrix

representation — row-wise — as for the chosen basic version.

Of the two algorithm versions selected for further

tests, basic-row tends to perform slightly better than

fission-row-ij in terms of runtime for different data

sizes (at up to 12%).

C. Energy Consumption. Matrix layout and loop interchange

The graph from Figure 11 shows the energy consumption

in joules for the basic-row (red) and fission-row-ij

(blue) versions for all four data sizes.

We can see that less energy is consumed by the

basic-row algorithm, we see this for each data size but it

is a small amount between 1% and 11% percent. (respectively

for data sizes: 10.33%, 1.33%, 10.98%, 2.63%). We can also

observe that as the data size increases, the energy consumption

also varies proportionally, and it is the following increase:

ce(k) = k
3

2

where k is the data size growth factor in our case equal

respectively: 1, 2.25, 4 and 16.
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Fig. 11: Energy consumption for basic-row and

fission-row-ij algorithms for different data sizes.

In general, energy consumption is to be expected propor-

tional to the number of operations performed, and this is

proportional to k
3

2 .

TABLE IV: Energy consumption ratios as the data size in-

creases.

R 2.25R 4R 16R

basic-row 1 3.59 8.54 64.72
fission-row-ij 1 3.26 8.6 59.6

ce(k) 1 3.37 8 64

Table IV shows how many times the energy consumption of

individual versions has increased for each data size in relation

to the energy consumption for the data size R.

D. Execution Time. Strip-mining and loop tiling

Now we will consider the block version of WZ factorization

with strip-mining and loop tiling. We will only consider the

algorithm implementations that gave the best results in the tests

from the previous sections, limiting ourselves to two of them:

basic-row and fission-row-ij. The effect of different

BLOCK_SIZE on the efficiency will be tested experimentally.

We will receive the following versions of the algorithm for

further testing:

• basic-row-sm-b

• fission-row-ij-lt-b

The following block sizes (b) will be tested: 8, 16, 32, 64,

128, 256, 512. In total, 14 different versions of the algorithm

will be tested. Our goal is to experimentally investigate which

block size will work best in terms of the algorithm’s runtime.

In Figure 12 we have graphs showing the runtime of the

basic-row-sm-b versions for different block sizes b. Each

graph deals with the operation of the algorithm on a different

size of data. We can see that for individual data sizes (that is:

R, 2.25R, 4R, 16R), the block algorithm is the fastest for the

block sizes: 64, 64, 256 and 256, respectively, and the slowest

for the block sizes: 8, 16, 8 and 8, respectively. The summary

of these observations is presented in Table V.

In Table V the columns present information about the

algorithm operating on the specified data size, that is, R,

2.25R, 4R, and 16R, respectively. The last line shows the

percentage profit between the slowest and the fastest version

of the algorithm, i.e. the profit resulting from the selection

of the best-performing block size for the basic-row-sm-b

versions of the algorithm and the specified data size.

Summarizing the data collected in Table V, we can see that

we cannot clearly indicate one block size that would give

equally good results for all data sizes. One can notice that

for smaller data sizes: (R, 2.25R), the smaller block works

better, while for larger data sizes (4R, 16R), the larger block

works better. However, we can clearly see which block size

perform the worst, these are smaller block size. We can then

conclude that small blocks work poorly.

TABLE V: The best and the worst block size due to the

basic-row-sm-b versions runtime for different data sizes.

R 2.25R 4R 16R

min. time [s] 8.67 28.90 68.54 556.17
The best block size 64 64 256 256
max. time [s] 11.26 32.53 85.32 601.59
The worst block size 8 16 8 8
max−mix [s] 2.58 3.63 16.78 45.42
% 23% 11% 20% 8%

Let’s see what the situation looks like for the

fission-row-ij-lt-b versions of the algorithm.

In Figure 13 we have graphs showing the runtime of the

fission-row-ij-lt-b versions for different block sizes.

Here each graph deals with the operation of the algorithm on

a different size of data too. We can see that for individual

data sizes the algorithm is the fastest for the block sizes: 8,

8, 64, and 64, respectively, and the slowest for the block

sizes: 512, 512, 8, and 8, respectively. The summary of these

observations is presented in Table VI.

TABLE VI: The best and the worst block size due to

the fission-row-ij-lt-b versions runtime for different

data sizes.

R 2.25R 4R 16R

min. time [s] 11.00 34.03 89.69 681.83
The best block size 8 8 64 64
max. time [s] 18.77 48.78 198.51 1904.31
The worst block size 512 512 8 8
max−mix [s] 7.77 14.75 108.82 1222.48
% 41% 30% 55% 64%

Looking at Figures 12, 13 and Tables V, VI, we can see that

the basic-row-sm-b versions of the algorithm is better

in terms of runtime than the fission-row-ij-lt-b ver-

sions, regardless of the selection of the block size. In the case

of the fission-row-ij-lt-b versions of the algorithm,

we can no longer conclude that, in general, regardless of the

size of the data, small blocks perform worse. However, we
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Fig. 12: Execution time of basic-row-sm-b versions for different data sizes and different block sizes.

can still observe that as the data size increases, the block size

that works best also grows.

From the tables above, we can see that choosing the

correct block size can save up to 23% of the time of the

basic-row-sm-b versions of the algorithm (Table V),

and even 64% in the case of the fission-row-ij-lt-b

versions of the algorithm (Table VI).

E. Energy Consumption. Strip-mining and loop tiling.

Tables VII and VIII provide a summary of the energy

consumption during the operation of the various versions of the

tested algorithms. The last line shows the percentage energetic

profit between the most and the least energy-consuming ver-

sion of the algorithm, i.e. the profit resulting from the selection

of the best-performing block size for the algorithm and the

specified data size. Accordingly, Table VII presents data for

the basic-row-sm-b versions of the algorithm and Table

VIII for the fission-row-ij-lt-b versions.

We can see that choosing the right block is very important

because it can save us 22% of energy consumption in the case

of the basic-row-sm-b version of the algorithms (Table

VII) and up to 61% of energy consumption in the case of the

fission-row-ij-lt-b versions of the algorithm (Table

VIII).

TABLE VII: The best and the worst block size due to

energy consumption of the basic-row-sm-b algorithm for

different data sizes.

R 2.25R 4R 16R

min [J] 1687.53 6152.07 14925.4 118442.00
The best block size 64 64 256 256
max [J] 2159.86 6827.51 18542.5 129889.00
The worst block size 8 16 8 8
max−mix [J] 472.32 675.44 3617.03 11447.00
% 22% 10% 20% 9%

TABLE VIII: The best and the worst block size due to energy

consumption of the fission-row-ij-lt-b algorithm for

different data sizes.

R 2.25R 4R 16R

min [J] 2189.55 7180.41 18640.1 143575.00
The best block size 32 8 64 64
max [J] 3863.04 10154.80 39273.60 370432.00
The worst block size 512 512 8 8
max-mix [J] 1673.49 2974.36 20633.60 226858.00
% 43% 29% 53% 61%

F. Time execution-energy trade-off

Although this is usually the case, the best runtime does not

always result in the best energy consumption. We can see it
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Fig. 13: Execution time of fission-row-ij-lt-b versions for different data sizes and different block sizes.

in Tables VI and VIII which show data from experiments on

block versions of the fission algorithm, where for the size R,

data block size giving the best result in terms of runtime is 8,

while the best in terms of consumption energy proved to be

32.

Finally, we present in Table IX a summary of energy con-

sumption, performance, and energy efficiency of the algorithm

versions, which are the best during the experiences, for the

largest tested data size (16R).

Analyzing the data in Table IX, we can see that

basic-row-sm-256 is the best among the best versions of

the algorithm. In terms of energy efficiency, it is 6% better than

the second in line, i.e. basic-row. However, for smaller data

sizes, it turned out to be the best version basic-row-sm-64

(see Table V and Table VII).

V. CONCLUSION

This article investigates four loop transformation strategies

for the WZ factorization, namely: loop fission, loop inter-

change (permutation), strip-mining and loop tiling. The loop

transformation affects both runtime and energy consumption.

It can have both a positive effect in reducing runtime and

energy consumption and a negative effect in increasing runtime

and energy consumption. Measurements were made on a 2nd

Generation Intel Xeon Scalable Processors using the Intel

RAPL interface.

Our experiments have shown that the basic-row version

is definitely better in terms of runtime than the basic-col.

The advantage of the former is the greater, the larger the size

of the data we process and our tests show that it ranges from

19 to even 60 times faster, it is basic-row, we can see it in

the graph in Figure 10. The first described experiments also

showed that HT does not bring benefits in our case.

Our tests have also shown that the loop interchange transfor-

mation we propose has a large impact on the reduction of cal-

culation time and energy consumption. The versions for which

the loop interchange was compatible with the matrix repre-

sentation, i.e. fission-row-ij and fission-col-ji,

perform better in terms of operating time. They fell out the

better, the larger the size of the data was processed and our

experiments showed that it was from 6 to 16 times faster than

in the case of a loop interchange inconsistent with the matrix

representation. So we should never choose a loop interchange

inconsistent with the matrix representation.

However, when comparing the energy consumption for the

basic-row and fission versions with the loop interchange
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TABLE IX: Energy efficiency for four best versions of the algorithm (dataset: 16R).

Versions
Time Total energy Performance Energy effi-

[s] [J] [Gflops/s] ciency[Gflops/J]

basic-row 582.63 125098.72 40.26 0.19
fission-row-ij 588.15 128481.50 39.88 0.18
basic-row-sm-256 556.17 118442.28 42.17 0.20

fission-row-ij-lt-64 681.83 143574.55 34.40 0.16

consistent with the matrix representation fission-row-ij,

we saw that the basic-row version was slightly better from

1% to 11% less energy consumption (Figure 11). So the fission

transformation won’t pay off.

Finally, our experiments have shown that the best version

among block versions depends on the data size, and here

block size must be selected experimentally. The only thing

we can see is that as the data size increases, the block size

also increases. It may turn out that if the block size is poorly

selected, the energy consumption may be higher by up to 61%.

For 16R data size, they are versions basic-row-sm-256

and fission-row-ij-lt-64 which works the best (see

Table IX). Moreover, we can say that regardless of the size

of the data, the application of the strip-mining transformation

worked best. For data size 16R the basic-row-sm-256

version turned out to be the most profitable, as can be seen in

Table IX. On the other hand, the transformation of loop tiling

does not pay off because it causes a lot of complications in

the code and it gives a slight extension of the runtime and

slightly higher energy consumption.

Future work includes extending our experimental compar-

ison to a wide range of architectures, including graphics

cards. In addition, we will evaluate the performance impact of

various runtime systems for OpenMP configurations and loop

transformation energy for the WZ and the three decomposition

main kernels in dense linear algebra algorithms (Cholesky, LU,

and QR).
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