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Abstract—When testing whether a continuous variable differs
between categories of a factor variable or their combinations,
taking into account other continuous covariates, one may use
an analysis of covariance. Several post-hoc methods, such as
Tukey’s honestly significant difference test, Scheffé’s, Dunn’s,
or Nemenyi’s test are well-established when the analysis of
covariance rejects the hypothesis there is no difference between
any categories. However, these methods are statistically rigid and
usually require meeting statistical assumptions. In this work,
we address the issue using a random forest-based algorithm,
practically assumption-free, classifying individual observations
into the factor’s categories using the dependent continuous
variable and covariates on input. The higher the proportion of
trees classifying the observations into two different categories is,
the more likely a statistical difference between the categories
is. To adjust the method’s first-type error rate, we change
random forest trees’ complexity by pruning to modify the
proportions of highly complex trees. Besides simulations that
demonstrate a relationship between the tree pruning level, tree
complexity, and first-type error rate, we analyze the asymptotic
time complexity of the proposed random forest-based method
compared to established techniques.

I. INTRODUCTION

C
OMPARING a continuous variable’s means of two or
more categories (or their combinations) of one or more

factor variables and detecting significant mutual differences, if
any, is very common in applied statistics. Particularly when the
dependent variable needs to be adjusted by other continuous
covariates, an analysis of covariance (ANCOVA) is a tool of
choice [1].

Since the analysis of covariance tests whether there is,
in general, a difference between at least two categories of
a given factor, the big question is to determine where exactly
the statistical difference is, i. e., which two (or more) exact

categories of the factor are those the significant difference
arises from.

For this reason, post-hoc tests are usually applied to
identify the significantly different categories of their com-
binations. Some of them are quite established, for instance,
Tukey honestly significant difference (HSD) test [2], Scheffé’s
test [3], Dunn’s test [4], or, if needed, Nemenyi’s test with
a reduced amount of assumptions required to be met [5].

However, the covariance analysis and the post-hoc tests
are limited by relatively tough statistical assumptions, usually
in terms of normality of independence of observation sub-
samples. Furthermore, empirically, when there are multiple
methods for one task, that usually implies each method is
limited somehow and, consequently, there is no "apriori first
choice" method routinely working in all situations.

This work introduces a new post-hoc method based on
a random forest algorithm to overcome the mentioned. Each
classification tree the random forest model consists of has
got its complexity, i. e. number of leaf nodes, by which it
can classify into only one or more categories of observa-
tions than only one. The continuous dependent variable and
continuous covariates are the variables by which an entry
sample of observations is split into subsamples, using logical
formulas with the variables and searched cut-offs. Considering
the categories given by the factor variable (or more factor
variables) entering the analysis of covariance, these may be
refined as an output for the random forest algorithm, not only
as an input for the analysis of covariance. If the number of
trees in the random forest model with sufficient complexity,
i. e. classifying into two or more factor categories or their
combinations, is high enough, then the hypothesis that there
is no statistical difference between the two categories is hardly
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likely. As a tuning parameter, the pruning level may affect how
complex the trees in a random forest are.

After the well-established methods revisiting, we describe
principles behind the random forest-based algorithm for post-
hoc testing, derive the asymptotic time complexity of the
proposed method, and estimate a feasible number of trees in
the random forest model regarding the number of other factors
and continuous covariates. Eventually, we do simulations to
compare the new method to others, i. e. established ones, and,
particularly, describe a relationship between the random forest
tree pruning level and tree complexity and the model’s first-
type error rate.

II. PRINCIPLES AND ASSUMPTIONS OF ANALYSIS OF

COVARIANCE AND POST-HOC TESTS REVISITED

In this section, we recapitulate basic principles of analysis
of covariance and commonly used post-hoc tests to refresh
their logic and mention their assumptions and limitations.

A. Analysis of covariance (ANCOVA) – principles, assump-

tions, and limitations

Principles of ANCOVA. Analysis of covariance is a linear
model standing in between analysis of variance (ANOVA) [6]
and linear regression [1], [7]. While the analysis of vari-
ance assumes there is a continuous dependent variable and
independent categorical factors, linear regression allows for
independent covariates as the analysis of covariance. However,
compared to the linear regression, it estimates effect sizes
as excesses above or below covariate variable average and
enables to elegantly estimate an explained variability pro-
portion of the continuous dependent variable by covariates.
Furthermore, analysis of variance is performed particularly
when continuous covariates are not of much interest compared
to the factors. That being said, inference tests for coefficients
of the covariates are usually skipped.

A model of the analysis of covariance, including k * N

categorical factor variables and m * N continuous covariates,
is for i-th observation from n * N observations in total, as
follows,

yi = µ+

k
�

j=1

¶j +

m
�

l=1

´lxi,l + ·i, (1)

where yi is a value of the dependent continuous variable for
i-th observation, µ is a grand total mean of the dependent
variable, ¶j is an effect of j-th factor on i-th observation,
with "j * {1, 2, . . . , k}, ´l is a coefficient (slope) of l-th
covariate, with with "l * {1, 2, . . . ,m}, xi,l is a value of l-th
covariate for i-th observation, and ·i is a residual term of i-th
observation, respectively.

Firstly, coefficients ´l for "l * {1, 2, . . . ,m}, listed in
a vector β = (´1, ´2, . . . , ´m)T , are estimated as those

minimizing the sum of residuals [8] from formula (1), ignoring
(not yet estimated) effects ¶j of the factor variables, thus,
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So far, considering formula (2) the analysis of covariance
is similar to the linear regression. Secondly, once the vector
β = (´1, ´2, . . . , ´m)T of linear coefficients is estimated,
a part close to multifactorial analysis of variance follows.
A total sum of squares, SStot =

�n
i=1(yi2ȳ)2, describing total

variability of the dependent variable [9], is corrected (reduced)
by variability explained by the continuous covariates, SS´l

,
getting SS∗tot, so

SS∗tot = SStot 2 SS´l
=

n
�

i=1

(yi 2 ȳ)2 2
m
�

l=1

cov(y,xl)
2

var(xl)
=

=
n
�

i=1

(yi 2 ȳ∗)2, (3)

considering a vector of the dependent variable y =
(y1, y2, . . . , yn)

T , a vector of l-th covariate xl =
(x1,l, x2,l, . . . , xn,l)

T , and grand mean ȳ∗ adjusted by the
correction.

Finally, k-way analysis of variance for the coefficients ¶j
estimation is applied. The null hypothesis claiming that j-
th factor does not affect the dependent continuous variable,
i. e. H0 : ¶j = 0, is formulated k-times and tests using the
adjusted sum of squares, SS∗tot, decomposed into component
for the factors and for the residuals. Using formula (3) and
assuming j-th factor has got nj categories and c-th category
has got nj,c observations, the decomposition is as follows [9],

SS∗tot =
n
�
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k
�
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�
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�
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�

i=1

(yi 2 ȳj,c + ȳj,c 2 ȳ∗)2 =

=
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�

c=1
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�

i=1

(yi 2 ȳj,c)
2 +

k
�

j=1

nj
�

c=1

(ȳj,c 2 ȳ∗)2 =

=
k
�

j=1

SSj-th factor + SSε (4)

where SSj-th factor is sum of squares for j-th factor, SSε is sum
of squares for residuals, and ȳj,c is an average of all values
that belong to c-th category of j-th factor. Consequently, using
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formula (4), the null hypothesis H0 : ¶j = 0 for j-th factor is
rejected on confidence level 12 ³ if and only if

F =
SSj-th factor/(nj 2 1)

SSε/(n+ k 2 12
�k

j=1 nj)
g

g F1−³

�

nj 2 1, n+ k 2 12
�k

j=1
nj

�

, (5)

where F1−³(df1, df2) is (12³)-th quantile of Fisher-Snedecor
distribution with df1 and df2 degrees of freedom, respectively.
Rejecting the null hypothesis for j-th factor does not determine
which categories of the factor mutually differ significantly,
though.

Assumptions and limitations of ANCOVA. Analysis of co-
variance assumes that residuals are independent, i. e. for each
r, s * {1, 2, . . . , n} so that r ;= s is cov(·r, ·s) = 0, and of the
same variance, i. e. for each r * {1, 2, . . . , n} is ·r = Ã2 < 0.
Moreover, the residuals should be normally distributed, i. e.
for each r * {1, 2, . . . , n} is ·r > N (0, Ã2) [1].

B. Post-hoc tests – principles, assumptions, and limitations

Assuming the null hypothesis has been rejected for j-th
factor, one would like to determine which exact two or more
categories of the factor significantly differ. Let us mark average
values of observations that belong to categories cr and cs of
j-th factor, with r, s * {1, 2, . . . , nj}, as µr and µs. Usually,
the categories cr and cs of j-th factor significantly differ when
some inequality using data parameters or estimates holds,
as showed below applying the mathematical notation from
formulas (4) and (5). The decision process may be repeated
for each pair of categories r, s of j-th factor to research all
possible differences.

1) Tukey honestly significant differences (HSD) test: Based
on Tukey, averages of the categories cr and cs significantly
differ if

|µr 2 µs|

Ã̂
�

2/n
g q(³, k, n2 k), (6)

where q(³, k, n2k) is studentized critical value for confidence
level ³ and Ã2 is residuals’ variance, n is sample size and k
is the number of factors.

Tukey HSD method assumes that subsamples for com-
pared categories are independent, of the same variability
(homoskedasticity), and follow normal distribution [2].

2) Scheffé’s test: Following Scheffé’s (unweighted) test,
averages of the categories cr and cs significantly differ if

|µr 2 µs| g
 

(k 2 1) · F1−³ (df1, df2) · SSj-th factor, (7)

where df1 = nj 2 1 and df2 = n+ k 2 12
�k

j=1 nj .
Scheffé’s test is less limited than Tukey’s HSD test since

there is no explicit assumption of any normal distribution
of observations; however, it has lower statistical power,
though [3].

3) Dunn’s test: Transforming values of dependent variable
yi that belong to the categories cr and cs from initial contin-
uous ones to their ranks, we get their averages w̄r and w̄s.
Dunn’s test recommends considering the categories cr and cs
as different when

|w̄r2w̄s| g z1−³/2·

�

�

�

�

�

n(n+1)
12 +

�

t∈|w̄r−w̄s|

�

n3
t 2 nt

12(n−1)

�

�

1
ncr

+ 1
ncs

� ,

(8)
where t is a possible tied value of the ranks wr and ws, nt is
a count of tied ranks at value t, and ncr and ncs are numbers
of observations in categories cr and cs, respectively.

While assumption-free, Dunn’s test may fail to identify sig-
nificant differences between categories due to its low statistical
power [4].

4) Nemenyi’s test: Similarly to Dunn’s test, assuming av-
erage ranks w̄r and w̄s of the categories cr and cs, these
significantly differ if

|w̄r2w̄s| g q(³, k, n2k) ·

�

n(n+ 1)

24
·

�

1

ncr

+
1

ncs

�

, (9)

where q(³, k, n2k) is studentized critical value for confidence
level ³, n is sample size, k is the number of factors, and ncr

and ncs are numbers of observations in categories cr and cs,
respectively.

Nemeyi’s test is nonparametric and robust enough, but may
suffer from low statistical power, though [5].

III. PRINCIPLES AND ASSUMPTIONS OF THE RANDOM

FORESTS

In advance of the proposed method introduction we shortly
point out important pieces of knowledge about classification
trees and random forests.

A. Classification trees – principles and assumptions

Classification trees from the CART family of trees
(classification and regression trees) split a hyperspace of
k * N explanatory variables (continuous or categorical) into
disjunctive hyper-rectangles, fitting simple (constant) models
there by minimizing a given criterion [10].

An observation given by a vector of values xi =
(xi,1, xi,2, . . . , xi,k)

T is classified into one of m classes of
a target variable by a set of rules that comes from node
formulas, created throughout the tree is growing, as described
in Fig. 1. Initially, the root covers all observations till a node
rule, i. e. a found explanatory variable and a cut-off value
minimizing the given criterion partitions the dataset into two
parts. Each part is then again split by a new rule set for
a child node. The process is recursively repeated by growing
the tree, by which a set of node rules successively splits the
input dataset into more parts that are mutually more and more
different. The process of the tree growing, called a top-down
induction of a decision tree (TDIDT), is stopped by a stopping
criterion, e. g. maximum of leaf (ending) nodes, maximum tree
deepness level, etc.
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initialization of an
empty root node

searching for a node
rule: a splitting variable

and a decision rule

splitting the node’s
data according to

the splitting variable
and decision rule
and adding two

corresponding child
nodes to the tree

is there a node
containing data of g 2

classes in the tree?

stop the splitting
and output the tree

no

yes

Fig. 1. A top-down induction of a decision tree (TDIDT).

Let Ã(")j be a proportion of all observations that belong
– by rules of all nodes from root to leaf one – to a target
class j. A leaf node nt classifies into the class c∗f if c∗f =
argmaxf∈{1,2,...,nj} {Ã(")f}. Since each node is through the
tree growing a leaf one (for a limited time), the criterion has
to be minimized in searching for node nt rule. There are
several commonly used criteria, also called impurity measure,
Qnt

(T ), such as misclassification error (10), Gini index (11),
or deviance (cross-entropy) (12),

Qnt
(T ) = 12 Ã(")f , (10)

Qnt
(T ) =

m
�

j=1

Ã(")f (12 Ã(")f ), (11)

Qnt
(T ) = 2

m
�

j=1

Ã(")f · log Ã(")f . (12)

One can easily see that the lower the impurity measure is,
the higher Ã(")f , i. e. a proportion of a target class f in the
node nt, has to be, as expected.

Classification trees, as depicted in Fig. 1, in order to
minimize the leaf nodes impurity, tend to overfit the node
rules on a given dataset, which is done by the tree’s typical
"overgrowing", i. e. high complexity. To avoid this, besides
some other naive approaches, pruning is commonly applied.
Firstly, let us use usually defined cost–complexity function,

C»(T ) =
�

nt∈{nt}

|{xnt
}| ·Qnt

(T ) + » · |{nt}|, (13)

where {nt} is a set of leaf nodes of the tree and {xnt
}

is a set of all observations constrained by rules com-
ing from the root till the node nt. The idea of the
pruning is to find a subtree T» so that T» ¢ T for
a given » that minimizes the statistics C»(T ), i. e. T» =

argminT

�

�

nt∈{nt}
|{xnt

}| ·Qnt
(T ) + » · |{nt}|

�

.
The » g 0 is a tuning parameter that governs the trade-off

between a high tree complexity and size (for low values of »)
and tree parsinomity and reproducibility to other datasets (for
large values of »).

B. Principles of the random forests

Random forests are finite sets of (distinct) classification
trees, described in detail above, each classifying a k-
dimensional observation, xi = (xi,1, xi,2, . . . , xi,k)

T ,
into one of m * N target classes [11]. The
final class c∗f * {1, 2, . . . , nj} of a k-dimensional
observation is the one the largest subset of the
random forest’s trees classifies it into1, i. e., ∗

f =
argmaxf∈{1,2,...,nj} {# of trees classifying into the class cf}.

What is worth to be mentioned is that only k∗ < k variables
are considered as possible partitioning variables in node rules.
The subset of k∗ variables from the original k explanatory
variables is selected randomly using bootstrapping; that en-
sures the pre-selected k∗ variables are mutually independent
enough. A flowchart of the random forest model building is
in Fig. 2.

Neither classification trees nor random forests have impor-
tant assumptions or limitations worth speaking off.

IV. THE PROPOSED METHOD FOR POST-HOC TESTING

In this section, we introduce a novel alternative for post-hoc
testing based on a random forest algorithm. Considering the
ANCOVA notation, categories of a factor that contains statisti-
cally different effects on the continuous dependent variable are
leaf node classes each tree of a random forest classifies into.
The dependent variable and the covariates, and other factor
variables, if any, are entry variables that serve for node rules
if needed. Each tree of the random forest model can either
classify only into one category (as a root note tree) or into
two or more categories, based on its complexity (size). For
details, see Fig. 3.

The more trees of sufficient complexity can classify into
the classes (categories) in the forest, the more likely we can
reject the null hypothesis that there is no difference between
the effects of the factor’s categories on the dependent variable.
This is formally done by ANCOVA, too. What is more, if
a proportion of trees classifying into two given categories is
large enough, considering all trees, the given two categories
seem to be of statistically different effect on the dependent
variable [12].

A proportion of trees classifying into two or more categories
to all trees in the random forest is close to a point estimate

1In case of a tie, i. e. there are two or more target classes the maximum
forest’s trees classify the observation into, one of them is picked randomly.
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initialization of an
empty random forest

creating a decision
tree with a set of

k∗ < k node-splitting
variables randomly pre-
selected using bootstrap

involving the
created tree into

the random forest

are there less than t
trees in the random

forest?

stop the random
forest construction

and output the
random forest model

no

yes

Fig. 2. A construction of the random forest model involving t decision trees.

of the p-value. The p-value is the probability we incorrectly
reject the null hypothesis of no different effects of the fac-
tor categories on the dependent variable, assuming the null
hypothesis is true. Thus, the method also provides statistical
inference as a post-hoc test. Since we could modify a random
forest’s tree complexity (size), i. e. also tendencies to classify
either only into one or into two or more classes, by pruning
and the tuning parameter », we may control the first-type error
rate, i. e. the incorrect rejection of the null hypothesis when it
is true, of the random forest model as inferential post-hoc test.
The proposed method is due to the random forest algorithm
behind almost assumption-free.

Besides the derivations of the inferential properties of
the method, we also discuss the method’s asymptotic time
complexity and do a simulation study with varying » tuning
parameters to describe a relationship between the parameter
and the method’s first-type error rate.

A. Statistical inference behind the proposed method

Using the mathematical notation from previous sections, let
us assume the ANCOVA already rejected the null hypothesis
that the j-th factor does not affect the dependent variable.
Thus, the question is what two (or more) categories of j-th
factor are significantly different so that the factor influences

X1 * R

yes

j = {1, 2}

X1 g x1

yes

j = 1

no

j = 2

X1 g x1

yes

j = 1

no

X2 g x2

yes

j = 2

no

j = 3

Fig. 3. An example of a root node tree (on the left) not able to classify into
any class unambiguously, an example of a tree with sufficient complexity (in
the middle) able to classify into two classes (j = 1 and j = 2), and an
example of a tree with sufficient complexity (on the right) able to classify
into three classes (j = 1, j = 2, and j = 3).

the dependent variable2.
Intuitively, when a large number of the (appropriately

pruned) trees of the random forest model can classify into two
given classes, i. e. categories, then one can hardly suppose the
categories are statistically without a difference.

Similarly to the post-hoc tests, let the null hypothesis
H0 claim that there is no statistical difference between the
given two categories cr and cs of j-th factor. The alternative
hypothesis H1 claims the contradiction, so

H0 : No statistical difference between categories cr and cs.

H1 : Statistical difference between categories cr and cs.

Whenever a post-hoc test rejects the null hypothesis H0 in
favor of the alternative hypothesis H1, the case is equivalent
to a situation the test’s p-value is lower than or equal to a prior
set significance level ³, usually equal to 0.05.

By definition, the p-value is a probability of gaining data
at least as extreme as the data actually observed, assuming
the null hypothesis is true. Let tc be a number of trees in
the random forest model that are in contradiction to the null
hypothesis (under the null hypothesis assumption). Then, the
value of tc is equal to the number of all trees classifying,
besides other classes, into given two classes (categories) cr
and cs; showing that there is a difference between the two
classes. Let the Icr,cs(Ä) be an identifier function returning 1
if and only if the tree Ä classifies into the classes (categories)
cr and cs (regardless whether it classifies into other classes,
too), thus,

Icr,cs(Ä)

�

1, tree Ä classifies into categories cr and cs,
0, otherwise.

We can derive

tc =
�

∀Ä ∈ random forest

Icr,cs(Ä),

2Supposing all categories of j-th factor are similar and mutually without
significant differences, then the categorization of j-factor would not result
in null hypothesis rejection about no effect of j-th factor on the dependent
variable. That is a contradiction, so, there should be two or more different
categories of j-th factor.
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and assuming the random forest model contains exactly t * N

trees, and all trees are induced randomly regardless of their
complexity3, the p-value is estimated by p̂ as

p̂ = P (getting data at least as extreme as the observed | H0) =

= P

ø

�

∀Ä ∈ random forest

Icr,cs(Ä) g tc | H0

"

=

= P

ø

�

∀Ä ∈ random forest

Icr,cs(Ä) * {tc, tc + 1, . . . , t}

"

=

=
|{tc, tc + 1, . . . , t}|

t
=

=
t2 tc + 1

t
=

= 12
tc 2 1

t
. (14)

Thus, formula (14) shows that the p-value’s estimate is equal
to the fraction of 1 2 tc−1

t . Intuitively, supposing the initial
number tc of trees in the random forest model that are complex
enough to classify, besides others, to categories cr and cs
is generally low. In that case, such a model is not "much"
in contradiction to the null hypothesis about no differences
between the two categories. Thus, when the tc is relatively
low, the fraction p-value = 12 tc−1

t is relatively high and close
to 1, so, unlikely lower than ³(= 0.05). The null hypothesis
probably fails to be rejected. However, for high values of tc,
i. e. when there are many trees in the forest with sufficient
complexity classifying into the two categories cr and cs (thus,
in contradiction to the null hypothesis), then – since the high
value of tc – the fraction p-value = 1 2 tc−1

t is relatively
low and perhaps below the ³ level. Consequently, the null
hypothesis is likely rejected.

Indeed, the » parameter determines how complex the trees
in the random forest are or how radical the pruning of the trees
is. Investigating formula (13), one can realize that if » = 0,
then there is no penalization for large tree complexity, so trees
in the random forest are generally very complex (i. e., of large
size). So, whenever there are at least two observations, one
from cr category and the other from cs category of j-th factor,
all trees in the forest would classify those observations into
their categories, i. e. that for each tree Ä is Icr,cs(Ä) = 1,
which results into tc =

�

∀Ä ∈ random forest Icr,cs(Ä) = t, and,
thus, p-value estimate is p-value = 1 2 tc−1

t = 1 2 t−1
t =

1
t j 0. Finally, if p-value j 0, then also p-value j 0 < ³
which, consequently, results into the null hypothesis rejection.
However, when the null hypothesis rejection is often, it is
also very likely a false rejection, that increases the first-type
error rate. High chance of the null hypothesis rejection means
also the high statistical power, though, i. e. the case when the
incorrect null hypothesis is correctly rejected.

For » > 0, the penalization for tree complexity (size)
is applied, so, the trees’ complexity (size) decreases, and,
thus, if not all, many of the trees do not classify into both

3This is ensured by the bootstrapped selection of k∗ < k node rule
variables.

cr and cs categories. This means that there are trees Ä
in the random forest so that Icr,cs(Ä) = 0, and, finally,
tc =

�

∀Ä ∈ random forest Icr,cs(Ä) < t. So, p-value estimate is
p-value = 1 2 tc−1

t > 0, and it could be below or above the
³ level.

B. A feasible low bound of the number of trees t in the random

forest

Adopting the ANCOVA mathematical notation, when two
categories cr and cs of j-th factor are compared using the
random forest-based method, other k21 factors, together with
m covariates and the originally dependent continuous variable,
play as input variables for node decision rules. Assuming that
3-th factor contains n3 g 2 categories and cut-offs for the
covariates are usually estimated as midpoints of covariates’
ranges, splitting the ranges into a number of categories to
be classified into, i. e. nc, we may estimate a minimum
number of mutually different trees. Each mentioned feature
could be or could not be included in a tree; that being said,
the number of all combinations of k 2 1 factor node rules
is at least 2

!
3∈{1,2,...,k}\j n3 g 22

k−1

, and the number of all
combinations of m covariates and the dependent variable, split
into nj intervals, is at least nm+1

j . Thus, the minimum number
of mutually different trees and, thus, the feasible low bound
of the random forest trees’ number is

t > 2
!

3∈{1,2,...,k}\j n3·n
m+1

j g 22
k−1·nm+1

j .

Furthermore, since the number of trees t determines decimal
precision of p-value estimate based on formula 14, if we ask
for decimal precision of d * N digits, then the minimum
number of trees in the random forest is about

t > 10d+1,

to ensure feasible precision for d-th decimal digit.

C. A brief asymptotic time complexity analysis of the proposed

method

The random forest model consists of classification trees
as atomic units, constructed following the flowchart 1 and
algorithm 1. A decision tree is induced until the moment
all its leaf nodes include only observations of one category
of j-th factor, i. e. a sequence of node rules coming from
root note till the leaf one successively limits the entry dataset
to one-class observations [13]. When the categories are well
balanced across the dataset, each binary partitioning halves
them, and the tree average depth is around log2 n levels; thus,
the asymptotic time complexity is also Θ(log2 n), assuming
one split of a node takes one time atomic unit. However, if
the categories are totally unbalanced, each splitting cuts the
current dataset of size n∗ into 1 and n∗ 2 1 observations,
which takes n steps in total. Then, tree depth is n, so the
asymptotic time complexity is Θ(n). Assuming there are
k 2 1 factors, m covariates and the originally dependent
variable, i. e. k 2 1 + m + 1 = k + m variables, searched
through averagely n

2 observations within each node splitting,
the asymptotic time complexity of one tree induction Θ( )
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is therefore between Θ(log2 n) (best-case scenario) and Θ(n)
(worst-case scenario),

Θ
�

(k +m)
n

2
log2 n

�

f Θ( ) f Θ
�

(k +m)
n

2
n
�

,

Θ

�

(k +m)n

2
log2 n

�

f Θ( ) f Θ

�

(k +m)n2

2

�

,

Θ((k +m)n log2 n) r Θ( ) r Θ
"

(k +m)n2
"

. (15)

Algorithm 1: The top-down induction of decision trees
(TDIDT) following the logic of the flowchart 1

Data: a n× (m+ k) dataset of n observations, with
j-th target factor, k 2 1 factors, m covariates,
and one dependent continuous variable

Result: a classification tree

1 T = ({n}) // a tree T with a set ;
2 // of nodes n;
3 {n} = {root} // initially, the tree T

;
4 // is a root;
5 Ã(")j // a node criterion;

6 while # a node * {n} so that data constrained by all

node rules coming from root to the node belong to

g 2 classes do

7 find for the node a splitting variable and splitting
point minimizing the Ã(")j ;

8 add to the node two child nodes nleft a nright;
9 {n} := {n * {nleft, nright}} ;

10 T := ({n}) // update the tree using;
11 // the new node set n ;
12 end

13 a completely induced tree T ;

Since a random forest contain t trees, each built in Θ( ) time
by (15), the entire random forest asymptotic time complexity
construction Θ(!) is

Θ

�

t
(k +m)n

2
log2 n

�

f Θ(!) f Θ

�

t
(k +m)n2

2

�

,

Θ(t(k +m)n log2 n) r Θ(!) r Θ
"

t(k +m)n2
"

. (16)

One model of the random forest provides one (point)
estimate of the p-value using the formula (14), enabling to
statistically distinguish between two categories. In comparison,
the estimation of the decision rules for post-hoc tests using
formulas (6), (7), (8), and (9) usually take only several linear
steps, assuming the SSj-th factor in (7) term is precalculated.
Fortunately, the time complexity (16) is still polynomial.
Furthermore, since the building of the random forest with the
complexity of (16) is based on independent trees induction, it
could be parallelized; then, if the random forest building would
be parallelized into Ã f t independent slave processes each

inducting a bunch of t
Ã * N trees, the time complexity (16)

would be reduced to

Θ

�

t
(k +m)n

2Ã
log2 n

�

f Θ(!) f Θ

�

t
(k +m)n2

2Ã

�

,

Θ

�

t

Ã
(k +m)n log2 n

�

r Θ(!) r Θ

�

t

Ã
(k +m)n2

�

.

V. SIMULATION STUDY

To compare the established post-hoc tests with the proposed
method, particularly its first-type error rate, we run a sim-
ulation study generating many n × (k + m + 1) datasets
with n observations, k factor variables, m covariates with
various relationships between the variables, and, lastly, with
the continuous dependent variable. For each post-hoc test, i. e.
Tukey HSD test, Scheffé’s test, Dunn’s test, Nemenyi’s test,
and random forest-based method, we compare two categories
of a selected factor so that the categories have significantly
non-different averages within the continuous dependent vari-
able and check how many times the methods claim there is
a significant difference. Thus, in theory, we measure the first-
type error rate. The simulation was repeated for different »
parameter values to illustrate how the value of » determines
the first-type error rates in the new method, i. e., what are ideal
» values to control the first-type error rate on a feasible level.

The datasets were generated as follows. One of the k
factors, let’s say the j-th one, contained two categories, cr
and cs, following a normal distribution with the same average
of the continuous dependent variable, i. e. N (0, 12). Other
k 2 1 factors always split the dependent continuous variable
into 2 to 4 categories with random averages from N (µ,σ2),
where µ * ï21, 1ð and σ2 * ï0, 2ð. Furthermore, the
covariates also followed normal distribution N (µ,σ2), where
µ * ï21, 1ð, σ2 * ï0, 2ð, and correlations r between the
dependent continuous variable and covariates were randomly
from r * ï20.5, 0.5ð. The continuous variable was dependent
for all post-hoc tests with exception of the proposed method,
where j-th factor is as dependent one.

There were ¸ = 1000 datasets, as depicted above, gener-
ated in total, and for each » * {0.1, 0.3, 0.5, 0.7, 0.9}. The
number of trees in each random forest was always t = 1000.
Numbers of cases where p-value was lower than or equal to
³ = 0.05 regardless of the post-hoc test were summed up,
indicating the point estimates of the first-type error rates, as
illustrated in table I. The simulation study was performed using
R programming language and environment [14]. There are
more numerical applications of R language to various fields
in [15]–[23].

While the established post-hoc tests returned point estimates
of the first-type error rate about 0.050 (regardless of » since
their formulas (6), (7), (8), and (9) are not functions of the
»), point estimates of the first-type error rates output by the
introduced method progressively decreased with increasing
value of », see table I.

However, since the proposed random forest-based algorithm
for categories’ averages comparison is data-determined and
heuristic, it is nontrivial to suggest specific values of the
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TABLE I
POINT ESTIMATES OF THE FIRST-TYPE ERROR RATES FOR POST-HOC

TESTS, I. E. TUKEY HSD TEST (T-HSD), SCHEFFÉ’S TEST (SCHT),
DUNN’S TEST (DT), NEMENYI’S TEST (NT), AND THE PROPOSED

METHOD (RF-T) FOR DIFFERENT VALUES OF TUNING PARAMETER κ,
BASED ON THE SIMULATION DESCRIBED ABOVE.

method
T-HSD SchT DT NT RF-T κ

# of cases in total 1000 1000 1000 1000 1000 0.1
#{p-value ≤ 0.05} 56 51 45 42 66

�first-type error rate 0.056 0.051 0.045 0.042 0.066
# of cases in total 1000 1000 1000 1000 1000 0.3
#{p-value ≤ 0.05} 54 51 45 42 58

�first-type error rate 0.056 0.051 0.045 0.042 0.058
# of cases in total 1000 1000 1000 1000 1000 0.5
#{p-value ≤ 0.05} 60 58 45 51 49

�first-type error rate 0.060 0.058 0.045 0.041 0.049
# of cases in total 1000 1000 1000 1000 1000 0.7
#{p-value ≤ 0.05} 50 56 41 50 38

�first-type error rate 0.050 0.056 0.041 0.050 0.038
# of cases in total 1000 1000 1000 1000 1000 0.9
#{p-value ≤ 0.05} 47 53 48 46 29

�first-type error rate 0.047 0.053 0.048 0.046 0.029

pruning parameter » to reach a given level of the first-type
error rate.

Still, as indicated by the derived theory and simulation
study, the higher the pruning parameter » is, the higher
penalization for too complex trees in a random forest is. Thus,
the less complex the trees in a random forest are, which results
in lower trees’ ability to classify into two or more classes of
the factor variable and, consequently, the lower first-type error
rate of the random forest as an inferential algorithm.

VI. CONCLUSION

When searching for statistical differences between cate-
gories’ averages of a given factor, once analysis of covariance
is performed, post-hoc tests may identify which two or more
categories have significantly different impacts on the depen-
dent continuous variable average. However, the post-hoc tests
are usually limited by rigid statistical assumptions.

In this work, we introduced a novel method for post-
hoc testing based on a random forest algorithm. Rather than
a statistical comparison of dependent variable’s averages for
two factor categories and evaluation of its effect size, the
proposed technique refines the logic of testing. The factor
with compared categories becomes an output variable, i. e., its
categories populate leaf nodes of the model trees, and other
factors, initially dependent continuous variable and covariates,
if any, serve input variables, i. e., as quantities in node rules.
The higher the random forest model trees’ complexity, i. e.,
size is, the more likely the trees classify into (besides others)
the two compared categories, and, thus, the null hypothesis
claims there is no statistical difference between the compared
categories’ averages is more likely to be rejected. Furthermore,
since trees’ pruning level determines the trees in the random
forest model complexity, a tuning parameter affecting the
significance of the pruning also changes trees’ complexity
and, consequently, the probability of correctly rejecting the

null hypothesis. Finally, the tree pruning may modify the
first-type error rate, too. The asymptotic time complexity of
the random forest-based post-hoc method is usually higher
than the complexities of the established procedures but is still
polynomial and might be parallelized.

Therefore, the introduced random forest-based method
seems to be a valid alternative to other, commonly used
post-hoc tests.

VII. ACKNOWLEDGEMENT

This paper is supported by the grant OP VVV IGA/A,
CZ.02.2.69/0.0/0.0/19_073/0016936 with no. 18/2021, which
has been provided by the Internal Grant Agency of the Prague
University of Economics and Business.

REFERENCES

[1] Geoffrey Keppel and Thomas D Wickens. Design and

analysis. en. 4th ed. Upper Saddle River, NJ: Pearson,
Jan. 2004.

[2] John W. Tukey. “Comparing Individual Means in the
Analysis of Variance”. In: Biometrics 5.2 (June 1949),
p. 99. DOI: 10.2307/3001913. URL: https://doi.org/10.
2307/3001913.

[3] H Scheffe. The analysis of variance. en. Wiley Classics
Library. Nashville, TN: John Wiley & Sons, Feb. 1999.

[4] Olive Jean Dunn. “Multiple Comparisons among
Means”. In: Journal of the American Statistical Asso-

ciation 56.293 (Mar. 1961), pp. 52–64. DOI: 10.1080/
01621459 . 1961 . 10482090. URL: https : / / doi . org / 10 .
1080/01621459.1961.10482090.

[5] Myles Hollander and Douglas Alan Wolfe. Nonpara-

metric Statistical Methods. en. 2nd ed. Wiley series in
probability & statistics: applied section. Nashville, TN:
John Wiley & Sons, Feb. 1999.

[6] Ellen R Girden. ANOVA: Repeated measures. 84. Sage,
1992. ISBN: 0803942575.

[7] Kenneth L. Lange, Roderick J. A. Little, and Jeremy
M. G. Taylor. “Robust Statistical Modeling Using the
t Distribution”. In: Journal of the American Statistical

Association 84.408 (Dec. 1989), p. 881. DOI: 10.2307/
2290063. URL: https://doi.org/10.2307/2290063.

[8] A. Charnes, E. L. Frome, and P. L. Yu. “The Equiv-
alence of Generalized Least Squares and Maximum
Likelihood Estimates in the Exponential Family”. In:
Journal of the American Statistical Association 71.353
(Mar. 1976), pp. 169–171. DOI: 10 . 1080 / 01621459 .
1976 . 10481508. URL: https : / / doi . org / 10 . 1080 /
01621459.1976.10481508.

[9] R A Bailey. Cambridge series in statistical and prob-

abilistic mathematics: Design of comparative experi-

ments series number 25. Cambridge, England: Cam-
bridge University Press, Apr. 2008.

[10] Leo Breiman. Classification and regression trees. New
York: Chapman & Hall, 1993. ISBN: 9780412048418.

496 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



[11] Leo Breiman. “Random Forests”. In: Machine Learning

45.1 (2001), pp. 5–32. DOI: 10.1023/a:1010933404324.
URL: https://doi.org/10.1023/a:1010933404324.
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