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Abstract—To offer innovative malware evolution techniques,
it is appealing to integrate approaches that handle imperfect
data and knowledge. In fact, malware writers tend to target
some precise features within the app’s code to camouflage
the malicious content. Those features may sometimes present
conflictual information about the true nature of the content of
the app (malicious/benign). In this paper, we show how the
Variable Precision Rough Set (VPRS) model can be combined
with optimization techniques, in particular Bilevel-Optimization-
Problems (BLOPs), in order to establish a detection model
capable of following the crazy race of malware evolution initiated
among malware-developers. We propose a new malware detection
technique, based on such hybridization, named Variable Precision
Rough set Malware Detection (ProRSDet), that offers robust
detection rules capable of revealing the new nature of a given
app. ProRSDet attains encouraging results when tested against
various state-of-the-art malware detection systems using common
evaluation metrics.

I. INTRODUCTION

T
HE amount of malware is increasing exponentially thanks

to the use of advanced malware-development tools [1].

Detection models struggle to keep up with these tricky intru-

sion malicious apps that do not refrain from using the most

effective techniques, like the obfuscated malware, to invade the

targeted systems. In this course of malware development, one

can encounter some data inconsistency specially when dealing

with conflictual features that may appear in both benign and

malicious apps. In this context, few research has focused on

dealing with the inconsistency encountered when extracting

relevant features to either produce or detect malware. Authors

in [2] proposed to adjust the malware detectors in order

to deal with the change that occurs in the data labeling.

More precisely, authors tackled the problem that appears when

the labels used in the training set are different from the

labels used in the testing set and proposed to empirically

quantify the epistemic uncertainty of four combined deep-

learning based Android malware detectors. Santos et al., in

[3], proposed a semi-supervised learning based method to deal

with the existing unlabelled apps (unknown nature beforehand)

in the training process of a detection process. Also, Nauman

et al. [4] looked into a three-way decision-making process
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based on acceptance, rejection, or deferment. When there is

not enough knowledge, the extra deferment choice option

gives the opportunity to postpone a decision. It also seeks

to reduce incorrect decisions at the model level by finding

a trade-off between decision-making attributes like accuracy,

generality, and uncertainty. The authors focused on three-way

decisions using two probabilistic rough set models: game-

theoretic rough sets (GTRS) and information-theoretic rough

sets (ITRS). RoughDroid [5] is a floppy analysis technique

proposed by the authors that can detect Android malicious

programs straight on the smartphone. It is based on seven

feature sets extracted from the XML manifest file of an

Android application and three feature sets extracted from

the Dex file. Those feature sets pass through the Rough Set

algorithm to classify the app either as benign or malicious. In

this paper, we propose to specially focus on malware motif

production and handling the “false” produced ones that may

lead to data inconsistency. We genuinely propose to handle this

challenging task and address it by evolving effective malicious

motifs, a succession of frequent Application Programming

Interface (API) call sequences, and exploit them afterwards

in a bilevel-based method in order to produce detection rules

capable of detecting them. In this work, we aim to attend the

following contributions:

" Generate fraudulent motifs and then exploit them to

produce robust detection rules by adopting a bilevel

architecture where two Evolutionary Algorithms (EAs),

an outer one (Genetic Programming algorithm (GP)) and

an inner one (Genetic Algorithm (GA)), are in a mutual

competition.

" Inspect the generated fraudulent motifs, which are gener-

ated by the inner algorithm within the second layer using

the GA, using the Variable Precision Rough Set (VPRS)

model before sending them to the outer algorithm within

the first layer, i.e., the GP.

" Demonstrate the benefits of the selection made by VPRS

reinforced by the bi-level competition between both algo-

rithms since for every detection rule, there exists a whole

search space of possible generated malicious motifs that

should be effectively sampled to come up with fit and
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challenging generated motifs that positively affect the

detection quality of the corresponding first layer rule.

" Evaluate the outperformance of our ProRSDet approach

compared to several state-of-the-art detection methods

in terms of accuracy maximization and false alarms

minimization.

The remainder of this paper is structured as follows: Section

II emphasizes past work that is most similar to our approach.

The fundamentals of BLOP and VPRS used in this work are

presented in Section III. Our suggested detection method is

described in Section IV. The experimental setup and perfor-

mance analysis results are presented in Section V. Finally,

the conclusion and a description of some future directions are

presented in Section VI.

II. RELATED WORK

Different malware detection techniques [6], [7], [8] have

been proposed in literature focusing, particularly, on gen-

erating new malware. These can be categorized into two

heads. A first category is based on using machine learning

based approaches and second category based on the use of

evolutionary algorithms.

Among the works proposed in the first head, we mention

the work of [9] where an Android malware detection system

(DroidEvolver) was proposed that can automatically update

itself during malware detection using online learning tech-

niques with evolving feature set and pseudo labels. There were

some methods which were based on generating adversarial

samples. Among these, we mention, the work proposed in

[10], where the feasibility of generating adversarial samples

specifically through the injection of system API calls was

investigated. In [11], a generative adversarial network based

algorithm (MalGAN) was proposed to generate adversarial

malware examples able to bypass black-box machine learning

based detection models. The paper of Moti et al. [12] presented

a deep generative adversarial network to generate the signature

of unseen malware samples; the generated signature is poten-

tially similar to the malware samples that may be released in

the future.

Other works proposed automated signature generation sys-

tems, such as the work proposed in [13], where a system

for automatic generation of intrusion signatures from honey

net packet traces was developed. The work of [14], proposed

an automated approach called “content sifting” that generates

precise signatures that can then be used to filter or moderate

the spread of a worm. In [15], a string signature generation

system (Hancock) was designed to create a minimal set of

N-byte sequences from a set of malware samples. Another

work, the work of [16], used a 5-gram Markov chain model

of good software to estimate the probability that a given byte

sequence would show up in good software. In the paper of

Li et al. [17], a network-based automated signature generation

system (Hamsa) for polymorphic worms was proposed. The

proposed model allowed to analyze the invariant content

of polymorphic worms in order to make analytical attack-

resilience granted for the signature generation algorithm. In

[18], Newsome et al. proposed a signature generation system,

Polygraph, that produces signatures that match polymorphic

worms. Polygraph generates signatures that consist of multiple

disjoint content sub-strings and which typically correspond

to protocol framing, return addresses, and poorly obfuscated

code.

Within the second head, several works [19], [20], [21], [22],

[23], focused on applying evolutionary algorithms to generate

malware samples. Among the most recent and efficient ones,

we mention the work of [24], where an Android Malware

Detection System (AMD) was proposed that produces patterns

using a GA in order to mimic real malware patterns. This is to

keep the dataset used in the conception of the detection system

as varied as possible, which allows AMD to be resistant to

obfuscated malware. Also, the work of [23], opted for a system

using co-evolutionary algorithms where a first population

generates detection rules, and a second population generates

artificial malware. In this work, both populations are executed

in parallel without any hierarchy. In the works of [25], [26],

authors adopted a co-evolutionary algorithm as a search engine

to ensure better detection rules.

Despite the good reached results of the above mentioned

state-of-the-art methods, they still suffer from some limita-

tions. First, they refer to a limited number of malware samples

which makes the produced base of malicious malware not

varied enough which cannot be of much help for a detection

system when facing real attacks. Second, there is no check of

the structure of the generated malicious patterns as to be sure

enough that they fit among the real samples. And third, the

malware generation and detection tasks are achieved separately

without interaction which leads to a lack of a “harmony” and

hence creates an incompatibility between the tasks.

In in paper, we will introduce our newly developed ProRS-

Det malware detection technique that overcomes the state-of-

the-art shortcomings via the hybridization of both evolutionary

algorithms and the Variable Precision Rough Set model.

III. BLOP AND VPRS BASIC CONCEPTS

In this section, we introduce the main concepts and fun-

damentals of both BiLevel OPtimization and the Variable

Precision Rough Set model as two tools, used in a hybrid

fashion, to ensure the development of our proposed ProRSDet.

A. BiLevel OPtimization

BLOP is a distinctive optimization process where one prob-

lem is embedded within another. The inner problem, which is

also referred to as the lower-level task, represents a constraint

of the outer problem, which is also referred to as the upper-

level task, where only an optimal lower-level solution can be a

possible solution to the upper-level one. Each level has its own

fitness function to optimize where the considered solutions of

each level affect the decision-making space of the other one.

The technical formalization of a BLOP problem can be found

in [27] and it can be presented as follows:

A BLOP contains two classes of variables: (1) the upper-

level variables x ∈ X ⊂ Rn, and (2) the lower-level variables
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Fig. 1. Representation of a bilevel optimization problem (Inspired by [28])

y ∈ Y ⊂ Rm. For the follower problem, the optimization

task is performed with respect to the variables y while the

variables x act as fixed parameters. Thus, each x corresponds

to a different follower problem, whose optimal solution is a

function on Y and needs to be determined. All variables (x, y)
are considered in the leader problem for given values of y (y∗).
In what follows, we give the formal definition of BLOP.

Assuming L : Rn×Rm → R to be the leader problem and

f : Rn ×Rm → R to be the follower one, a BLOP could be

defined as follows:

min
x∈X,y∈XL

L(x, y) subject to

�

Gk(x, y) f 0, k = 1, . . . , K.

y * argmin{f(x, y)|
gj(x, y) f 0, j = 1, . . . , J}

(1)

In the given formulation, L represents the first layer objec-

tive function, f represents the second layer objective function,

x represents the first layer decision vector and y represents

the second layer decision vector. Gk and gj represent the

inequality constraint functions at both layers, respectively. The

representation of a bilevel optimization problem is illustrated

in Figure 1.

B. Variable Precision Rough Set

VPRS [29], an extension of RST, is a mathematical tool

that deals with inconsistent information and came mainly

to overcome the maybe found strictness within the rough

set notions which may be too restricted in the sense that

they ignore the degree of an overlap between a set and a

concept. Let us consider a universe of objects U referred

to as elementary events and let s(U) be the ∂ − algebra of

measurable subsets of U referred to as random events. It is

presumed that new objects e belonging to the universe are

generated by a random process (on U). For each new object

e, the event X ∈ s(U) occurred if the object e ∈ X . In

addition, it is presumed the existence of the prior probability

function P assigning probabilities P (X) to sets X belonging

to s(U). P (X) > 0 means that all members of the family of

sets s(U) are likely to occur, and, P (X) < 1means that their

occurrence is not certain. These assumptions are justified by

the fact that there is no need to construct a predictive model

for events about which it is known that they are unlikely to

occur or that they do occur with certainty [29]. In the context

of defining the structure of rough approximation space, R

denotes an equivalence relation on U with the finite number of

equivalence classes (elementary sets) E1, E2, . . . , En such that

P (Ei) > 0 for all 1 ≤ i ≤ n. The assumption of finite number

of equivalence classes does not mean that the universe U is

finite. Each elementary set E can be assigned a measure of

overlap with the set X by the conditional probability function

defined as P (X | E) = P (X
�

E) / P (E). The values of the

conditional probability function are normally estimated from

sample data by taking the ratio P (X | E) = card(X
�

E) /

card(E). The VPRS generalization of the original rough set

model is based on the values of the probability function P

and two lower and upper limit certainty threshold parameters

l and u such that 0 ≤ l < P (X) < u ≤ 1. The requirement l

< P (X) is an extra constraint on the values of the parameters

which was proposed in [29]. The VPRS model is said to be

symmetric if l = 1− u. In this study, the symbol β such that

0 < P (X) < β ≤ 1 is used instead of the symbol u to denote

the model upper threshold parameter. Also, the symbol α will

substitute the previously defined l parameter.

IV. PRORSDET: THE VARIABLE PRECISION ROUGH SET

MALWARE DETECTION TECHNIQUE

Figure 2 depicts ProRSDet’s overall running process, which

is divided into two principal layers (levels): (1) First layer is

built on a GP with the goal of generating a set of effective

detection rules (FDRB) and (2) Second layer relies on a GA

to generate harmful (malicious) motifs (SHM ) (first step) and

on a VPRS based component that exclusively preserves the

most dependable set of harmful motifs with no structural flaws,

referred to as “Relevant” motifs (FMM ) (second step).

Each of these two layers runs through a series of iterations

in order to find the optimal solutions in both levels, which are

interdependent. As presented in Figure 2, the evaluation of

every upper detection rule solution (among DRB) requires

running a search algorithm to find the best undetectable

harmful motifs (FMM ) by this rule. The final set of detection

rules produced by our ProRSDet (FDRB) is a set of detection

rules that will perform the malware detection task.

1) First layer: The first layer’s first step, as shown in Figure

2 and Algorithm 1, is to generate a set of detection rules

(Algorithm 1, line 1), which will go through an evaluation

procedure (Algorithm 1, lines 2-3). The coverage of the base

of samples (input) as well as the coverage of the fraudulent

motifs created by the second layer are used to make this

evaluation. These two measures are used to be maximized by

the population of detection rules solutions (Algorithm 1, lines

4-6). This module produces a collection of final detection rules

(FDRB) that will be used by the detection job, which is in

charge of classifying new apps as malicious or benign. The GP

evolutionary operators require a specific formalization to cope
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Fig. 2. Illustration of the ProRSDet functioning process.

with the generated solutions (i.e., the detection rules) by the

first layer that relies on a GP process. These are the following:

" Solution representation: The solution is expressed as a

series of terminals that relate to various motifs (API call

sequences) and functions (Intersection (AND) and Union

(OR)), respectively.

" Solution variation: By selecting one of the functions or

terminals at random, the GP mutation operator is applied.

If a terminal is selected then it is replaced by another

terminal; if it is a function then it is replaced by a new

function. As for the GP crossover operator, two parent

individuals are selected, and a sub-node is picked on each

selected parent. The crossover swaps the nodes and their

related sub-nodes from one parent to the other.

" Solution evaluation: An individual’s encoding is quanti-

fied using a mathematical metric called the “fitness func-

tion”, which measures the quality of a proposed detection

rule and fraudulent motifs. For the GP adaptation, we

used the fitness function fouter defined in Equation 2 to

evaluate detection-rules solutions (DR).

fouter(DR) = Max(

Precision(DR)+Recall(DR)
2 + #damp

#amp

2
)

(2)

where #damp refers to the number of detected fraudulent

motifs and #amp refers to the number of fraudulent

motifs and

Precision(DR) =

�

p

i=1
DRi

t
, Recall(DR) =

�

p

i=1
DRi

p
(3)

Algorithm 1 Outer Algorithm (First layer)

Input: SMM : set of malicious motifs, SBM : set

of benign motifs, FMM : set of “Relevant” fraudulent

motifs, NDR: number of detection rules, NFM : number

of “Relevant” fraudulent motifs in SHM , NF : number

of iterations in the first layer, NS: number of iterations

in the second layer

Output: Final set of detection rules

FDRB
DRB0 ← Initialization(NDR,SHM ,SBM ) /*First genera-
tion of detection rules*/

2: for each DR0 in DRB0 do /*DR means detection rule*/
SFM0 ← FMGeneration(DR0,FMM ,NFM ,NS) /*call second

layer*/
DR0 ← Evaluation(DR0,SHM ,SFM0)

4: end for
k ← 1

6: while k < NF do

Qt ← Variation(DRBt−1 )
8: for each DRt in Qt do /*Evaluate each rule based on upper fitness

function*/
DRt ← OuterEvaluation(DRt,SHM )

10: SFMt ← FMGeneration(DRt,SHM ,NFM ,NS)
DRt ← EvaluationUpdate(DRt,SFMt)

12: end for

Ut ← Qt∪ DRBt

14: DRBt+1 ← Selection(NDR,Ut)
k ← k+1

16: end while
FDRB ← FittestSelection(DRBt)
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p is the number of detected malicious motifs after exe-

cuting the solution, i.e., the detection rule, on the base of

malicious motifs examples (SMM ), t is the total number

of malicious motifs within SMM , and DRi is the ith

component of a detection rule DR such that:

DRi =

�

1 if the ith detected malicious motif exists in SMM

0 otherwise
(4)

2) Second layer: The generation process of “Relevant”

motifs (FMM , Algorithm 2, line 7) is performed as follows:

" Step 1: A GA is used to maximize the distance between

the generated malicious motifs (SHM ) and the refer-

ence benign motifs (input, not-generated motifs (SBM )

while minimizing the distance between the generated

malicious motifs (SHM ) and the reference malicious

ones (SMM ). The GA also increases the amount of

malicious motifs generated that are not detected by the

first layer, i.e., the detection rules (DRB) (Algorithm 2,

lines 1-5). The GA evolutionary operators need a special

formalization to deal with the manipulated solutions in

order to generate the motifs. The following are the

adopted formalizations:

– Solution representation: The GA solutions are rep-

resented as chromosomes made up of API call se-

quences. These are identifiable by their identifiers

(IDs) and defined by their class (labels), which

indicate their nature (malicious or benign), calling

depths, and a collection of binary values indicating

whether or not an API call appears in the entire API

call sequence.

– Solution variation: For the GA crossover operator,

two parent individuals (chromosomes) are chosen,

and a gene from each parent is chosen. Crossover

involves the transfer of genes from one parent to the

other. Only parents with the same nature can be used

with the crossover operator (malicious or benign).

The mutation operation starts by randomly selecting

a gene on the chromosome. The selected gene is then

replaced with another gene from the same class if it

belongs to that class.

– Solution evaluation: A fraudulent motif (FM ) is

evaluated based on the following GA fitness func-

tion:

finner(FM) = Max((#gamp2#dagmp)+

n
"

i=1

fQual(FMi))

(5)

where i ∈ [1, n]; n indicates the total number of

fraudulent motifs, and #gamp refers to the number

of fraudulent motifs and #dagmp refers to the

number of detected fraudulent motifs. The function

fQual() defined in Equation 6 ensures the diversifi-

cation of the fraudulent motifs.

fQual(FMi) =
Sim1 + Sim2 +Overlap(FMi)

3
(6)

Sim1 = Sim(MS,FMi) =

�

MSj∈MSSim(FMi,MSj)

|MS|
(7)

where j ∈ [1,m];m indicates the total number of

malicious motifs. The similarity between the gen-

erated motif FMi and the malicious set of motifs

(MS).This measure of similarity needs to be maxi-

mized.

Sim2 = Sim(BS, FMi) =

�

BSk∈BSSim(FMi, BSk)

|BS|
(8)

The similarity between the generated motif FMi

where k ∈ [1, p]; p indicates and the benign motifs

(BS) the total number of benign set of motifs and

which has to be the lowest.

Overlap(FMi) = 1−

�

FMl,i ;=l Sim(FMi, FMl)

|FM |
(9)

Overlap() is measured as the average value of the

individual Sim(FMi, FMl) between the generated

motif FMi and all the other generated motifs FMl

in the generated dataset SFM . l refers to the total

number of the generated motifs.

We updated the Needleman-Wunsch alignment algo-

rithm formula [30] to our context to determine the

similarity Sim() between two motifs. This measure

of similarity was employed in the above equations

but with different parameters. A detailed description

of the similarity function Sim() can be found in [24].

" Step 2: The GA evolutionary operators mentioned above

may cause the manipulated solutions to be distorted, and

hence ambiguous, in different ways and with different

degrees. Technically, a set of motifs is declared to be

ambiguous when they share the same values of the fea-

tures (API calls) but do have different label values (ma-

licious/benign). An illustration of this ambiguity is pre-

sented in Table I. The manipulated motifs by the lower-

level are API call sequences. Each API call sequence is

named MFXi (as shown in Table I) and is composed of

different API calls named MLXj . A conflict (or incon-

sistency) may exist between objects (fraudulent motifs).

It is the case of the objects MFX7 and MFX9 because

they are indiscernible by condition attributes MLX1, . . . ,

MLXn and have different decision attributes (Nature)

(we assume that all attribute values MLXj are the same).

Similarly, another inconsistency exists between objects

MFX3 and MFX8.

To handle this ambiguity issue and to guarantee the

reliability of the generated malicious motifs, a VPRS

component, namely Variable Precision Rough Set Ana-

lyzer (VPRS Analyzer in Figure 3) which uses mainly
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TABLE I
EXAMPLES OF AMBIGUOUS MOTIFS.

Malicious Condition attributes (API call)
Decision

fraudulent
motifs MLX1MLX2 . . . MLXn (Nature)

MFX1 1 1 . . . 1 M
MFX2 0 0 . . . 0 M
MFX3 1 0 . . . 0 M
MFX4 1 0 . . . 1 M
MFX5 1 1 . . . 0 M
MFX6 1 0 . . . 1 M
MFX7 1 0 . . . 1 B
MFX8 1 0 . . . 0 B
MFX9 1 0 . . . 1 M
MFX10 1 1 . . . 0 B

Algorithm 2 Inner Algorithm (Second layer)

Input: SMM : set of malicious motifs, SBM : set of

benign motifs, DRB: set of detection rules, R: number of

generations, N : population size

Output: Set of Relevant generated motifs

FMM
SFM0 ← Initialization(SBM ,SMM ,N ,R) /*SFM means
set of fraudulent motifs*/

2: SFM0 ← Evaluation(SFM0,SBM ,SMM ,DRB)/*Evaluation de-
pends on DRB*/
k ← 1

4: while k < R do

Qt ← Variation(SFMt−1 )
6: Qt ← Evaluation(Qt,SBM ,SMM ,DRB)

Ut ← Qt ∪ SFMt

8: SFMt+1 ← Selection(N ,Ut)
k ← k+1

10: SHM ← FittestSelection(SFMt)
(RFM,AFM) ← RelevanceCheck(SHM )/*Set of relevant FM
and a set of ambiguous FM*/

12: SCFM ← LowerCertainty(AFM ) ∪ RFM
SPFM ← UpperCertainty(AFM )

14: (FCFM,FPFM)← Pruning(SCFM ,SPFM )
FMM ← FCFM ∪ FPFM

16: end while

the VPRS lower and upper limit certainty thresholds

concepts, is plugged to the inner algorithm. Specifically,

the VPRS Analyzer checks first the reliability of the

generated malicious motifs (SHM ). Among this set, the

VPRS Analyzer keeps the most relevant motifs (RFM )

which do not need any further check, and investigates the

remaining ambiguous set (AFM ). Among the AFM set,

the VPRS Analyzer calculates the lower limit certainty

threshold to only keep the certain set of fraudulent motifs

SCFM (Algorithm 2, lines 11-12), and the upper limit

certainty threshold to keep the approved fraudulent motifs

among the possible set of generated fraudulent motifs

SPFM , together with SCFM . During the pruning

operation (Algorithm 2, line 14), redundant motifs are

removed. Finally, the joint sets of FFM and FPFM

form the relevant, and the most relevant artificially gen-

erated fraudulent motifs (FMM ) (Algorithm 2, line 15).

As possible fraudulent motifs cannot be considered relevant

enough to be added to the initial set of malicious motifs, they

need further evaluation that reflects their quality and measures

Fig. 3. Second layer functioning process.

their reliability. For every possible fraudulent motif, the VPRS-

based component estimates its reliability using an index named

Relevance_Malicious_index, which is defined as the ratio

of the number of instances that belong to the possible set

and having the same structure with a malicious label, and the

number of the whole possible set of instances (Equation 10).

Relevance_Malicious_index =
Instance_Possible_Malicious_Motif

Instance_Possible_Original_Data
(10)

where Instance_Possible_Malicious_Motif refers to

the number of instances that share the same structure and are

labelled malicious and Instance_Possible_Original_Data

refers to the total number of instances within the whole

possible set. This index can, therefore, be viewed as the

probability of counting the ambiguous fraudulent motifs set

(the possible generated motif set) correctly. It shows the extent

to which a correct label can be given to a generated motif

belonging to the possible set of generated motifs. Tacking

into account that we are aiming to produce effective ma-

licious fraudulent motifs, we will only keep the generated

motifs that have a Relevance_Malicious_index > 50%.

An illustrative example of this index is given below: Sup-
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pose that when generating 123 new fraudulent motifs, 100

among them were labelled as malicious and 23 were labelled

as benign. The Relevance_Malicious_index of those 123

possible generated motifs is (100/123). This means that the

Relevance_Malicious_index = 81,30% which is clearly

greater than 50% and hence the common shared structure of

these generated motifs will be added to the set of malicious

motifs sent to the outer algorithm.

3) Detection task based on detection rules: Throughout this

phase, our model will perform its classification task where a

new app, the executable, will be classified either as a malware

or as a benign. This is achieved using the set of detection

rules (FDRB). Formally, the first step aims to extract the

motifs of the executable. Each motif will be labeled as benign

or as malicious by comparing it to the motifs of the SMM

and SBM databases. Then, the obtained motifs are compared

to the antecedent of FDRB. The comparison will allow the

executable to be either classified as a malware or as a benign

app.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

An experimental investigation was done to evaluate ProRS-

Det’s performance in detecting new malware variants. For

this purpose, we gathered data from a variety of sources (the

theZoo dataset1, from VirusTotal2) and from various portable

benign tools such as Google play. We have gathered 5 540

Android apps where 3 440 are malicious and 2 100 apps are

benign files. From those apps, a total of malicious motifs

and a total of benign motifs were extracted. The conducted

process is summarized in Table II. The Drebin dataset [31],

which contains 123 453 benign applications and 5 560 malware

samples, is used for the evaluation of our approach against

the new variants of malware and 0-day attacks. The necessity

for confirmation that ProRSDet is not fitting the base of

examples led to the selection of a dataset that is different

from the one used for the construction phase. For comparisons,

various state-of-the-art methods were investigated. These are

the classical classifiers named in Table V, tested using Weka

with the proposed default parameters settings, three known

methods (Rathore et al. [32], Gym-plus [33], and AMD [24]),

and several commercial antimalware named in Table VII. The

comparison made with the two recent state-of-the-art methods

([32] and [33]) is justified by the fact that those approaches

are somehow similar to ProRSDet. In fact, there are common

traits between our developed approach and those approaches:

they propose a two-task solution (a malware generation task

and a malware detection task). Also, to ensure the fairness

of comparisons between evolutionary approaches (AMD [24]

and ProRSDet), we used the parameter settings described in

Table III.

Both evolutionary approaches perform 798 000 function

evaluations in each run. Also, to help determine the most

1https://thezoo.morirt.com/
2https://www.virustotal.com/gui/home/upload
2https://www.cs.waikato.ac.nz/ml/weka/

TABLE II
NUMBER OF OBTAINED MOTIFS.

Number of apps Number of motifs

Benign 2 100 28 019 663

Malicious 3 440 36 995 382

TABLE III
EVOLUTIONARY PARAMETERS.

ProRSDet AMD
Population size (both levels) 30 180
Generation size (both levels) 30 4500
Mutation rate 0.5 0.5
Crossover rate 0.9 0.9

appropriate α and β values, a set of experiments is conducted

and the results are reported in Table IV. Indeed, Table IV

shows that the best results were reached with a pair of α

and β value that equals 0.5, respectively. When running the

experiments, we concluded that the fitness functions become

stabilized around the 36th generation. For these reasons, the

algorithms did not suffer from premature convergence. The

metrics used for the evaluation are: true positives (TP), false

positives (FP), true negatives (TN), false negatives (FN),

recall (RC), specificity (SP), accuracy (AC), precision (PR),

F1_score (FS), and the Area Under the Receiver Operating

Characteristics (ROC) Curve (AUC). All of the conducted

experiments, based on a 10-fold cross validation, are run on

an Intel
®
Xeon

®
Processor CPU E5-2620 v3, with a 16 GB

RAM.

B. Results Analysis

In this section, we compare the ProRSDet obtained results to

a set of classifiers (Table V), three state-of-the-art approaches

(Rathore et al. [32], Gym-plus [33] and AMD [24]) and five

antivirus engines (Table VI and Table VII). More precisely, to

determine how accurate our predictive model will perform in

practice, we used 10-fold cross-validation. We considered all

of the collected programs and hence all of the obtained motifs

stored in SBM and SMM (see Table II). So, concerning the

comparison with the top-five classifiers (Table V), and based

on all of the evaluation metrics, ProRSDet surpasses all other

classifiers. In comparison to the LDA and J48 classifiers,

which produced the second best results among the rest of the

classifiers with a pair of precision and accuracy of (98.36%,

97.82%) for LDA and (97.73%, 96.58%) for J48 and a pair

of F1_score and specificity of (97.32%, 97.31%) for LDA and

(98.37%, 97.13%) for J48, ProRSDet achieved a precision of

98.20%, an accuracy of 98.22%, an F1 score of 98.21%, and

a specificity of 98.20%. These remarkable ProRSDet results

are based on its high true positives (98.20%) and low false

positives (1.80%), which are the best achieved values among

the results of the classifiers. These encouraging findings show

that ProRSDet is capable of distinguishing between the two

possible designations (malicious and benign). Also, regarding

the comparison between the EA-based approaches (ProRSDet

and AMD [24]), we used an unknown dataset (Drebin dataset
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TABLE IV
VPRS PARAMETERS.

RC SP AC PR FS AUC FPR FNR

Experiment 1
α = 1

97.56 97.02 97.29 97.01 97.28 80.01 02.99 02.42
β = 0

Experiment 2
α = 0.85

96.68 97.66 97.17 97.69 97.18 82.13 02.31 03.28
β = 0.15

Experiment 3
α = 0.7

96.66 97.07 96.87 97.09 96.87 73.80 02.91 03.35
β = 0.3

Experiment 4
α = 0.5

97.99 97.32 97.66 97.31 96.65 87.00 02.69 01.99
β = 0.5

[31]) and ProRSDet outperformed AMD in terms of the used

evaluation metrics as stated in Table VI. This can be explained

by the contribution brought by the VPRS Analyzer which

helped keep the most “relevant" malicious motifs.

Moreover, we may derive from Table VI and Table VII

that, when compared to competing state-of-the-art approaches,

(Rathore et al. [32], Gym-plus [33] and AMD [24]) using

the unknown dataset [31], ProRSDet came in top with an

accuracy of 97.66%, a specificity of 97.32%, a recall of

97.99%, a precision of 97.31%, and an AUC of 86.15%.

Rathore et al., Gym-plus and AMD, obtained an accuracy of

93.81%, 93.50% and 92.28%, respectively, which are lower

than those obtained by our proposed technique. In addition,

the interesting detection results obtained by ProRSDet are

endorsed by the results presented in Table VII which refers to

the comparison with the commercial antivirus engines. Table

VII shows that ProRSDet reached an accuracy rate of 97.66%

whereas the ESET NOD32 engine, which is ranked first among

all the other malware antivirus engines, registered only 66.68%

of accuracy. It is to be noted that the accuracy values of

the four remaining antivirus engines varied approximately

between 56% and 66%.

The results reported from Tables V, VI and VII highlight

the ability of ProRSDet – thanks to its set of efficient produced

rules which are generated using the most relevant set of

the generated fraudulent malware; both guaranteed via the

use of the BLOP architecture and the VPRS component

– to achieve accurate detection operations against new and

unknown variants of malware.

To better clarify the efficiency and benefits of relying on the

bilevel architecture within ProRSDet, we analyse the results in

terms of false positive and the false negative rates. The regis-

tered ProRSDet values of those two metrics (Table VI) confirm

the usefulness of a bilevel architecture to detect a malicious

code efficiently. The continuous competition between both

levels (first layer and second layer) permitted generation of

good solutions (detection rules and fraudulent motifs) and this

had positive impact on the values of FPR (02.69%) and FNR

(01.99%). In comparison to ProRSDet, the registered FPR and

FNR values for AMD [24], which rely on a single-layer based

architecture via the use of evolutionary algorithms, are 06.37%

and 08.84%, respectively. In addition, referring to Table VIII,

we can state that the Variable Precision Rough Set based

module succeeded to set apart 198 522 ambiguous instances

(possible set) among the generated fraudulent motifs SHM

(468 000 instances). More precisely, a set of 92 689 of false

motifs were removed from the whole set of ambiguous motifs.

The removal of those false motifs was performed thanks to

the Relevance_Malicious_Index and after being processed

by the lower and upper limit certainty thresholds explained

and illustrated in Section IV-2. This distinction brings to light

the VPRS component’s important contribution in improving

the quality of the fraudulent motifs by the second layer and

which, consequently, positively affected the false alarms rate.

Let us recall that ProRSDet provides a set of robust detection

rules thanks to the set of malicious motifs produced by the

second layer’s GA reinforced by the VPRS module. The VPRS

module helps determine the set of “certain" malicious motifs

and the set of “possible" malicious motifs. When dealing with

this set of possible motifs, a Relevance_Malicious_index

(Equation 10) that estimates the reliability degree of each

possible malicious motif is also provided to the user (as

presented in Section IV-2). This metric, specific to the evalu-

ation of each possible malicious motif, will help determine

the fate of this specific motif: add it to the set of mali-

cious motifs or remove it. To be more specific, Figure 4

represents the number of the obtained possible malicious

motifs with regards to their Relevance_Malicious_index.

Figure 4 shows that 51.28% of possible malicious motifs

have a Relevance_Malicious_index that exceeds 50%. Also,

17.98% of possible rules succeeded to correctly classify apps

with rates that lie between 41% and 50%. 18.23% of those

rules ranked just below with a Relevance_Malicious_index

comprised between 31% and 40%. Approximately only 13% of

the rules failed to have a Relevance_Malicious_index above

30%. An example of the use of this index was previously given

in Section IV-2. Also, an important aspect in our proposed

ProRSDet approach that needs to be clarified concerns the

setting of the α and β VPRS parameters. In fact, in this study

we adopted the the trial and error method which consists of

choosing randomly values and apply them in our algorithm.

For instance, we conducted four different experiments (Table

IV) which helped us determine the best pair of α and β

values that leads to better detection results. More precisely,

we tried different combination of α and β values and each

time we assessed the recall (RC), specificity (SP ), accuracy

(AC), precision (PR), F1_score (FS), Area under ROC curve

(AUC), false positive rate (FPR) and false negative rate

(FNR). The best values were reached with α = 0.5 and β =
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TABLE V
COMPARISON BETWEEN PRORSDET AND THE CLASSICAL CLASSIFIERS.

Classifier/
TP FP TN FN RC SP AC PR FS AUC FPR FNR

approach

ProRSDet 98.20 01.80 98.24 01.76 98.23 98.20 98.22 98.20 98.21 86.79 01.80 01.76
LR 93.81 06.19 96.75 03.25 96.65 93.98 95.28 93.17 95.60 63.69 06.01 03.34
NB 92.30 07.70 28.41 71.59 56.31 78.67 60.35 92,37 93,62 65.06 02.13 09.03
RF 97.41 02.59 95.90 04.10 96.00 98.37 97.16 97.36 97.17 73.04 02.62 04.03
J48 97.18 02.82 93.98 06.02 94.27 97.13 96.58 97.73 98.37 83.90 02.91 05.83

k-NN 89.52 10.48 95.21 04.79 94.92 90.08 92.37 85.74 90.56 57.69 09.91 05.07
LDA 97.29 02.71 98.36 01.64 98.34 97.31 97.82 98.36 97.32 75.96 02.68 01.65

LR: Logistic Regression; LDA: Linear Discriminant Analysis; RF: Random Forest;
J48: Decision Tree; NB: Naive Bayes; k-NN: k-Nearest Neighbours.

TABLE VI
COMPARISON BETWEEN PRORSDET AND AMD [24] USING THE DREBIN DATASET [31].

Classifier/
TP FP TN FN RC SP AC PR FS AUC FPR FNR

approach

ProRSDet 97.31 02.69 98.01 01.99 97.99 97.32 97.66 97.31 96.65 86.15 02.69 01.99
AMD 93.80 06.19 90.90 09.10 96.20 92.70 92.28 93.60 92.37 57.69 06.37 08.84

Fig. 4. Number of possible motifs with regards to the Relevance_Malicious_index.

TABLE VII
ACCURACY RESULTS OF PRORSDET AND TOP FIVE COMMERCIAL

ENGINES BY VIRUSTOTAL 3 ON THE DREBIN DATASET [31].

Anti-malware Reference Accuracy (%)

ProRSDet Our current approach 97.66
ESET NOD32 https://www.eset.com 66.68
AegisLab www.aegislab.com 66.23
NANO antivirus http://www.nanoav.ru 66.23
VIPRE https://www.vipre.com 62.53
McAfee https://www.mcafee.com 56.21

Gym-plus [33] 93.50
Rathore et al. [32] 93.81 (with RF)

0.5. Indeed, we specifically registered an AC of 97.66%, a PR

of 97.31% a FPR of 02.69% and a FNR of 01.99%. Those

significant values found their way thanks to great reached

percentages of true positives and true negatives.

TABLE VIII
NUMBERS OF RELEVANT AND AMBIGUOUS GENERATED MALICIOUS

MOTIFS.

Number of generated motifs in ProRSDet

Possible instances Certain instances

False motifs Approved motifs
92 689 105 833 269 478

VI. CONCLUSION AND FUTURE DIRECTIONS

In this research, we developed ProRSDet, a malware detec-

tion technique that combines the Variable Precision Rough Set

model and bilevel optimization. Within the bilevel architecture,

the malware generation task (inner algorithm or second layer)

and the rules generation task (detection task, outer algorithm

or first layer) are in mutual competition. The second layer

generates “Relevant” malicious motifs which are generated by

a GA and thoroughly checked by a VPRS component that

only keeps the most “pertinent” ones, and which are capable

of eluding the GP’s set of detection rules in the first layer.

MANEL JERBI ET AL.: MALWARE EVOLUTION AND DETECTION BASED ON THE VARIABLE PRECISION ROUGH SET MODEL 261



These effective created detection rules, in turn, attempt their

hardest to detect the second layer’s set of fraudulent patterns.

ProRSDet outperformed a variety of state-of-the-art ap-

proaches and commercial engines, achieving encouraging de-

tection rates of 97.66% accuracy and 2.69% false positives.

We plan to investigate other methods to help determine the

best values of α and β concerning the VPRS. It would be

interesting to design an adaptive parameter tuning strategy that

aims to approximate the best values of the VPRS parameters.

Also, we can consider other theories that deal with the

inconsistency in the future (i.e., [34], [35]), as well as consider

expanding the scope of the proposed work to encompass other

operating systems.
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