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Abstract—A common business practice for transportation for-
warders is to bid for shipping contracts at the transport or
freight exchanges. Based on the detailed contract requirements
they try to estimate the total expected cost of its execution and
accordingly bid with the fixed price in advance for delivering
such shipping service at the prescribed specification and schedule.
The capability to accurately predict the cost of contract execution
is the critical factor deciding about the profitability of offered
shipping services as well as the amount of business drawn from
freight exchanges. However, given highly volatile nature of the
transport services ecosystem, it is difficult to simultaneously
account for countless dynamically changing factors like fuel
prices, currency exchange rates, temporal and spatial multitude
of routing and implied traffic risks, the properties of cargo and
shipping vehicles etc., which leads to big cost under- or over-
estimation resulting with loss-making contracts or equally painful
missed revenue opportunities. In the context of FedCSIS 2022
data mining competition we propose an accurate and robust
predictor of the cost of forwarding contracts built upon the
detailed contract data using the ensemble of the state-of-the-
art gradient boosting-based regression models. Our established
feature engineering framework combined with deep parametric
optimization of the individual models and multi-faceted diversi-
fication techniques guiding hybrid final model ensembles were
instrumental to outperform all the competitive predictors and
win the FedCSIS 2022 contest.

Index Terms—Cost Prediction of Forwarding Contracts, Gra-
dient Boosting Trees, CatBoost, XGBoost, LightGBM, Stacking,
Diversity, Model Diversification, Ensemble Learning.

I. INTRODUCTION

W
ITH the development of IoT (Internet of things), e-

commerce and continuous globalization, the business

providing logistics service and involving supply chain for

supply chain planning functions or transport management

has become increasingly important. Big data analytics for

intelligent transportation and prediction analysis with machine

learning techniques have boosted management of transporta-

tion and logistics by providing intelligent solutions aiming for

more efficient and safer transportation at cheaper cost. In the

recent years, the technologies of data mining and machine

learning have been applied to investigate a range of issues in

international freight transportation, supply chain and logistics

management, e.g. driver behavior analysis [2], [3], origin-

destination parameter estimation [4], pavement maintenance

[5], traffic control and forecasting [6], [7], [8], freight logistics

[9], air traffic management [10], vehicle classification [11],

travel time prediction [12], traffic pattern analysis [13], freight

demand prediction [14], traffic volume forecasting [15], trans-

portation cost forecasting [16], etc. A good literature review

regarding utilizing machine learning on freight transportation

and logistics applications has been published in [18].

The objective of the FedCSIS 2022 challenge [1]1, which

is in cooperation with PTI and QED Software and sponsored

by Control System Software2, is to forecast the costs of

forwarding contracts, which are, although rather useful in

the business providing logistics service or involving supply

chains, quite challenging since it can be affected by many

static/dynamic and internal/external factors. Besides contract

nature and transportation arrangement, the actual transporta-

tion cost is constrained by the factors such like fuel prices,

currency exchange, drivers behavior, weather, traffic, market

demand, etc [16]. There is quite little work published in the

literature on cost prediction of forwarding contracts. In [17],

AI based models were developed to predict the long-term cost

of the logistics service, and attempted to construct a risk-

aware interval for the prices to be offered in the bid, aiming

to boost competitiveness in the application for tenders. In

addition, historical data was used to develop statistical learning

models for predicting the success likelihood of a tender based

on the actual data and predicted service prices achieved from

previous stage. The work proposed in [16] identified the most

significant predictive criteria by a trapezoidal neutrosophic

fuzzy analytical hierarchy process (TNF-AHP) and based on

the criteria found the transportation cost was predicted with an

artificial neural network (ANN) model, which, claimed by the

authors, can also be employed in supply chain management

and inventory control management.

In this paper, an ensemble learning model based on gra-

dient boosting decision trees together with efficient feature

engineering and model hyper-parameter optimization has been

developed for predicting the costs of forwarding contracts to

complete the task given in FedCSIS 2022 challenge. Gradient

boosting decision trees (GBDT), developed in the late nineties,

is a commonly used boosting methods for solving regression

and classification problems in the form of an ensemble of

decision trees as weak prediction model, which achieves state-

of-the-art results for many commercial and academic appli-

cations [19], [20]. In the GBDT, each new model correlates

1https://knowledgepit.ai/fedcsis-2022-challenge/
2https://controlsystem.com.pl/
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to the negative gradient of the system’s loss function that is

minimized by using the gradient descent method, which is

successively fitted to delivery better estimation of dependent

variables via training, resulting in gradual improvement of

prediction accuracy. Three efficient GBDT implementations,

i.e. XGBoost, CatBoost, and lightGBM, which have shown

their powerful learning capabilities by many winning teams in

a number of machine learning competitions, are employed to

construct the ensemble learning model for forecasting the cost

of contract forwarding in our method.

The remainder of the paper is organized as follows. The

FedCSIS 2022 Challenge is briefly described in Section II.

Data transformation and feature engineering is presented in

Section III, followed with the description of the gradient

boosting models, model diversity, and ensemble learning in

in Sections IV, V and VI, respectively. The experimental

results in Section VII. Concluding remarks are provided in

Section VIII.

II. FEDCSIS 2022 CHALLENGE

The FedCSIS 2022 data mining competition focused on

the prediction of the costs of forwarding contracts’ execu-

tion based on 6 years of detailed history of orders on the

European transport exchange. The data contained both the

general information about the contracts as well as detailed data

of planned routes’ segments including geo-located and timed

path, specification of shipping vehicles and cargo and even

financial details including daily currency rates and wholesale

fuel prices. The objective of the competition was to develop

a prediction model to accurately estimate the total cost of the

contract execution based on all available data. The competitors

were provided with the training data from 330055 contracts

along with the true realized cost, as well a the testing data

from 72452 contracts but without the realized cost. The

knowledgepit.ai platform 3, on which the competition was

hosted operated a leaderboard, which provided the feedback to

the competitive model prediction submissions in a form of the

preliminary RMSE score 4 computed over the unknown 10%

of the testing set, while the final RMSE score for the complete

testing set - constituting the final results, were provided after

the submissions’ closure.

III. DATA TRANSFORMATION AND FEATURE ENGINEERING

The data provided by the competition organizers included

already a well curated, cleaned and carefully selected set

of features, however only main dataset providing general

contract details was organized in a tabular format of one raw

(record) per forwarding contract. The extended route data,

on the other hand, contained detailed records of between 1

and 31 subsequent steps of the planned route segments of

the same contract and hence it became immediately clear

that in order to build a competitive cost prediction model

all the individual steps data would have to be incorporated

hence eventually somewhat aggregated per each contract. We

3https://knowledgepit.ai/
4https://en.wikipedia.org/wiki/Root-mean-square_deviation

have developed a generic aggregation filter and applied it

all useful columns of the detailed route segments dataset to

achieve per-contract aggregates. For numerical columns eleven

self-explanative aggregators were applied: ’first’, ’last’, ’min’,

’max’, ’argmin’, ’argmax’, ’mean’, ’mode’, ’sum’, ’range’,

’std’. For categorical columns the aggregation treatment was

made dependent on the number of unique values. For more

than 100 unique values the occurrence of each value was

considered sparse enough to limit the aggregation to just the

four operators of ’first’, ’last’, ’mode’, ’nuq’, where ’nuq’

simply denotes the number of unique elements. For categorical

columns with fewer than 100 unique values aside of the above-

mentioned 4 categorical aggregators we have also applied one-

hot-encoding on the original feature and with thereby up to

100 new numerical columns we have applied again all the

11 above-mentioned numerical aggregators to receive quite

a large number of final features in the order of thousands.

To avoid redundancy and wasteful poor quality features we

have automatically eliminated duplicate features and removed

features with at most one unique value different than nan/null,

which typically resulted in the final set of up to 2000 features.

We have also included features that measured country

disagreement between the origin and destination, extracted

days of the week, various expected segment duration and the

prices of different type of fuel during the trip segment days.

Among the alternative but less successful data preprocessing

techniques we have explored flattening all trip segments along

the single contract record of up to 31 possible segments as

well as organizing the data as sequences of consistent route

step segments.

IV. GRADIENT BOOSTING MODELS

Preliminary experiments on the main dataset very clearly

revealed that gradient boosting models performed by far

the best in terms of the reference predictive accuracy and

actually quite well in terms of the computational cost, even

comparing to simple linear regression and by far comparing

to deep networks. Among gradient boosting models XGBoost,

LightGBM, CatBoost were used and subsequently optimized

throughout the competition. Their variants trained on different

parameters were utilized for second level ensembles both

executed by simple aggregation and by stacked retrained

ensemble of gradient boosting model versions.

A. Individual models’ parametric optimization

Current state of the art Machine Learning models are highly

customized and flexible to accommodate a very wide range

of different options, versions and parametric settings during

the model build. Gradient boosting models are good examples

of such models with tens of algorithmic, representational,

modelling and statistical parameters available to tune in to

best fit or represent the data and ultimately to learn robust

regression function between the inputs and the continuous

output that generalizes well on the previously unseen data.

Given a set of distinct models each with a large numbers

of parameters to tune we have decided to apply fast greedy,
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rotational grid search for each of the gradient boosting mod-

els: XGBoost, CatBoost and LightGBM. Each optimizable

parameter, whether numerical or categorical is assigned up

to 5 unique values comprehensively covering the domain of

this parameter. Contrary to the exhaustive parametric grid

search, which given the numbers of parameters in our case

would prove intractable, our method incrementally finds local

optimum of a specific parameter with remaining staying fixed,

before rotationally progressing to the next until no improve-

ment can be found from any local change. To further boost the

reliability of the best found configurations of parameters we

have applied 5-fold cross-validation to rule out accidentally

high performance, yet as a consequence to limit an additional

cost of cross-validation the process of local optima search for

each parameter was reduced to just a pair of neighbouring

checks: above and below the current value per turn and shifting

the current optimal to the value for which the maximum

performance improvement was reported.

This parameters optimization process is terminated when

no improvement in cross-validated RMSE performance was

found from any local changes of parameters.

V. MODEL DIVERSIFICATION TECHNIQUES

Well performing but diverse models produce diverse outputs

which after aggregation produce significant reduction of both

variance and bias error components. The critical challenge here

is how to develop diverse but well performing models and also

to which degree worse performing but quite diverse models

are still worth combining to achieve the performance gain. We

have developed two generic diversification methods applicable

to gradient boosting models. The first method focuses on

maximizing the number and magnitude of differences between

as many parameters as possible of the same model. The second

method takes specific categorical focal feature with a few

unique values and proceeds with training an array of models

specific to each of the unique value of the focal feature. Both

method yield good results with parametric-diversity achieving

lower levels of output decorrelation but higher individual per-

formances, while decompositional-diversity achieving higher

diversity but lower performance mainly due to smaller number

of training examples to train on.

A. Parametric model diversification

Parametric model diversification method was developed in

conjunction with the parametric model optimization discussed

above. The method simply retains model parametric configura-

tions and the corresponding regression accuracy throughout the

optimization process and tries to establish the the population of

the best performing model versions with the most diverse con-

figurations of the parameters. To assess the level of diversity

among model versions’ parametric configurations we devel-

oped a simple disagreement measure adding up the differences

in grid positions of all parameters conceptually similar to the

City Block (Manhattan) distance metric. Once all parameter

configurations encountered throughout the optimization are

evaluated in terms of their performance P and the diversity

measure D, the final step involves selecting k best model

versions from the performance-diversity profile which could be

associated with the normalized ratio of D/RMSE assuming

our performance measure is P = 1/RMSE. Selected models

versions outputs are then subsequently aggregated using the

simple average operator.

B. Decompositional model diversification

It is known that certain level of model diversity, seen as

the level of disagreement among model outputs, could be

achieved by the training on mutually exclusive data sets. This

effect can be further reinforced if the instead of training

on random partitions of the training set, model versions

are trained on partitions associated with the different values

of certain categorical variables as they typically represent

significantly different subsets of the available data. It can be

justifiable argued, though, that any limitation or reduction

of the training set size exposed to the model is likely to

reduce its predictive performance. While it indeed could be

the case, particularly for the small training data sets, we argue

and have experimentally verified that when the data set is

large enough and the categorical variable has only very few

unique values, the benefits from combining the outputs from

that way diversified model versions outweigh the negligible

reduction in performance of a single model trained on the

whole set. Given all our models utilize the decision tree

construction mechanism in the back end, such guided data

partitioning could be considered as a forced first splits that

branch out into several categorical-variable-value specific tree-

based model versions. Given 300k+ size of the training set we

have identified several suitable categorical variables with only

a few unique values and trained boosting models on subsets

corresponding to specific values of these variables obviously

without this variable included in the training process. Trained

model versions were then applied separately to the testing

sets to generate the outputs which were finally combined with

the simple mean operator to produce a single output. Figure

1 comparatively illustrates how the decompositional model

diversification differs from the traditional individual model

build along the training and testing processes.

VI. ENSEMBLE MODEL

In the construction of the final ensemble, we have uti-

lized 3 baseline gradient boosting models: XGBoost (XGB),

LightGBM (LGBM), and CatBoost (CatB) subjected to both

parameteric (DivP) and decompositional (DivD) diversification

filters. Diversification techniques are designed to improve the

classifier generalization performance by first expanding it into

a number of diverse versions, train them on a whole or subsets

of the training set and apply them to the testing set before

merging the model versions’ outputs back together by a simple

aggregation. To further boost diversity but also in a search for

better complementary predictive performance we have trained

all baseline regression models with their DivP/D filters on

two different subsets of features generated by our feature

engineering engine. The only difference between these two
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Figure 1. Decompositional model diversification compared to traditional individual model training and testing flow chart.

feature subsets were that the second set included many more

sparse columns extracted from much more prolific application

of one-hot-encoding to categorical features.

Moreover, in a search for further performance gains we have

added another stacked layer of simple linear regression trained

on the outputs from diversified baseline models. To properly

accommodate stacking layer the training data were split into

two parts, one used for building the baseline models and their

diversified versions, while the other for learning the parameters

of the linear regression in the stacking layer.

Eventually all diversified individual model outputs along

with the outputs from linear regression based stacking were

averaged together. The architecture or rather flow chart of the

final ensemble is depicted in Figure 2.

VII. EXPERIMENTAL RESULTS

To establish a baseline predictability for the presented prob-

lem of forwarding cost prediction we first optimized individual

gradient boosting models: XGB, LGBM and CatB on two

above-mentioned subsets of extracted features and received

the following RMSE results along with the optimal parameters

returned by the optimization process.

1) Feature set 1 with 894 features:

• CatB (learning rate 0.05, depth 8, iterations 2000):

0.1442

• LGBM (learning rate 0.02, depth 8, iterations 2000):

0.1444

• XGB (learning rate 0.02, depth 1000, iterations

1000): 0.1496

Figure 2. Flowchart of the final ensemble model.

2) Feature set 2 with 3431 features:

• CatB (learning rate 0.05, depth 8, iterations 2000):

0.1513

• LGBM (learning rate 0.02, depth 8, iterations 2000):

0.1494

• XGB (learning rate 0.02, depth 1000, iterations

1000): 0.1640
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Secondly, linear regression stacking models were trained on

the outputs from the diversified individual models and reported

the preliminary RMSE performance of:

• Stacking model with 894 features: 0.1441

• Stacking model with 3431 features: 0.1465

The final predictions are achieved by ensemble averaging of

the outcomes from both stacking models along with diversified

individual baseline models, yielding the RMSE around 0.141.

A. Visual efficient performance-diversity horizon method for

a robust ensemble composition

Even though the ensemble model illustrated in Figure 2

resulted with the best preliminary performance, the journey of

incremental model build and performance improvement led to

hundreds of model output submissions as potential solutions

each with different performance and mutual dependency with

the other solutions. Given the submissions represented the

outputs from multiple different models with many different

versions of the training data, parametric setups and model de-

sign choices we have considered them as a final-stage resource

for potential further performance improvement through simple

aggregation. The question posed in this stage was: given n

model outputs with preliminary RMSE scores is it possible to

improve the best model result and if so how to achieve the

biggest possible improvement.

The intuition backed by the bias-variance error decomposi-

tion theorem suggested that the best results should be achieved

by combining the outputs from the best performing (model)

solutions that differ the most from each other, inline with the

diversification techniques discussed in section V. At the final

stage when only model outputs and their preliminary scores

were available the natural disagreement or resultant diversity

measure that could be computed upon the model outputs

was an average from the correlation coefficients between the

specific model output and all the rest in the considered pool

of solutions. After computing such outputs’ diversity ci for

all solutions with the preliminary RMSE scores ei < 0.152
we have plotted all such best solutions from our submissions

as points (ci, ei) on the 2-dimensional diagram depicting

dependency e = f(c), as shown in Figure 3.

The points stretching along the bottom horizon approxi-

mately marked by the dashed line represent the continuum

of the best performing and at the same time the most di-

verse solutions and are expected to be the most promising

choices for final stage combination to achieve the performance

improvement. Rather than arbitrarily take some solution for

combination along such horizon we have developed a simple

greedy algorithm to choose the best solution candidates from

around the the horizon for final combination. The greedy

sequence in our case is starting from the best performing

model in the bottom right corner and then adding the next best

model but only out of the more diverse solutions, i.e. from the

top solution as a pivot the next solution added is represented

by the lowest point to the left from the current pivot. Then the

pivot is shifted to the newly added point and process repeats

until no more points can be added. Such greedy sequential

addition leads to the staircase connected set op points marked

in black along the diversity horizon. The final stage is testing at

what point such greedy sequence does not improve the overall

ensemble performance any more.

Such method of output-level ensemble combination is par-

ticularly effective when a large number of black-box models

are suddenly at the disposal and a quick decision is needed on

which models’ outputs are best to aggregate to maximally re-

duce the overall predictive error. In our cases the team merger

pose an exact situation as described above and following a

quick testing a final ensemble output has been generated by

aggregation of the outputs from the first 11 models along the

diversity horizon, and yielded the top predictive RMSE error

below 0.14 and even better result on the full testing set, thereby

securing the first place in the FedCSIS 2022 competition.

VIII. CONCLUSIONS

We have attempted to improve predictive performance of

the already highly robust regression models from the gradient

boosting family: XGBoost, LGBM, CatBoost. To achieve that

we have proposed a range of model diversification methods

coupled with various ensemble combination schemes. Decom-

positional diversity forced by training on significantly differ-

ent input data subsets, combined with actively encouraged

parametric diversity led to an improvement in performance

achieved from aggregation of the expanded diverse model

versions, additionally boosted with linear regression based

stacking and output level selection of the most efficient

ensemble candidates in terms of the performance-diversity

trade-off. The proposed ensemble has been applied to the

complex problem of advance prediction of the total realized

cost of forwarding contracts’ based on a variety of data

coming in different forms and types, in the competitive setup

of the FedCSIS 2022 data mining challenge. Our proposed

solution scored the first place in this challenge producing

the lowest (RMSE) error below 0.14, which corresponds to

only 2% in relative cost in monetary units. The proposed

solution can enable forward contractors to better estimate their

expected shipment cost, further reducing their business risks

and boosting the efficiency across transport services domain.
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