
XGBoost meets TabNet in Predicting the Costs of
Forwarding Contracts

Aleksandra Lewandowska
Silesian University of Technology, Poland

aleklew480@student.polsl.pl

Abstract—XGBoost and other gradient boosting frameworks
are usually the default choice for solving classification and
regression problems for tabular data, especially in data science
competitions, as they often, combined with proper data pre-
processing and feature engineering, supply high accuracy of
predictions. They are also fast to learn, easy to tune, and can
supply a ranking of variables, making interpretation of learned
models easier. On the other hand, deep networks are the top
choice for complex data, such as text, audio, or images. However,
despite the many successful applications of deep networks, they
are not yet prevalent on tabular ones. It may be related to
difficulties in the choice of the proper architecture and its
parameters. A solution to this problem may be found in recent
works on deep architectures dedicated to tabular data, such as
TabNet, which has recently been reported to achieve comparable
or even better accuracy than XGBoost on some tabular datasets.
In this paper, we compare XGBoost with TabNet in the context
of the FedCSIS 2022 challenge, aimed at predicting forwarding
contracts based on contract data and planned routes. The data
has a typical tabular form, described by a multidimensional
vector of numeric and nominal features. Of particular interest
is investigating whether aggregation of predictions derived from
XGBoost and TabNet could produce better results than either
algorithm alone. The paper discusses the competition solution and
shows some added experiments comparing XGBoost with TabNet
on competition data, including incremental model re-building and
parameter tuning. The experiments showed that the XGBoost and
TabNet ensemble is a promising solution for building predictive
models for tabular data. In the tests conducted, such an ensemble
achieved a lower prediction error than each of the algorithms
individually.

I. INTRODUCTION

A
LMOST every company collects data on their products,
services, or customers. Analyzing such data helps com-

panies make informed business decisions to increase their
profits. One example of such analysis is the task defined in
the FedCSIS 2022 challenge [1], involving cost prediction of
forwarding contracts based on contract details and planned
routes. In that case, such cost estimation may support selecting
the most profitable contracts.

Many examples of predictive analytics for supporting com-
panies in increasing or maintaining their profits can be found
[2]. Recommender systems [3], [4] may suggest to customers
what products they may be interested in, thereby increasing
the chances of buying a product. Predicting customer lifetime
value [5] helps to select the top customers to whom more
attention should be paid. Churn prediction [6], [7] can reduce
customer losses.

Data collected by companies about customers, contracts,
or products are often stored in database tables consisting
of various attributes (nominal, numerical, date-time), thus
their natural form for analytics is tabular, with mixed types
of features. Over the past several years, gradient boosting
frameworks have become particularly popular for analyzing
such data, as combined with appropriate data pre-processing
and feature engineering, they often achieve superior accuracy.
In contrast, deep learning methods are the default choice
for unstructured data, such as images, audio, or text. Deep
networks are not often applied to tabular data, which may be
due to the difficulty of selecting an appropriate architecture
suitable for analyzing heterogeneous tabular formats. There-
fore, several deep architectures dedicated to tabular data have
been proposed over the past few years, such as TabNet [8],
Net-DNF [9], Node [10], and TabTransofmer [11].

This paper attempts to apply one of those tabular-specific
deep networks, namely TabNet, to forwarding contracts data
in the context of the FedCSIS 2022 challenge, and compare it
with XGBoost [12], one of the most popular gradient boosting
frameworks. Of particular interest is investigating whether
combining the two methods could produce better results than
either algorithm alone. We also investigate the performance
of the algorithms over time, training them in an incremental
fashion. Section II describes the competition solution. In this
section are described: data pre-processing steps and modelling,
XGBoost hyper-parameters tunning, Tabnet hyper-parameters
tunning and linear combination of both models as a result to
the problem. Section III summarizes the work.

II. COMPETITION SOLUTION

A. Competition data-sets

Competition consists of five data-sets: test data set (main

table), test data set (routes table), training data set (main

table), training data set (routes table) and fuel prices. Test
and training data sets differ in the fact that test data set does not
include the estimated cost column, which is used for evaluation
purposes. The presented solution’s data pre-processing process
is divided into two separate steps: routing table and main

table pre-processing.

B. Routing table data pre-processing

In the first step, we selected and added new features, and
aggregated the data by contract id. We identified the data
that was missing in a significant manner and in the process

Proceedings of the of the 17th Conference on Computer
Science and Intelligence Systems pp. 417–420

DOI: 10.15439/2022F294
ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 417



of simplification we removed those features from further
processing.

The percentage of missing values in particular columns is
respectively about 54.5% and 30.6%. Therefore, the number
of columns in this step has significantly dropped.

The columns describing respectively longitude and latitude
were dropped as extracted information can be found in other
features, like the distance between starting and ending points.

The subset of features that have not been dropped can
be associated with different transport methods. The present
methods are ferry, train, truck (which can be considered as
conventional transportation method).

To each method we have defined added features, which
measure how much has been transported over how long time
or distance. Created features:

• Train (weight-distance) feature = train_km∗kg_current
• Ferry (weight-time) feature = ferry_duration ∗

kg_current
• Truck (weight-distance) feature = km ∗ kg_current

As multiple records are used to define a particular transporta-
tion process, we decided to aggregate the features left. After
the pre-processing process the routing table is summarized
with one record per each contract.

C. Main table data pre-processing

Main table includes 36 columns, and only 8 of them has
missing values. Only 3 columns include more than 50% of
missing values. Therefore, those columns have been dropped.

In the first step we have extracted date and time infor-
mation from route_start_datetime and route_end_datetime

columns. From those columns we have extracted year, month,
day of the week, hour, the difference between start and

the end of the transportation process and converted those two
columns into columns having unix time (which defines the

number of epochs since 01-01-1970).
In the next step we put our attention towards the processing

of categorical data, which can be shown on the feature
id_payer. From the training set we selected the payers that
accounted for over 1000 orders and then we applied one hot
encoding technique. All not accounted payers are categorized
as others. The same approach was used for: currencies, first

load country, last unload country. Other categorical features
were treated in a different manner. As the number of unique
values was small enough, instead of using one hot encoding
technique we have decided to assign a numerical value to each
of values included within each category. To each value we
assigned an integer, in our case we did not concern ourselves
with the order of assigned numerical values. The numerical
values used are integers from 0 to n where n depends on the
number of unique values present in a particular categorical
column.

Features for which assignment was applied are: contract

type, load size type and direction. Then newly created
features and other non-categorical features were joined with
the data set created in the earlier step.

The resulting data set constitutes the input for our XGBoost
and TabNet models. The same steps were applied towards test
data sets in both routing table and main table data sets.

D. TabNet - training and evaluation

TabNet is an "interpretable canonical deep tabular data
learning architecture."[2] The parameters that influence the
training process of the model are: optimizer and learning

rate, hyper-parameter tuning, training process. We used
Adam optimizer and exponentially decreasing learning rate

of first value 2e-2.
After choice of the optimizer and the learning rate we could

turn to hyper-parameters tuning. For the training process we
selected 4 parameters for testing [8]:

• n_a - "Width of the decision prediction layer. Bigger
values give more ability to the model with the risk of
over-fitting."

• n_b - "Width of the attention embedding for each mask.
According to the paper n_d=n_a is usually a good
choice."

• batch size - "Number of examples per batch. Large batch
sizes are recommended."

• n_steps - "Number of steps in the architecture (usually
between 3 and 10)"

To select the most suitable parameters for our problem,
we have used the technique called Grid Search. To use this
technique, firstly we had to define the range of the parameters
that we wanted to check during testing. Next, we would try
all possible combinations, train the model and evaluate the
performance Selected parameter ranges are: n_a = n_b ∈
{4, 8, 18}, n_steps ∈ {3, 5, 7}, batch size ∈ {1024, 2048},
mask type ∈ {”sparsemax”, ”entmax”}. The table below
represents a subset of results of all performed experiments.
Model consistently has performed better for mask type =
"sparsemax" and only results with such value are presented.

Width Steps Batch RMSE Val RMSE Pre

8 5 2048 0.1634 0.1719
8 5 1024 0.1608 0.1720
8 3 1024 0.1587 0.1734
8 7 1024 0.1757 0.1751
4 7 2048 0.1646 0.1752
8 3 2048 0.1618 0.1772
4 5 1024 0.1661 0.1774
8 7 2048 0.1665 0.1782
4 3 1024 0.1687 0.1779
4 3 2048 0.1667 0.1875
4 5 2048 0.1670 0.2387
4 7 1024 0.1647 0.2704

TABLE I
RESULTS OF HYPER-PARAMETER TESTING, TABNET

Width - n_a, n_b
Steps - n_steps
Batch - batch_size
RMSE Val - RMSE value, calculated on the validation set
RMSE Pre - RMSE value, calculated on the preliminary testing set

The training data set has been sorted first based on the unix
epoch value of route_start_datetime column. The validation
set consists of the last 10% of the sorted rows of the data set.

418 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



The sorting took place because we want our model that has
been trained on the archived records to perform well on the
incoming data. The main goal is to predict future values.

This exactly describes the training process that took place.
In the first iteration we trained our model only on the first
10% of the data set and evaluated it on the following 10%.
Therefore, only 20% has been used at this step. In the next
iteration we have moved the 10% used for evaluation into the
training set, on which model has been additionally trained.
Then the following 10% has been used for evaluation purposes.
This process was taking place incrementally, till the moment
in which the model was trained on 90% of the data and
evaluated on the last 10%. The RMSE value evaluated at
this step is denoted as RMSE Val. However, for our model
to perform well on the test data set, the model should be
trained on almost all available records. For that reason, we
have moved the following 8.5% from the local validation set
used for evaluation and additionally trained the model, which
was then evaluated on the last 1.5% of the ordered training data
set. Then we considered a TabNet model trained on 98.5% of
the data set as a fully trained model, which then was evaluated
on the preliminary testing set, supplied by the FedCSIS 2022
competition, which is the subset of the full testing data set.
The results are available in I. Hyper-parameters of the model
that performed best are:
n_a = n_b = 8, n_steps = 5, batch size = 2048, mask type =
"sparsemax"

The results of evaluation are: local validation = 0.1634,
preliminary validation = 0.1719, final result = 0.1713.

The results obtained for the model with default hyper-

parameters are: local validation = 0.1587, preliminary val-
idation = 0.1733, final result = 0.1735

We can see that the model has improved, but not in a signif-
icant manner. In comparison to the model which obtained the
best results on the preliminary test data set, both models differ
by the batch size, and n_steps which are respectively 1024

and 3 for the model trained with default hyper-parameters.

E. XGBoost - training and evaluation

XGBoost "is an optimized distributed gradient boosting
library"[3]. XGBoost model consists of two steps: training

and evaluation. Those processes are quite similar to the
processes that were described in the TabNet section of this
paper. The training process is similar to the TabNet training
process with a subtle differences. Similarly we use Grid

Search technique for finding the optimal hyper-parameters for
our model. The hyper-parameters that were tuned are:

• learning rate - "Step size shrinkage used in update to
prevents over-fitting." [12]

• min split loss - "Minimum loss reduction required to
make a further partition on a leaf node of the tree."[12]

• max depth - "Maximum depth of a tree. Increasing this
value will make the model more complex and more likely
to over-fit."[12]

• colsample by tree - "The subsample ratio of columns
when constructing each tree"[12]

The defined ranges of interest are: learning rate ∈
{0.05, 0.85, 0.15}, min split loss ∈ {0, 0.1, 0.2},
max depth ∈ {3, 4, 5}, colsample by tree ∈
{0.55, 0.65, 0.75}.

Rate Loss Depth Colsample RMSE Val RMSE Pre

0.085 0.2 5 0.65 0.1511 0.1617
0.150 0.2 4 0.65 0.1555 0.1623
0.150 0 4 0.75 0.1561 0.1623
0.085 0.2 4 0.75 0.1536 0.1626
0.085 0.1 5 0.65 0.1519 0.1628
0.085 0.2 5 0.75 0.1523 0.1629
0.150 0.2 4 0.75 0.1523 0.1632
0.085 0.1 4 0.75 0.1536 0.1633
0.085 0.1 4 0.65 0.1527 0.1636
0.05 0.2 5 0.75 0.1527 0.1636
0.05 0.2 5 0.65 0.1523 0.1653

TABLE II
RESULTS OF HYPER-PARAMETER TESTING, XGBOOST

*Results were sorted by RMSE Pre value
Rate - learning rate
Loss - min split loss
Depth - max depth
Colsample - colsample by tree
RMSE Val - RMSE value, calculated on the validation set
RMSE Pre - RMSE value, calculated on the preliminary testing set

The training process is quite like TabNet’s training process
described earlier. In the first iteration XGBoost model is
trained only on 10% of the training data, and then evaluated
on the following 10%. In the next iteration XGBoost model is
trained on the 20% of the training data set and then evaluated
on the following 10%. This process takes place till the model
is trained on 90% of the data set. Then the model is trained
enough that we can calculate RMSE Val value, evaluating the
model on the last 10% of the training data set. Afterwards
XGBoost model is trained on 100% of the training data set,
and then model is evaluated on the preliminary testing data
set and full testing data set. It is worth mentioning that in
each iteration like in the last stage of training (training on the
100% of the data set) model is basically trained from zero
- created is new instance of the model, and the model gets
trained. In comparison to TabNet that makes a significant
difference as TabNet model uses warm training (with use
of already pretrained weights as a baseline for the model
training). The XGBoost model that performed best:

Type Learning Rate Loss Depth Colsample

Best 0.085 0.2 5 0.65
Default 0.3 0 6 1

TABLE III
HYPER-PARAMETERS - BEST AND DEFAULT MODELS XGBOOST

We can notice that the default model has performed signif-
icantly worse than tuned model.

F. Combination of XGBoost and TabNet models

The final model is a combination of XGBoost and TabNet
models both.

ALEKSANDRA LEWANDOWSKA: XGBOOST MEETS TABNET IN PREDICTING THE COSTS OF FORWARDING CONTRACTS 419



pre: 0.1719
full: 0.1713
0% XgBoost
100% TabNet

pre: 0.1676
full: 0.167

10% XgBoost
90% TabNet

pre: 0.1639
full: 0.1633

20% XgBoost
80% TabNet

pre: 0.1609
full: 0.1603

30% XgBoost
70% TabNet

pre: 0.1587
full: 0.1581

40% XgBoost
60% TabNet

pre: 0.1572
full: 0.1566

50% XgBoost
50% TabNet

pre: 0.1565
full: 0.1559

60% XgBoost
40% TabNet

pre: 0.1566
full: 0.1559

70% XgBoost
30% TabNet

pre: 0.1576
full: 0.1568

80% XgBoost
20% TabNet

pre: 0.1592
full: 0.1584

90% XgBoost
10% TabNet

pre: 0.1617
full: 0.1608

100% XgBoost
0% TabNet

XgBoost and TabNet weights

0.1500

0.1525

0.1550

0.1575

0.1600

0.1625

0.1650

0.1675

0.1700

RM
SE

RMSE results depending on the weights
RMSE Preliminary Result
RMSE Final Result

Fig. 1. Training results of XGBoost model depending on the used hyper-parameters

Type Local Val Preliminary Val Final Result

Best 0.1511 0.1617 0.1608
Default 0.1739 0.2365 0.2362

TABLE IV
RESULTS - BEST AND DEFAULT MODELS XGBOOST

Results are generated independently for each one of the
models. Then we use the assigned weights to generate the
final results. The main problem at this stage was finding the
right weights. For simplicity we have decided to check 10
different pairs. Starting with XGBoost being assigned 0 and
TabNet 1, incrementing the weight assigned to the XGBoost
by 0.1 and decreasing the weight assigned to TabNet by 0.1.
Ultimately Fig. 1. depicts the preliminary and final evaluation
of the generated results. We can notice that the best RMSE
is generated for 0.6 assigned to XGBoost and 0.4 assigned to
TabNet with final results of 0.1565 for preliminary validation
and 0.1559 as a final result. It is worth noticing that XGBoost
has significantly outperformed TabNet, with TabNet’s results
of 0.1719 and 0.1713 and XGBoost 0.1617 and 0.1608 as
preliminary and final results respectively.

III. CONCLUSIONS

In this paper, we have introduced the approach that we have
used for FedCSIS 2022 Challenge. We have described the data
pre-processing, handling the missing data and two models that
we have used for our solution: XGBoost and TabNet. It is
also worth noticing that the process of training the XGBoost
model takes much less time in comparison to the process of
training the TabNet model. Although the result is worse than
the baseline solution, we can notice how the combination
of both models can outperform those two models working
separately. Although XGBoost has significantly outperformed
the TabNet model itself, the combination of both models has
quite significantly outperformed both models working alone.

REFERENCES

[1] A. Janusz, A. Jamiołkowski, and M. Okulewicz, “Predicting the costs
of forwarding contracts: Analysis of data mining competition results,”
in Proceedings of the 17th Conference on Computer Science and

Intelligence Systems, FedCSIS 2022, Sofia, Bulgaria, September 4-7,

2022. IEEE, 2022.
[2] E. W. Ngai, L. Xiu, and D. C. Chau, “Application of data mining

techniques in customer relationship management: A literature review
and classification,” Expert systems with applications, vol. 36, no. 2, pp.
2592–2602, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.eswa.
2008.02.021

[3] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Recommender
systems survey,” Knowledge-based systems, vol. 46, pp. 109–132, 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.knosys.2013.03.012

[4] I. Portugal, P. Alencar, and D. Cowan, “The use of machine learning
algorithms in recommender systems: A systematic review,” Expert

Systems with Applications, vol. 97, pp. 205–227, 2018.
[5] S. Gupta, D. Hanssens, B. Hardie, W. Kahn, V. Kumar, N. Lin,

N. Ravishanker, and S. Sriram, “Modeling customer lifetime value,”
Journal of service research, vol. 9, no. 2, pp. 139–155, 2006. [Online].
Available: http://dx.doi.org/10.1177/1094670506293810

[6] J. Ahn, J. Hwang, D. Kim, H. Choi, and S. Kang, “A survey on
churn analysis in various business domains,” IEEE Access, vol. 8, pp.
220 816–220 839, 2020. [Online]. Available: http://dx.doi.org/10.1109/
ACCESS.2020.3042657

[7] D. L. García, À. Nebot, and A. Vellido, “Intelligent data analysis
approaches to churn as a business problem: a survey,” Knowledge

and Information Systems, vol. 51, no. 3, pp. 719–774, 2017. [Online].
Available: http://dx.doi.org/10.1007/s10115-016-0995-z

[8] S. Ö. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular learn-
ing,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 8, 2021, pp. 6679–6687.

[9] L. Katzir, G. Elidan, and R. El-Yaniv, “Net-dnf: Effective deep modeling
of tabular data,” in International Conference on Learning Representa-

tions, 2020.
[10] S. Popov, S. Morozov, and A. Babenko, “Neural oblivious deci-

sion ensembles for deep learning on tabular data,” arXiv preprint

arXiv:1909.06312, 2019.
[11] X. Huang, A. Khetan, M. Cvitkovic, and Z. Karnin, “Tabtransformer:

Tabular data modeling using contextual embeddings,” arXiv preprint

arXiv:2012.06678, 2020.
[12] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”

in Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, ser. KDD ’16. New
York, NY, USA: ACM, 2016, pp. 785–794. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939785

420 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022


