Lo

Proceedings of the of the 17" Conference on Computer
Science and Intelligence Systems pp. 421-424

DOI: 10.15439/2022F299
ISSN 2300-5963 ACSIS, Vol. 30

Using gradient boosting trees to predict the costs of
forwarding contracts

Stawomir Pioronski
Faculty of Mathematics and Computer Science
Adam Mickiewicz University
Uniwersytetu Poznanskiego 4 Street
61-614 Poznan, Poland
Email: slawomir.pioronski@amu.edu.pl

Abstract—When selling goods abroad or bringing them into the
country from foreign partners, we face the problem of delivery.
The division of responsibilities related to this between the manu-
facturer and the recipient sometimes varies. In such a situation, it
is reasonable to use the services of a forwarding company. Then
a forwarding contract is concluded, which specifies the details of
the service, but the most important issue remains the selection
of its price. In this paper, we present results obtained using the
LightGBM method on the forwarding contracts pricing challenge
held as part of the FedCSIS 2022 conference.

Index Terms—data mining competition, LightGBM, forward-
ing contracts

I. INTRODUCTION

FORWARDING contract is a contract in which one of
its parties — the forwarder undertakes to perform various
services related to transportation in the course of his own
business, such as sending or receiving a shipment, and the
other party — to pay remuneration in return. A good forwarder
will not only efficiently organize transportation but will also
help reduce the cost of the transaction. However, to remain
price competitive and still make a profit, he must have an
good tool for predicting the cost of executing such a contract.
To predict forwarding contract costs based on tabular data
we can use various machine learning methods [1]. We decided
to use a gradient boosting algorithm, especially LightGBM,
because of its speed and accuracy.

The rest of this paper is structured as follows. We first
present the related work and then we give a short description of
FedCSIS 2022 challenge. In Section IV we describe the data
processing steps. Section V contains the description of the
model used in our experiment. Next section presents results.
Finally, in Section VII we summarize the findings and discuss
possible future work.

II. RELATED WORK

Gradient boosting is a machine learning technique, which
produces a prediction model in the form of an ensemble of
weak prediction models, mainly decision trees. It creates the
model like other boosting methods do, but it generalizes them
by allowing optimization of an arbitrary differentiable loss
function. Gradient boosting was first presented in 1997 [2],

IEEE Catalog Number: CFP2285N-ART ©2022, PTI

Tomasz Gérecki
Faculty of Mathematics and Computer Science
Adam Mickiewicz University
Uniwersytetu Poznanskiego 4 Street
61-614 Poznan, Poland
Email: tomasz.gorecki@amu.edu.pl

and has been refined over the last decade. There are many
different implementations:

e XGBoost — an algorithm written by Tiangi Chen [3].
Probably the best known and most used implementation.

o LightGBM - Microsoft’s algorithm [4].

¢ Catboost — an algorithm by the Russian company Yandex,
designed to deal with categorical data [5].

LightGBM has many of XGBoost’s advantages, including
sparse optimization, parallel training, multiple loss functions,
regularization, bagging, and early stopping. A main difference
between the two lies in the construction of trees. LightGBM
does not grow a tree level-wise — row by row. Instead it grows
trees leaf-wise. Besides, LightGBM does not use the sorted-
based decision tree learning algorithm as XGBoost. Instead, it
implements a highly optimized histogram-based decision tree
learning algorithm, which yields great advantages on both ef-
ficiency and memory consumption. The LightGBM algorithm
utilizes two novel techniques called Gradient-Based One-Side
Sampling and Exclusive Feature Bundling which allow the
algorithm to run significantly faster while maintaining a high
level of accuracy.

We can find many examples of LightGBM being used in
machine learning competitions [6].

III. FEDCSIS 2022 CHALLENGE
A. Data

The available training data set [7] contains a five-year
history of contracts accepted by a Polish company. It consists
of two main tables. The first one contains basic information
about the contracts (36 features), and the second one describes
the main sections of the planned routes associated with each
contract (60 features). In the train set, we have 330 055
contracts and in the test set, we have 72 452 contracts.
In addition, participants had an additional table (4 features)
containing historical wholesale fuel prices.

B. Task

The theme of the competition was to forecast the costs
associated with the execution of forwarding contracts, based
on data from contracts and planned routes. The goal of the

421

422

competition was to prepare and develop a model that forecasts
the costs of individual orders as accurately as possible.

C. Evaluation

The solutions were assessed by the root mean square error:

where y; is an observed value, ¢; is a predicted value and n
is the number of data records in the data set.

Initial scores were evaluated via the KnowledgePit online
platform [8] and published on a challenge leaderboard calcu-
lated on a small subset of the test set fixed for all participants.
The final score was published after the challenge using the
remainder of the test data set.

IV. DATA PROCESSING

Data from both main tables were used for training. Since
the data in the second table contains at least 2 rows for
each contract (one row for each route step), it needs to be
processed accordingly. In this case, the choice was made to
include information for step two of the planned route with each
contract. In addition, average monthly fuel prices are added for
each contract, calculated from an additional third table, based
on the month the route began. This resulted in a training data
size of 330 055 x 98. Descriptions of each column can be
found on the competition page [8].

A. Adding new features

Intuitively, an important factor affecting the price of the
contract is the route duration, so a new column was created:
hours_diff — the difference between route_end_datetime and
route_start_datetime expressed in hours. The natural loga-
rithms (with a lower bound equal to —1) of the following fea-
tures were then created: hours_diff, km_total, km_nonempty,
km_empty, train_km. Pearson correlation coefficients in-
creased significantly for the first three characteristics listed.
For example, for hours_diff it is 0.63, but for its logarithmic
version, we get 0.89.

The numerical columns train_intervals and ferry_intervals
were transformed into categorical variables with values of "0",
"1", and "2+", which correspond to their numerical values.

At this point, it is worth mentioning that we used the
Microsoft’s FLAML library [9] (version 1.0.1). It contains
many facilities, one of which is the automatic generation of
the following numeric features for each datetime feature: year,
month, day, minute, second, day of the week, day of the year,
and quarter.

B. Repairing route datetime data

Real-world data from companies typically contains human
errors. This case is no different. By checking in how many
cases route_start_datetime is later than route_end_datetime we
get 47 (0.01%) samples in the training set and as many as 405
(0.56%) in the test set. We see that for the training set, this is a

PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

very small number of examples that could easily be removed.
However, in the case of the test set, this could determine the
outcome of the competition.

Unfortunately, we don’t know what this data should look
like. Nevertheless, in reviewing this data, there are two types
of errors:

1) Dates are in the wrong order.

2) The month or day was entered incorrectly.

The route_start_datetime and route_end_datetime are based
on the estimated_time column from the second table, which
contains information about the planned time of arrival at a
given route step point, so it was the values from this column
that were corrected. This was done with a simple script and
then verified manually. Incorrect datetimes typically occurred
for the first 2 or 3 steps within a given contract and were
the same with date accuracy (no time information). For each
contract, initial datetimes equal in date were selected. For
simplicity, we will use a single date. In the first case the
difference between the selected date with the last date was
checked, if they were less than 14 days then selected datetimes
were moved to the last places. If a type 1 error was not
detected, the presence of a type 2 error was checked. Here
we compared the number of days for the selected date and the
next date after it (let’s call it a comparison date). Assuming we
have 1 after 31 and each month has 31 days, then if all we had
to do was increase the number of days of the selected date by
a maximum of 7 to get the number of days of the comparison
date, we set the month and year of the selected datetimes to the
largest possible so as not to exceed the comparison date. Any
other instances, e.g., incorrectly entered days, were corrected
manually through individual decisions.

C. Deleting some data

Often, some of the data we have is unnecessary and may
even degrade the performance of the model. By comparing
the values of the id_currency column, we can see that the
training set has 6 unique additional values than the test set.
Similarly, for the step_type feature from the second table, we
obtain one unique redundant value in the training set. The
temperature column, which reports the temperature level in a
refrigerated trailer, was removed due to the high percentage
of missing values (89% in both the training and test sets)
and the way the values in it were recorded. This is string-
type data with individual temperatures, temperature ranges, or
additional information about the cooling mode. We have 760
unique values in the training set, 194 in the test set, and 99
values common to both sets.

After removing such contracts from the training set, and
after removing the id_contract and temperature columns, we
obtain a data set of size 329 349 x 102. These operations
did not result in a large reduction of the data set, as the
number of rows decreased by only 0.21%, but we still got
rid of unnecessary data.

FLAML automatically discards features with constant val-
ues during training. In this case, we had 5 such features, all
from the second table: step, train, train_km, train_line, tail_fin.

SEAWOMIR PIORONSKI, TOMASZ GORECKI: USING GRADIENT BOOSTING TREES TO PREDICT THE COSTS OF FORWARDING CONTRACTS

1800

1400

1200

1000

hours_diff
=]
=]

200

o 1000 2000 3000 4000 5000 000 7000 BoDO
km_total

Fig. 1. Relationship between km_total and hours_diff (test set).

V. MODEL

A. Training strategy

LightGBM models, among other things, automatically per-
form feature selection and handle missing values. So what
remains is the selection of appropriate hyperparameters. The
FLAML library has solutions for this purpose. It offers two
methods to optimize hyperparameters: CFO [10] and Blend-
Search [11]. Both methods require a low-cost initial point from
which the search begins if such a point exists. In the case of the
former, the search gradually moves toward higher-cost regions
if needed. It is a local search. The latter method combines the
local with global search, i.e., it starts checking new starting
points before the local search reaches full convergence. We
used the “auto” mode to select the method, which should result
in the selection of the CFO.

B. Output scaling

Since the training set contained data from 2016-01 to 2020-
10 and the test set from 2020-09 to 2021-11, we decided to
scale the model output. Outputs for the 2020 test data were
multiplied by 0.998, while outputs for subsequent months of
2021 were multiplied by 1.001, 1.002, up to 1.011.

A measure like RMSE is sensitive to single, large errors.
Thus, model errors for outliers can significantly degrade the
final result, and the occurrence of outliers can be easily
observed in Fig. 1. Hence, the idea was born to additionally
scale values for samples that may be outliers. Thus, in the
next step, for the selected points suspected of being outliers,
the corresponding model results were multiplied by 1.01.

C. Outlier detection

Some of the most popular methods for finding outliers are
isolation forest [12] and local outlier factor [13]. An isolation
forest was chosen because of its shorter operating time.

In this case, it is necessary to pass only numeric type
features to the model. The datatime type features have been
removed and the corresponding year, quarter, month, and day
of week features have been added in their place. In addition,
the data set was expanded to include values for step one and
last step from the second table (in some cases step two =
last step). Next, columns with constant values and categorical
features with more than 5% of missing values were removed.
In other cases, they were imputed with the most frequent value.
2 of them were two-valued, so they were mapped to binary
values. The Target Encoder was then fitted on the training set,
i.e. the average target value for each class was taken.

The popular open-source machine learning library scikit-
learn [14] (version 1.0.2) was used to train the model (with
default hyperparameters). Mentioning this is important for the
interpretation of the results since in this implementation the
scores returned by the isolation forest can take negative values.

For points for which the isolation forest score was less than
-0.05, were from 2021, and hours_diff was greater than 50 the
final values were increased an additional 1%.

VI. EXPERIMENTAL RESULTS
A. Hyperparameter tuning

The final solution was created using an Intel Core i5-
8300H processor and 16 GB of RAM (DDR4, 2400 MHz)
on Microsoft Windows 10. It was found after 1617 seconds,
with the search time set at 1800 seconds. During this time, the
model scored 12 times better on the validation set (10% of the
training set). To evaluate the quality of the model, we used
the same measure as in the competition, the RMSE. After 33
seconds, we reached an RMSE of 0.1438, and the final model
obtained an RMSE of 0.1298. Increasing the search time to
2700-3600 seconds can achieve an RMSE of 0.1265, but such
models gave very poor results on the public competition test
set, for instance: RMSE = 0.1530.

B. Obtained model

The selected model consists of 5243 trees, with a maximum
number of 509 leaves in a single tree, the exact values
of all tuned hyperparameters [9] can be found in Table L
Unfortunately, due to the size of the trees, we cannot visualize
them in a meaningful way, but for practical reasons, the
importance of individual features during prediction is useful.
For this purpose, we will use total gain [3]. The features with
the highest values are shown in Fig. 2. Unsurprisingly, we see
that the distance traveled and the route time have a very large
impact on the final prediction result.

On the public part of the test set, the model achieved a
score of 0.1458. Here we can see that correcting the dates in
Section IV-B was the right thing to do, because without it we
achieved a score of 0.1469.

423

424

TABLE I
FINAL HYPERPARAMETERS (TO FIVE DECIMAL PLACES).

Hyperparameter Value
n_estimators 5243
num_leaves 509

min_child_samples 8

learning_rate 0.01079
log_max_bin 6

colsample_bytree 0.34362
reg_alpha 0.00198
reg_lambda 0.01343

anection |
km_total_tog |
hours_diff_log _
km_nonempty_log _
address _
id_payer -
last_unload_country -
ferry_duration .
km_haversine .
last_unioad_lon .

ferry_intervals .

0.0 05 1.0 25 30 35

15 20
Feature importance 1e6

Fig. 2. The 15 features with the highest value of total gain. The features in
the first table have been colored in blue, and those in the second in green.

C. Model output handling

The scaling idea was born out of the large discrepancy
between the results on random subsets of the training data
and the public portion of the test set. After using scaling of
the model output described in Section V-B to the model from
Section VI-B, our result improved. In this configuration, the
RMSE on the public part of the test set is 0.1438. As can
be seen, the intuition was correct, since linear dependencies
with a precision of one month should be easily learned by
the model, so they were not present in the training data. The
reason may have been inflation was not openly recorded in
the data.

Since such simple scaling does not exhaust the possibilities
for improving the score, we used the isolation forest to look
for values worth further improving. As a result, the RMSE
changed from 0.1438 to 0.1434.

VII. CONCLUSIONS

This paper presents a powerful regression model that can
deliver excellent predictions of the costs of forwarding con-
tracts. We chose the LightGBM, because of its simplicity and

PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

speed. The model achieved the performance of the RMSE
score of 0.1420 on a test set placing fourth (out of more
than 50 teams that added a total of nearly 2 000 correctly
formatted solutions) in the FedCSiS’2022 competition. Our
model lost by only 2.606% to the best solution and lost only
0.9155% to third place. At the same time, it was better than
the baseline model (baseline model placed fifth) by 3.873%.
Worth adding, that the model got better final results than the
results on the preliminary data set (0.1434). In addition, it is
worth emphasizing that all calculations were performed in less
than an hour on the average CPU.

The solution is pretty simple, so we have a lot of options
here in terms of future work. For example, the topic of scaling
model output is not exhausted. The idea of scaling outputs
for points suspected of being outliers came up on the last
day of the competition, so this was tested very briefly. So it
is worth checking the outputs for other points suspected of
being outliers and other multipliers. Taking it a step further, it
is possible to see if the multiplier can be calculated for each
point separately depending on some features.

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edition, ser.
Springer Series in Statistics. Springer, 2009. ISBN 9780387848570

[2] L. Breiman, “Arcing the edge,” 1997.

[3] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD *16. New York, NY,
USA: ACM, 2016. doi: 10.1145/2939672.2939785 pp. 785-794.

[4] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” in
Advances in Neural Information Processing Systems, vol. 30. Curran
Associates, Inc., 2017.

[5] A. V. Dorogush, V. Ershov, and A. Gulin, “Catboost: gradient boosting

with categorical features support,” ArXiv, vol. abs/1810.11363, 2018.

doi: 10.48550/ARXIV.1810.11363

S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “M5 accuracy

competition: Results, findings, and conclusions,” International Journal

of Forecasting, 2022. doi: 10.1016/j.ijforecast.2021.11.013

[71 A. Janusz, A. Jamiotkowski, and M. Okulewicz, “Predicting the costs

of forwarding contracts: Analysis of data mining competition results,”

in Proceedings of the 17th Conference on Computer Science and

Intelligence Systems, FedCSIS 2022, Sofia, Bulgaria, September 4-7,

2022. 1EEE, 2022.

“Fedcsis 2022 challenge: Predicting the costs of forwarding contracts,”

https://knowledgepit.ml/fedcsis-2022-challenge/, accessed: 2022-06-20.

C. Wang, Q. Wu, M. Weimer, and E. Zhu, “Flaml: A fast and lightweight

automl library,” in MLSys, 2021.

Q. Wu, C. Wang, and S. Huang, “Frugal optimization for cost-related

hyperparameters,” in AAAI'21, 2021.

C. Wang, Q. Wu, S. Huang, and A. Saied, “Economical hyperparameter

optimization with blended search strategy,” in ICLR’21, 2021.

F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008

Eighth IEEE International Conference on Data Mining, 2008. doi:

10.1109/ICDM.2008.17 pp. 413-422.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying

density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data, ser. SIGMOD ’00.

New York, NY, USA: Association for Computing Machinery, 2000. doi:

10.1145/342009.335388 pp. 93—104.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

0. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825-2830, 2011.

[6

=

[8

=

[9

—

[10]
[11]

[12]

[13]

[14]

