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Abstract—The increasing complexity and unpredictability of
many ICT scenarios will represent a major challenge for
future intelligent systems. The capability to dynamically and
autonomously adapt to evolving and novel situations, with a
partial or limited knowledge of the domain, both at the level of
individual components and at the collective level, will become
a crucial need for smart devices acting in many application
domains. In this paper, we envision future systems able to self-
develop mental models of themselves and of the environment
they act in. Key properties will include: learning models of
own capabilities; learning how to act purposefully towards the
achievement of specific goals; and learning how to act in the
presence of others, i.e., at the collective level. In our work, we
will introduce the vision of self-development in ICT systems, by
framing its key concepts and by illustrating suitable application
domains. Then, we overview the many research areas that are
contributing or can potentially contribute to the realisation of
the vision, and identify some key research challenges.

Index Terms—Self-development, sense of agency, learning, self-
adaptation, self-organization.

I. INTRODUCTION

HUMAN infants, since their early months, start experi-

encing with their own body, moving hands, touching

objects, and interacting with people around. Such activities

are part of an overall process of self-development (a.k.a.

autonomous mental development), which lets them gradually

develop cognitive and behavioural capabilities [1]. These skills

include the capability to recognize situations around, the

sense of self, the sense of agency (i.e., understanding the

effect of own actions in an environment), the capability to

act purposefully towards a goal, and some primitive social

capabilities (i.e., knowing how to act in the presence of others).

The possibility of building ICT systems capable – as hu-

mans – of self-developing their own mental and social models

and to act purposefully in an environment, is increasingly

recognized as a key challenge in many areas of artificial

intelligence (AI), such as robotics [2], intelligent IoT and

smart environments [3], [4], autonomous vehicles manage-

ment [5], [6].

Indeed, for small-scale and static scenarios, and for simple

goal-oriented tasks, it is possible “hardwire” a model of the en-

vironment within a system, alongside some pre-designed plans

of action. However, for larger and dynamic scenarios, and for

complex tasks, individual components of ICT systems should

be able to autonomously (i.e., without human supervision): (i)

build environmental models and continuously update them as

situations evolve; (ii) develop the capability of recognizing and

modelling the effect of their own actions on the context (which

variables of the environment can or cannot be directly affected

by which actuators, which variables and actuators relate to

each other); and (iii) learn to achieve goals on this basis and

depending on the current situation; (iv) learn how to organize

and coordinate actions among multiple distributed components

whenever necessary.

The main contribution of this paper is to frame the key con-

cepts of self-development in ICT systems and to identify chal-

lenges and promising research directions. More in particular:

Section II introduces a general conceptual framework for the

(continuous and adaptive) process of self-development, both

at the individual and at the collective level, and sketches key

application scenarios; Section III analyzes the most promis-

ing approaches in the area of machine learning, multiagent

systems, and collective adaptive systems that can contribute

with fundamental building blocks towards realizing the vision

of self-development, each per se challenging; Section IV

identifies additional horizontal challenges to be attacked, em-

phasizing the key role that the self-adaptive and self-organizing

research community could play. Finally, Section V concludes

by sketching our current and future research work in the area.

II. FRAMEWORK AND APPLICATIONS

The term “self-development” is used to indicate the pro-

cess carried out by infants during the early stages of their

life [1] but, more generally, it can be also associated to the

developmental nature of agents that live and interact with a

novel environment. The idea of our framework is depicted

in Figure 1. At the individual level, the first contacts an

agent has with a new environment are through embodiment

and perception: it typically tries to move and interact, in

order to test the effect of its own action, so as to acquire a

sense of agency. Only after these skills have been sufficiently

developed, the agent can start behaving in a goal-oriented

way, by choosing the sequence of actions that can bring to

the fulfilment of a goal.

Clearly, the individual level quickly turns into a collective

one, where the agent has to face other agents, which are not

under its control: thus, the agent learns to recognize self and

non-self, as well as to develop strategic thinking, by choosing

its own actions by taking into account the behaviour of the

other agents. As the complexity grows, the agent will need to
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Fig. 1: The conceptual framework of self-development.

understand whether it can communicate with others, and with

which protocols, as well as coordinate in order to jointly act

towards a common goal, possibly through the creation of an

institution.

The whole development, at both the individual and col-

lective level, can be seen as a never-ending, cyclic process,

where agents have to continuously adapt to new situations and

environments.

A. The Individual Level

At the individual level, an agent X immersed in an en-

vironment can observe (or sense) a set of variables V =

{v1, v2, . . . , vn}. Internal variables that describe the status

of the agent are included in this set as well. The agent

can interact with the environment through a set of “actions”

A = {a0, . . . , an−1, null}, including the null action.

Embodiment and Perception. Initially, the agent needs to

autonomously identify and recognize the components of sets

A and V: this means that it should get acknowledged of its

actuating and sensing skills. Even without resorting to complex

AI techniques, methods from the reflective and self-adaptive

programming systems can effectively apply in this phase [7] to

let the agent dynamically self-inspect its capabilities and start

analyzing the observed variables. Still in this phase, the agent

can also start acquiring some understanding of the relations

between the observed variables over time, as well as some

simple prediction capabilities.

Sense of Agency. After the first phases that are mostly

dealing with perception, the agent needs to understand what

are the effects of each aj ∈ A on V . This can happen

even by chance, with random actions, thus trying to apply

actions, without any goal in mind, just to see their effects [2].

Throughout this process, the agent will eventually recognize

that, given a current state vt and the application of an action ai,

the environment will reach (with some probability) a different

state vt+1. This mechanism enables the construction of the

basic sense of agency [1], and of the sense of causality.

Goal-orientedness. As the agent acquires more sophisticated

skills, it can start applying A with a specific goal in mind.

Given the current state vt and a desired future state vg (the

desired “state of the affairs”), the agents applies the acquired

sense of agency by applying the actions that can possibly lead

to vg . This also involves achieving the capability of planning

the required sequence of actions to achieve a specific goal.

Self and Non-Self. After an individual agent starts inter-

acting with the environment and testing the effects of its

own actions A, it recognizes that such actions have effect

on the environment. As an immediate consequence, it also

understands that there are effects that are not under its own

control. That is, there are “non-self” entities acting in the

environment, too. By learning how to apply A, the agent also

learns the limits of such actions because of non-self entities

affecting vt.

Strategic Thinking. Once the agent has built a world model

(how A affects vt) and has included the mental models of

others (non-self) [8], it can start designing strategies. That is,

it can recognise that there are goals that it can possibly (or

hopefully) attain only by accounting for the actions of others.

Once again, we remark that self-development is not to be

conceived as a “once-and-for-all” process. Rather, it is a life-

long process: environments can be dynamic, new variables

may become available and thus enable more detailed observa-

tions. Also, new actions may become feasible or, the other way

round, be no longer be available. This requires the agents to re-

tune their learnt sense of agency, and re-think how to achieve

goals in isolation and in the presence of non-self entities.

B. The Collective Level

As multiple agents enter the arena, each of them quickly

recognizes that there are goals that cannot be achieved in

isolation or by simply applying strategic thinking, but they

rather need a deep interaction among all the actors. Therefore,

as part of their individual self-development, also need to

develop some forms of “autonomous social engagement”.
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Communication. A first, necessary, step is to identify the

way in which agents can communicate and exchange mes-

sages. Agents should thus be provided with a specific set

of “communication actions”, which could take the form of

explicit communication acts (messages) or implicit actions

that aim at influencing the others, i.e., by leaving signs in the

environment (stigmergy) or by acting in a way that is easily

noticeable by others (behavioural implicit communication)[9].

In some cases, the agent has to learn how to receive and send

such messages, as a social form of action and perception.

Coordination. When evaluating the possible communication

actions, each agent understands the way in which such acts can

be exploited to control some environmental variables, and even

those that are not (fully) controllable by itself alone. Therefore,

such explorative behavior enables the learning of basic forms

of coordination, which can be thought of as a social form of

learning the sense of agency.

Institution. After exploring coordination protocols, the agents

can eventually “institutionalize” their way of interacting. That

is, they will learn those acceptable social patterns of coordi-

nation, and the set of social norms and social incentives, that

enables them to systematically achieve goals together [10].

As in the single-agent setting, a dynamic environment or

an evolving agent population may require the above collective

process to assume a continuous cyclic nature. We hereby

remark that the communication, coordination, and institution

stages are not necessary to promote complex goal-oriented col-

lective actions [11]. Yet, whenever communication protocols

exist, the self-development process will naturally and gradually

learn how to exploit them.

C. Application Scenarios

There are diverse application scenarios that can potentially

take advantage of systems capable of self-development.

Robotics is the area which first identified the profitability of

building robots capable of self-development [12]. In particular,

it is necessary when the robot gets damaged while in operation,

and has to develop a novel understand of what it can do

according to its residual operational capabilities. At the col-

lective level, the autonomous evolution of communication and

coordination capabilities can be of fundamental importance to

acquire the capability of the collective to act in unknown and

dynamically changing scenarios [13].

Smart factories, as collective robotic systems, can be seen

as an aggregated group of components that act together in

order to achieve a production goal. Beside their basic scheme

of functioning, defined at design time, if one component of

the manufacturing system breaks or has some unexpected

behaviour, the manufacturing system should ideally adapt to

the new situation, and self-develop capabilities of acting so as

to overcome the problem without undermining production [14]

The need for adaptability and flexibility is indeed explicitly

recognized as a key challenge in Industry 4.0 initiatives [15].

Smart homes can facilitate our interactions with the envi-

ronment and increase our safety and comfort. We envision

that once a new home is built, its smart devices could start

exploring their own individual and collective capabilities, so as

to eventually learn how they can affect the home environment,

and apply such capabilities once users will start populating

it. This will also require to continuously adapt to habits and

preferences of users, accommodate new devices and services,

tolerate partial failures. Our preliminary experience suggests

the feasibility of the vision [3].

Smart cities as well can potentially take advantage of self-

development approaches [16]. However, unlike in a smart

home, a smart city is not a system free to explore the effect of

its actions and interactions, and eventually become capable to

act in a goal-oriented way. Thus, for this scenario (but most

likely also for smart factories), simulation-based approaches

should probably be exploited: system components will be

made self-developing in a simulated environment, before being

eventually deployed in the real world [6].

III. RESEARCH APPROACHES

The idea of self-development, at both the individual and

collective level, has been widely investigated in areas such as

cognitive psychology, neuroscience, philosophy, and ethics [2].

We hereby focus on the computational perspective, and in

particular on the most recent approaches that can contribute

to realise the self-development vision (Figure 2). Although

most of these approaches can play a fundamental role and are

already providing precious insights on the problems, they still

have to attack several challenges to become practical tools for

future self-developing systems.

We do not focus here on the basic levels of individual self-

development, i.e., perception and embodiment, in that tools

already exist to give agents sophisticated sensing abilities (e.g.,

convolutional neural networks to recognize objects, scenes,

and activities [17]) and the capability of controlling their own

actuators purposefully.

A. Goal-oriented Learning

The broad area of reinforcement learning shares with our

vision the objective of training machines to act in a goal-

oriented way in a specific context. However, despite the

amazing recent results in the area, in particular with deep Q-

learning [18], most current approaches do not aim at building

systems with a sense of agency and capable of developing an

interpretable world model, but rather at achieving goals based

on explicit, domain-based rewards, that are named extrinsic.

This makes most approaches highly ineffective in scaling up

to learning tasks in complex contexts, or across domains, or

despite the ever-changing dynamics of the environment.

Curriculum-based approaches to machine learning go some-

what in the direction of gradually developing the capability

to act in complex scenarios [19]. The agent is first trained

on simple tasks, and the gained knowledge is accumulated

and exploited in increasingly complex scenarios, where further

skills can thus be effectively learnt. Yet again, most of these

approaches do not focus on the development of a world model

and of an explicit sense of agency.
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Fig. 2: Key techniques for self-development.

Reinforcement learning approaches based on intrinsic re-

wards [20], instead, more closely exploit the idea of exploring

the world to develop a sense of agency. In fact, while extrinsic

rewards are typically designed by a “teacher” (e.g., the score

in a videogame) intrinsic rewards are developed by the agent

itself to satisfy its curiosity (i.e., when it discovers how to

achieve specific tasks). For example, in [21] intrinsic rewards

are computed as the error in forecasting the consequence of

the action performed by the agent given its current state.

Recent approaches based on the theory of affordances [22]

propose to have agents gradually learn the effects of their

actions. By having them act in constrained environments where

only a limited set of actions apply, they eventually develop an

explicit sense of agency, i.e., a model of how their actions

affect the environment.

In any case, all these approaches face the key challenge of

building general conceptual and practical tools to: (i) learn

to effectively act in an environment by exploiting the power

of model-free sub-symbolic (deep learning) approaches; and,

at the same time, (ii) learn incremental and reusable causal

models of the world. The latter being increasingly recognized

as a key ingredient for intelligence and self-development.

B. Learning causality

Understanding and leveraging causality is recognized as a

key general challenge for AI in the coming years [23]. Judea

Pearl [24] has proposed the idea of a “causal hierarchy” (also

named “ladder of causation”) to define different levels of

causality recognition and exploitation by an intelligent agent.

The first level consists in simply detecting causal relations as

associations, whereas the second one assumes the possibility

to intervene in the environment and observe the effects of the

taken actions. Finally, the third level enables reasoning and

planning on the basis of counterfactual analysis. Such layers

correspond to some of the phases of the self-development

loop we defined: the first one is mostly involved in the

perception phase, whereas the second one is associated to

the development of a sense of agency and to recognition of

self and non-self. The final layer clearly enables goal-oriented

behaviour, strategic thinking, and collective coordination.

Bayesian and causal networks are among the models that

are most widely exploited in order to build interpretable

causal models of the world [24]. A recent contribution that

is in line with the ideas we envision for self-development

is the application of curriculum learning to the problem of

learning the structure of Bayesian networks [25]. On a pure

sub-symbolic level, on the other hand, another recent work

proposes to learn causal models in an online setting [26], with

the aim to find (and strengthen) causal links between input and

output variables.

We argue that key challenges in this area concern, again,

understanding how to synergetically exploit symbolic and sub-

symbolic approaches to learn, represent, and evolve causal

models in self-development scenarios, and how to use them

to adaptively achieve goals.

C. Autocurricula

When multiple agents act in a shared environment, their ac-

tions and their effectiveness in achieving goals are affected by

what others do. Game-theoretic approaches to strategic think-

ing have deeply investigated this problem and the decision-

making processes behind [27]. In this context, it has also been

shown that agents can effectively learn in autonomy to improve

their performance in dealing with others [28].

However, when moving from theoretical settings (e.g., the

prisoner’s dilemma) to complex and realistic scenarios where

agents have complex goals (e.g., hide-and-seek in a building),

peculiar phenomena arise. The more one agent learns, the more

it challenges others, triggering a continuous increase in com-

plexity of behaviour, ultimately enabling to incrementally learn
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more sophisticated means to act. This somewhat resembles the

increase of complexity that agents face in curricula approaches

to reinforcement learning. The key difference being that, in

the presence of multiple agents, the increase in complexity

and capabilities of agents is promoted and self-sustained by

the system itself, hence the term autocurricula [11].

Recently, autocurricula-based approaches have produced

stunning results in multiagent environments, both cooperative

and competitive (e.g., in the hide and seek scenario [29]).

And we consider such approaches fundamental towards the

self-development of complex agent societies. However, a deep

understanding of the process that drives evolution of indi-

vidual and collective behaviours is still missing, and is a

key challenge for the next few year. To this end, providing

agents an explicit modelling (possibly in causal terms) of the

others’ behaviour and of the overall societal behaviour, may be

necessary [8]. Also, autocurricula approaches do not currently

account for the possibility of interact with other agents, which

may indeed fundamental to improve collective learning.

D. Learning to communicate and coordinate

As already mentioned, agents may communicate and co-

ordinate: by explicit messages , by leaving traces in the

environment, , or implicitly [9].

These forms of communication are already exploited in

multiagent learning, mostly to improve the individual learning

process by letting agents share information (e.g., for merging

their individual causal models of the world [30]) ) and

coordinate actions. However, these communication approaches

are usually assumed as an innate capability of agents, rather

than one to be learnt. That is, agents have an a-priori sense of

agency with respect to communication actions, whereas in our

self-development vision it should be developed by learning.

For example, with reference to explicit communication

acts, [31] proposes a voting game to let agents learn to

share a communication language and to develop a strategy to

communicate. In [32], it is shown that reinforcement learning

can be effectively applied to let agents learn how to com-

municate in order to achieve a specific effect. In the case of

implicit communication, instead, forms of implicit behavioural

communications have been shown to emerge in simple system

components that purposefully move in an environment [33],

as they learn to affect others with ad-hoc actions. Learning

to use stigmergy to effectively coordinate is under-explored in

the literature, which instead focuses on the opposite – using

stigmergy to boost learning.

In any case, the development of general approaches to let

agents developed fully-fledged forms of communication and

coordination is still an open challenge, which may call for

agents to develop not only a model of the world, but an overall

model of the society (i.e., a social sense of agency). as a sort

of social sense of agency.

E. Emergence of Institutions

Whereas learning to communicate is about understanding

how to use communication to coordinate actions with others,

enabling and sustaining global collective achievement of goals

requires “institutionalized” means of acting at the collective

level, i.e., a set of shared beliefs and of shared social con-

ventions and norms aimed at ruling collective actions [34].

The mechanisms leading to the spontaneous emergence of

institutions in human society, there included the mechanisms

to promote and sustain altruistic and cooperative behaviour

(e.g., reputation and shared rewards), have been widely inves-

tigated [35]. However, most approaches to building multiagent

systems assume such mechanisms as explicitly designed [34].

Yet, some promising studies related to the emergence of

institutionalised behaviour in multiagent systems have been

undertaken (see [10] for a recent survey). For instance, [36]

proposes a collective learning framework where agents learn to

adopt norms in repeated coordination, i.e., agents eventually

learn that a social norm has emerged, and “institutionalize”

their behaviour in their (social) decision making processes

by complying to the norm. Another interesting work [37]

integrates rational thought, reinforcement learning, and social

interactions to model norms emergence in a society: agents

incrementally develop a social behaviour (a social norm) while

internalising it within their cognitive model.

However, the development of general models and tools to

support the proper learning and evolution of institutionalised

mechanisms of coordination in ICT and multiagent systems is

still missing, and so are the solutions to the many problems

involved in this process. For instance: how to avoid that an

agent learns that free-riding is better than abiding norms; or

how to avoid inconsistencies and misunderstandings in their

interpretation.

IV. HORIZONTAL CHALLENGES

The presented approaches and techniques are still at the

research stage, and many research challenges have been iden-

tified for each of them. In addition, it is possible to identify

several additional “horizontal” challenges, i.e., of a general

nature independently of the specific approach.

The specific nature of such challenges, in our opinion,

makes them specifically suited for being pursued by the self-

adaptive and self-organising research community, i.e., the

ACSOS community at large.

Engineering. Many of the presented approaches are

grounded in machine learning, a discipline with plenty of years

of research behind, but in which good engineering practice is

often neglected, and traditional software engineering problems

are sometimes considered mundane. Systems are often devel-

oped ad-hoc for a specific task or problem domain, with little

attention to modularity, reusability, dependability, thus missing

the flexibility to adopt them across different domains, tasks,

datasets [38]. In addition, given that the diverse approaches

presented can each contribute important pieces to the overall

vision of self-development, sound engineering approaches are

needed to try to integrate such a heterogeneous plethora into a

coherent whole. These represent multi-faceted and horizontal

research challenges that, in our opinion, could and should

be profitably attacked by the self-adaptive and self-organising
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research community, due to its inherent software engineering

endeavour.

Controlling evolution. Self-development raises the issue of

somewhat controlling how behaviours evolve, as individual

learns new skills and tasks, and as the collective learns new

way of coordinating and acting together. How can we steer

a learning process towards desired outcomes without putting

bias in it? How can we constrain the boundaries within

which individual and collective behaviours should stay (e.g.,

in terms of safety)? What interventions can we make to re-

direct an agent or a collective that has taken an unpredictable

or unsafe self-development path? Experience in self-adaptive

components based on feedback, as well as in the study of

emergent behaviours in self-organising systems and definitely

help in finding proper technical answers, and – why not –

ethical ones [39].

Humans in the Loop. The more self-development technolo-

gies will advance, the more humans will have to actively

interact with them. This interaction will raise technical issues

(will we have “handles” to control or block such systems in

some ways and to some extent?) and ethical problems (will

we be rather “handled” by these systems and subjects to their

decisions?). Some of these problems already emerged, like

in the moral machine experiment [40] or in AI-based hiring

technology. Technical challenges will be meat for the HCI

and distributed systems communities (there included the self-

organising systems one). Ethical and moral ones will be meat

for politicians and lawyers, although deep joint work with

technical experts will always be necessary. A key ingredient

involves institutions, since they represent humans as a group:

laws and regulations need to be developed to regulate the

global actors into the day-by-day technology usage. Never-

theless, a deeper interaction between researchers in science

and technology and public institutions is needed to support

the regulation design phase.

Sustainability. Algorithms for self-development will most

likely require extensive computational resources. For example,

the mentioned “hide and seek’ experiment by OpenAI involved

a distributed infrastructure of 128,000 pre-emptible CPU cores

and 256 GPUs on GCP [29]: the default model optimised over

1.6 million parameters taking 34 hours to reach the fourth

stage over six of agents skills progression. This example is

a sort of best-in-class projects; anyway, it is clear that if

self-developing systems will be based on similar learning ap-

proaches, they will require massive amounts of computational

resources. Therefore, a key challenge for the community will

be to devise algorithmic and system-level means to make self-

development systems sustainable, and affordable by others

other then the big technology players.

Explainability. Being able to inspect and explain the de-

cision making process of AI systems is already a hot topic,

so much that an entire research field (XAI, from eXplainable

AI) has born. We already commented several times how such

problems should be compulsory accounted for also for self-

development, possibly with the help of causal models. This

is indeed a key challenge for self-adaptive and, especially,

for self-organising research, too, where explaining global

behaviours, patterns, and configurations emerging from local

interactions is mostly still considered the “holy grail”.

V. CONCLUSIONS, CURRENT AND FUTURE WORK

In this paper, we have elaborated upon the vision of self-

development, at both the individual and collective level. Al-

though the road towards fully-realizing the vision is still a long

one, several ideas in the areas of learning, causality, multiagent

systems, are already showing its potential feasibility.

From our side, we are currently experimenting with

Bayesian networks and causal models to learn dependencies

between variables that represent sensors and actuators within

a smart environment. In a simplified smart home setting,

we showed how an agent is able to learn the effect of

one of its own actions, thus acquiring the sense of agency,

the necessary precondition towards goal-orientedness [3]. The

training set consists of a collection of observations where

the agent performs random actions and observes their effect

on the rest of the environment. Once the learning phase is

completed, the agent is eventually able to understand what

to do to reach the desired state of affairs. At the collective

level, our preliminary experiments show how different agents

are able to learn to cooperate to achieve a goal they could not

achieve individually. We assumed that the agents can share

their observations, thus providing training examples to a single

data set that can be used to learn a single, general model. By

learning from the joint set of observations and actions, the

two agents learn that they need to cooperate and to coordinate

their actions.

As a continuation of this strand of research, we are now

moving to a distributed learning setting, where agents do not

fully share their observations to agree on a single global

(causal) model of their shared environment. Rather, they

cooperate to refine their own local causal models whenever

they recognize partial, missing, or wrong information, by or-

ganising a coordinated distributed intervention protocol meant

to obtain the additional information needed to disambiguate,

refine, complete, or correct their own local models.

As part of our future work we plan to investigate how

digital twins could enable the learning paradigms described so

far. In particular, in many application domains such as smart

factories, one could envisage a hierarchical architecture where

digital twins collect and integrate data coming from hetero-

geneous physical devices, building more and more abstract

models and representations.
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