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Abstract—Fuzzy rough sets are the fruit of an intense and long-
lasting collaboration effort between fuzzy set theory and rough
set theory. Seminal research on the hybridization originated
in the late 1980’s, and has inspired generations of researchers
from around the globe to address both theoretical and practical
challenges. In this paper, we gauge the state-of-the-art in this
domain and identify opportunities for further development. In
particular, we highlight the potential of fuzzy quantifiers in
creating new robust fuzzy rough models, we advocate closer
integration with granular computing as a stepping stone for
designing rule induction algorithms, and we contemplate the role
of fuzzy rough sets vis-à-vis explainable artificial intelligence.

I. INTRODUCTION

F
UZZY ROUGH SETS emerge as a combination of fuzzy

sets (Zadeh [62], 1965) and rough sets (Pawlak [43],

1982): while the former model vague information by recog-

nizing that membership to certain concepts, or logical truth of

certain propositions, is a matter of degree, the latter handle

potentially inconsistent information by providing a lower and

upper approximation of a concept, using the equivalence

classes of an indiscernibility relation as building blocks. Both

frameworks can be integrated from at least three different

perspectives:

1) Concepts may be fuzzy rather than exact, allowing

that objects belong to it to varying degrees. For exam-

ple, in a data set containing information about hotels,

one may be interested to characterize the concept of

hotels considered as “expensive”, an inherently vague

predicate. Then, each hotel’s membership to the fuzzy

concept “expensive hotel” will be expressed using a

value between 0 (not belonging to the concept at all,

i.e., not expensive) and 1 (fully meeting the concept’s

membership conditions, i.e., definitely expensive).

2) The indiscernibility relation, expressing that objects may

or may not be distinguished from each other, may be

gradual rather than strict; this reflects the intuitive idea

that some objects are more similar to each other than

others, and therefore they should be related to a higher

degree (again a value between 0 and 1).
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3) The condition for belonging to the lower and upper

approximation may be expressed using fuzzy quantifiers.

For example, classically an object is a member of

the lower approximation of a concept if all objects

indiscernible from it also belong to the concept. Here,

instead of the traditional universal quantifier ("), one

may use a fuzzy quantifier like “most”. The purpose of

such a relaxation is to introduce a measure of tolerance

towards inconsistency into the approximations, making

them more robust.

The first two principles were already present early on in

the work of Fariñas del Cerro and Prade [17], and Dubois

and Prade [16], while the third one was first explored in

2007 by the theory of vaguely quantified rough sets [5]

and recently revived by the introduction of Choquet-based

fuzzy rough sets [49]. In this paper, we want to highlight

the potential of fuzzy quantifiers in designing robust and

interpretable fuzzy rough set models, which are in particular

relevant for applications in data analysis [52]. The latter are

becoming more and more widespread, and include, amongst

others, feature selection [8], [13], [39], instance selection [29],

[50], [51], instance-based classification [25], [30], [32], [33],

cognitive networks [37], imbalanced classification [47], [54],

multi-instance classification [53] and multi-label classification

[35], [55].

Given that many of the aforementioned applications are

instance-based or greedy approaches, whereas most successful

applications of the rough set paradigm are rule based systems

(see e.g. [23], [24]), it may be argued that the full potential

of the hybrid theory has not yet been tapped (some notable

exceptions are [22], [65], [66]), taking into account also the

vast body of existing research on fuzzy rule based systems

[2], [18], [26]. An important key to this logical next step lies

in the field of granular computing [4], [59], an information

processing paradigm centered on the segmentation of complex

information into smaller pieces called information granules.

Both rough sets and fuzzy sets relate to granular computing;

it is well-known that the lower and upper approximation can

be represented as unions of simple sets or granules induced

from data [60], while Zadeh [64] identified fuzziness as a

key part of the granulation in human cognition, and with
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the help of fuzzy granules, a fuzzy rule based system may

be set up. An important advantage of fuzzy rules, and of

fuzzy logic in general, is that they allow for explanations

using linguistic expressions. This property can be utilized for

the development of interpretable machine learning algorithms,

a research direction which is currently attracting a lot of

researchers’ attention [36].

The remainder of this paper is structured as follows: in

Section II, we recall important preliminaries from both rough

set and fuzzy set theory, while in Section III, we outline

the main steps and results of the hybridization process. In

Section IV, we pay attention to robust fuzzy rough set models,

which play an important role for practical applications of the

theory. Finally, in Section V, we offer an informal discussion

of ongoing challenges and new opportunities for the hybrid

theory.

II. PRELIMINARIES: FUZZY SETS AND ROUGH SETS

A. Rough sets

We first recall Pawlak’s definition [43] of rough sets, which

is also called the Indiscernibility-based Rough Set Approach

(IRSA).

Definition 2.1: Let U be a set of objects and E an equiva-

lence relation expressing indiscernibility, i.e., E is

" reflexive: (u, u) * E,

" symmetric: if (u, v) * E then (v, u) * E,

" transitive: if (u, v) * E and (v, w) * E, then also

(u,w) * E.

For any A ¦ U , the lower and upper approximation of A are

defined as:

apr
E
(A) = {u * U : [u]E ¦ A} (1)

aprE(A) = {u * U : [u]E + A �= '} (2)

The couple (apr
E
(A), aprE(A)) is called the rough set of A.

The equations (1) and (2) can be expressed equivalently using

logical operators: for u * U ,

u * apr
E
(A) õ ("v * U)((v, u) * E ó v * A) (3)

u * aprE(A) õ (#v * U)((v, u) * E ' v * A) (4)

It is also easily verified that apr
E
(A) ¦ A ¦ aprE(A),

which justifies the terms “lower and upper approximation”.

Moreover, the rough set approximations satisfy various other

properties, for example set monotonicity:

A ¦ A2 ó apr
E
(A) ¦ apr

E
(A2) ' aprE(A) ¦ aprE(A

2) (5)

which expresses that if a concept becomes larger, its approx-

imations naturally should not decrease. On the other hand,

relation monotonicity:

E ¦ E2 ó apr
E
(A) § apr

E2
(A) ' aprE(A) ¦ aprE2(A) (6)

states that when equivalence classes become larger (more

objects are indiscernible from each other), the lower approx-

imation gets smaller, while more objects populate the upper

approximation.

In case apr
E
(A) = aprE(A), we call A an exact set. An

equivalent way of expressing that A is exact is

A =
�

u*A

[u]E (7)

In other words, A can be seen as a union of basic building

blocks or granules, which correspond to equivalence classes

of E. We call (7) the granular representation of A, and A

is also called a granularly representable set. The following

proposition highlights the special role of the lower and upper

approximation as specific exact sets.

Proposition 2.2: For A ¦ U , the greatest granularly repre-

sentable set that is included in A is equal to apr
E
(A), while the

smallest granularly representable set that includes A is equal

to aprE(A).
On the other hand, the granular representation is also closely

connected with the notion of consistency.

Proposition 2.3: Set A ¦ U is granularly representable if

and only if it satisfies the consistency property, i.e., iff

("u, v * U)((v, u) * E ' u * A ó v * A) (8)

Consistency expresses that if two objects are indiscernible

and one of them belongs to a given concept A, the second

object should necessarily also be part of the concept. This

property is desirable in classification problems, where the goal

is to establish meaningful patterns that allow to decide the

membership of unseen objects to given decision classes. In this

context, objects are also called instances and are characterized

by their values for a number of attributes from a set A. The

domain of every attribute a * A consists of a finite number of

nominal values, and every instance u * U takes one of those

values denoted with a(u). Then, the equivalence relation E is

constructed as

(u, v) * E õ ("a * A)(a(u) = a(v)) (9)

The granular representation of rough sets is in particu-

lar very useful from the perspective of rule induction. The

problem of rule induction for classification tasks amounts

to generating a set of rules which relate descriptions of

objects by subsets of attributes with particular decision classes.

Basic granules, from which rough sets are composed, can be

interpreted as human readable “if..., then...” rules, and can be

used to construct a rule based inference system as a prediction

model. Well-known examples of rule induction algorithms are

LEM2 [23] and MODLEM [24].

Pawlak’s theory has been generalized in various different

ways. For example, dropping the symmetry requirement from

E leads to the Preorder-based Rough Set Approach (PRSA,

[40]), which contains as a special case the Dominance-based

Rough Set Approach (DRSA, [21]). In the latter, the domain of

attributes now contains ordinal values, and the indiscernibility

relation is replaced by a dominance relation. For clarity and

brevity of the exposition, in the remainder of this paper we will

focus on the indiscernibility-based approach, although many

of the presented results remain valid for more general settings.
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B. Fuzzy sets

Given a universal set U , Zadeh defined a fuzzy set A in

U simply as a mapping from U to the unit interval [0, 1],
where A(u) is called the membership degree of object u to

A. It expresses to what extent u satisfies the vague property

expressed by the fuzzy set A. For example, if U is a set of

hotels from a given area, we may evaluate their expensiveness,

based on their quoted nightly rate for a double room, as a fuzzy

set A in U . Clearly, the assignment of membership degrees is

both subjective and context-dependent, as it would depend for

example on the budget of the person making the booking, and

the area where the search is performed. However, an intuitive

constraint in this case would be that the higher the quoted rate,

the larger the membership degree should be. In this example,

as in most practical applications of fuzzy set theory, there is an

underlying numerical scale (a subset of the real numbers) on

which the evaluation is made, and the ordering on that scale

constrains the assignment of membership degrees.

In a similar vein, a binary fuzzy relation R in U is defined

as a fuzzy set in U2, i.e., for any two objects u and v

in U , R(u, v) expresses the degree to which they relate.

Fuzzy relations may be used for example to generalize the

equivalence relation E from Section II-A, to establish to what

extent two objects are similar (as opposed to a black-or-white

assessment whether they are indiscernible or not). Such a fuzzy

relation R should be at least reflexive and symmetric, i.e,

R(u, u) = 1 (10)

R(u, v) = R(v, u) (11)

should hold for any u and v in U . In order to accommodate

for the transitivity property, we first need an extension of the

classical conjunction operator '.

Definition 2.4: A triangular norm, or shortly t-norm, is a

mapping T : [0, 1]2 ³ [0, 1] that is commutative, associative,

increasing in both arguments, and that satisfies the boundary

condition T (1, x) = x for all x * [0, 1].

Well-known representatives of the class of t-norms include

the minimum, the product, and the Łukasiewicz t-norm defined

by TŁ(x, y) = max(0, x+y21) for x, y in [0, 1]. The choice

for a particular t-norm depends on the particular properties

that one is interested in; for a comprehensive overview, we

refer to [31].

Using a t-norm, we may now impose a kind of transitivity

on fuzzy relations, and therefore extend the notion of an

equivalence relation.

Definition 2.5: Let T be a t-norm. A fuzzy relation R in U

that is reflexive, symmetric and satisfies

T (R(u, v), R(v, w)) f R(u,w) (12)

for any u, v, w in U is called a fuzzy T -equivalence relation.

Apart from logical conjunction, we will also require an exten-

sion of the boolean implication operator ó.

Definition 2.6: An implicator is a mapping I : [0, 1]2 ³
[0, 1] that is decreasing in its first argument and increasing

in its second one, and that satisfies the boundary conditions

I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.

There exist numerous ways to construct implicators. Again,

a detailed overview is out of the scope of this paper, and

may be found in e.g. [3]. A popular approach is to associate

implicators to t-norms by means of residuation, leading to

the following definition of residuated implicators, or shortly

R-implicators.

Definition 2.7: The R-implicator IT associated to a t-norm

T is defined by, for x, y in [0, 1]:

IT (x, y) = sup{z * [0, 1] | T (x, z) f y} (13)

As an example, the R-implicator associated to the Łukasiewicz

t-norm can be obtained as ITŁ
(x, y) = min(1, 12 x+ y).

Finally, we recall that subsethood for fuzzy sets is defined

as follows [62]: for fuzzy sets A and B in U ,

A ¦ B õ ("u * U)(A(u) f B(u)) (14)

III. HYBRIDIZATION: GENERAL FUZZY ROUGH SET MODEL

The equations (3) and (4) for determining membership to the

classical lower and upper approximations can be “fuzzified”

by making use of fuzzy logical connectives. This leads to the

following definition [48], [6], [11].

Definition 3.1: Let A be a fuzzy set in U , R a fuzzy relation

in U , I an implicator and T a t-norm. The lower and upper

approximation of A are defined as, for u * U ,

apr
R
(A)(u) = inf

v*U
I(R(v, u), A(u)) (15)

aprR(A)(u) = sup
v*U

T (R(v, u), A(u)) (16)

The couple (apr
R
(A), aprR(A)) is called the fuzzy rough set

of A. If apr
R
(A) = A = aprR(A), A is called an exact fuzzy

set.

Take note how these definitions extend their classical counter-

parts:

1) Object u belongs to the lower approximation of A to

the extent that for all objects v, if v is related to u by

R, then v should belong to A.

2) Object u belongs to the upper approximation of A to

the extent that there exists an object v, such that if v is

related to u by R, and v belongs to A.

In other words, the inf and sup operators naturally represent

the " and # quantifier from Eq. (3) and (4), respectively, while

the implicator I and t-norm T fulfil the role of the logical

implication ó and conjunction '. When A is a classical, non-

fuzzy set and R is a crisp equivalence relation, we again obtain

Pawlak’s model. Depending on the specific choice of fuzzy

connectives I and T , and the fuzzy relation R, some properties

of this original model may or may not be preserved (see [12]

for more details).

An important question is whether exact fuzzy sets possess a

granular representation analogous to Eq. (7), as it would allow

the above approximations to be used for generating fuzzy rules

in a similar way as is done with crisp granules. Degang et al.

[14] were the first to address this issue by formalizing the
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notions of a fuzzy granule and granular representability of

fuzzy sets.

Definition 3.2: Let R be a fuzzy T -equivalence relation in

U for a given t-norm T and λ * [0, 1]. The fuzzy granule

corresponding to R, λ and T is the fuzzy set Rλ in U , defined

by

Rλ(u) = {(v, T (R(v, u), λ)); v * U} (17)

We call a fuzzy set A in U granularly representable if

A =
�

{RA(u)(u);u * U} (18)

In other words, A is granularly representable if it is the union

of fuzzy granules Rλ(u), where λ = A(u) for each object u.

The following proposition reveals that for particular choices

of I and T , exact fuzzy sets indeed correspond to granularly

representable ones, and vice versa.

Proposition 3.3: Let A be a fuzzy set in U , T a left-

continuous t-norm and I its R-implicator. Then A is exact

if and only if it is granularly representable.

Along the same lines, we can also generalize Proposition 2.2

and 2.3.

Proposition 3.4: For a fuzzy set A in U and a fuzzy

T -equivalence relation, the greatest granularly representable

fuzzy set that is included in A is equal to apr
R
(A), while the

smallest granularly representable set that includes A is equal

to aprR(A).
Proposition 3.5: Let R be a fuzzy T -equivalence relation.

Fuzzy set A in U is granularly representable if and only if it

satisfies the fuzzy consistency property, i.e., iff

("u, v * U)(T (R(v, u), A(u)) f A(v))

Note how fuzzy consistency provides us with a softened

version of Eq. (8): the more similar u and v are, and the

higher u’s membership to A, the more v should also belong

to A.

IV. ROBUST FUZZY ROUGH SETS

The model of fuzzy rough sets described in the previous sec-

tion offers considerable strength and flexibility, and lends itself

very well for handling datasets with real-valued attributes,

where fuzzy T -equivalence relations can be constructed by

taking into account the distance between individual instances’

attribute values. However, it may still be too rigid when

applied in practical problems of data analysis, due to the

occurrence of outliers. By the latter, we mean instances that

do not follow the general data distribution, and which may

negatively impact the quality of the fuzzy-rough approxima-

tions. In extreme cases, the lower approximation of a concept

may be empty, while its upper approximation may contain all

instances fully.

The root of the problem lies in the use of the inf and sup
operators which, as we explained, correspond to the " and #
quantifier, respectively. Because of this, an instance u will be

fully excluded from apr
R
(A) as soon as there exists another

instance v such that R(v, u) = 1 and A(v) = 0, while on the

other hand u will fully belong to aprR(A) when an object

v can be found such that R(v, u) = 1 and A(v) = 1. This

will occur independently of the choice of the implicator I

and the t-norm T . While this effect may be mitigated by a

thoughtful choice of the fuzzy relation R, it cannot be ruled

out altogether as (partial) inconsistencies are commonplace in

real applications.

In classical rough set theory, researchers also faced this

problem, leading to probabilistic approaches like Ziarko’s

Variable Precision Rough Set (VPRS) model [67]. The latter

relaxes Eq. (3) and (4) into

u * aprp
E
(A) õ

|[u]E + A|

|[u]E |
g p (19)

u * apr
q
E(A) õ

|[u]E + A|

|[u]E |
> q (20)

where 1 g p > q g 0 are parameters of the model. In other

words, an object belongs to the VPRS lower approximation if

at least a fraction p of its equivalence class belongs to A, while

it belongs to the upper approximation if more than a fraction q

of [u]E is inside A. The model assumes that U is finite (which

is not a problem considering that its application is in data

analysis), and that p > q, to ensure that aprp
E
(A) ¦ aprq

E
(A).

When p = 1 and q = 0, we recover Pawlak’s original

equations (3) and (4). In general, probabilistic rough set

approaches have been exploited successfully for classification

purposes, most notably within Yao’s framework of three-way

decisions [61].

Ziarko’s VPRS model served as an inspiration source for

different robust fuzzy rough set proposals. One of them, the

Vaguely Quantified Rough Set (VQRS) model [5] softens the

membership criterion for an object u to belong to the lower

approximation of A into “most elements of [u]E are inside

A”. Similarly, u belongs to the VQRS upper approximation

of A to the extent that “at least some elements in [u]E belong

to A”. To formalize this idea, the inherently fuzzy quantifiers

“most” and “at least some” are modeled as specific fuzzy sets

in the unit interval [63]:

Definition 4.1: A fuzzy set Q in [0, 1] is called a regular

increasing monotone (RIM) quantifier if Q is non-decreasing,

Q(0) = 0 and Q(1) = 1.

The class of RIM quantifiers includes as special cases the

existential and the universal quantifier:

Q#(x) =

�
0, x = 0
1, x > 0

Q"(x) =

�
0, x < 1
1, x = 1

Examples of RIM quantifiers that also take on values from the

interior of the unit interval can be obtained using the following

parametrized formula [5], for 0 f α < β f 1, and x in [0, 1],

Q(α,β)(x) =

ù

üüüú

üüüû

0, x f α
2(x2α)2

(β2α)2 , α f x f α+β

2

12 2(x2β)2

(β2α)2 ,
α+β
2 f x f β

1, β f x

For example, Q(0.1,0.6) and Q(0.2,1) could be used to represent

the fuzzy quantifiers “at least some” and “most” from natural
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Fig. 1. The RIM quantifiers Q(0.1,0.6) (left) and Q(0.2,1) (right)

language. They are depicted in Figure 1. In general, assuming

RIM quantifiers Q1 and Q2 such that Q1 ¦ Q2, we may define

the VQRS approximations of A: for u * U ,

aprQ1

E
(A)(u) = Q1

�
|[u]E + A|

|[u]E |

�

(21)

apr
Q2

E (A)(u) = Q2

�
|[u]E + A|

|[u]E |

�

(22)

The above definition has the peculiarity that although both

the set to be approximated and the equivalence relation are

non-fuzzy, the resulting approximations may well be fuzzy.

The reasoning behind this is that for example the membership

degree in Eq. (21) evaluates the degree of fulfilment of the

condition “Q1 elements of [u]E are in A”. Note that if Q1 =
Q" and Q2 = Q#, we again arrive at Pawlak’s lower and upper

approximation, while the VPRS equations (19) and (20) are

also special cases of (19) and (20) using the RIM quantifiers

Q1(x) =

�
0, x f p

1, x g p
Q2(x) =

�
0, x < q

1, x > q

The VQRS equations may be further generalized to a fuzzy

set A and a fuzzy relation R; for details, we refer to [5].

Despite its intuitive appeal, the VQRS model has an important

shortcoming which it shares with the VPRS model: it does

not satisfy relation monotonicity, Eq. (6). This is in particular

problematic in applications where the (fuzzy) indiscernibility

relation is iteratively refined by adding more information

(additional attributes). For example, in [7] it is shown how

this affects the operation of the greedy QuickReduct feature

selection algorithm.

A solution to this problem can be found by revisiting the

equations (15) and (16) and replacing the inf and sup operators

by less extreme ones. First note that for finite universes, inf
and sup correspond to min and max, respectively. So, the

lower approximation (15) is determined solely by the smallest

one among all I(R(v, u), A(u)) values, and the single largest

value T (R(v, u), A(u)) will set the upper approximation.

A more balanced evaluation is offered by using ordered

weighted average (OWA) operators [57]: given an input vector

of n g 1 real values �a1, . . . , an� and a weight vector

W = �w1, . . . , wn� such that each wi * [0, 1] and
n�

i=1

wi = 1,

we first order the input values ai from large to small obtaining

�c1, . . . , cn� and then compute

OWAW �a1, . . . , an� =
n�

i=1

wici (23)

This leads to the definitions of the OWA-based lower and

upper approximation [9]:

aprW1

R
(A)(u) = OWAW1

I(R(v, u), A(u))
� �� �

v*U

(24)

aprW2

R (A)(u) = OWAW2
T (R(v, u), A(u))
� �� �

v*U

(25)

Using W1 = �0, . . . , 0, 1� and W2 = �1, 0, . . . , 0�, we obtain

the original Eq. (15) and (16). Because of the monotonicity

properties of T , I and the OWA operator, relation monotonic-

ity is guaranteed, and moreover it always holds that

apr
R
(A) ¦ aprW1

R
(A) and aprW2

R (A) ¦ aprR(A) (26)

In other words, OWA-based fuzzy rough sets indeed relax

the original definitions, enlarging the lower approximation and

restricting the upper one. In [56], different weighting schemes

were discussed and evaluated experimentally.

Recently, in [41] it was shown that for certain choices

of the t-norm T (including the product and Łukasiewicz t-

norm, but not minimum), the OWA-based lower and upper

approximations of any fuzzy set A are exact sets, i.e.

apr
R

�

aprW1

R
(A)

�

= aprR

�

aprW1

R
(A)

�

= aprW1

R
(A) (27)

apr
R

�

aprW2

R (A)
�

= aprR

�

aprW2

R (A)
�

= aprW2

R (A) (28)

This means in particular that these approximations possess a

granular representation, and can be used as a basis for fuzzy

rule induction algorithms, as discussed in the next section.

V. DISCUSSION: CHALLENGES AND OPPORTUNITIES FOR

FUZZY ROUGH SETS

Even though the VQRS model, considering its violation of

the relation monotonicity property, has been mostly abandoned

in favour of the OWA-based approach, its interpretation of

membership to the fuzzy-rough approximations in terms of

fuzzy quantifiers expressing “most” and “at least some” is

arguably more intuitive and transparent than the one using the

rather less compact representation of OWA weight vectors.

Yet this does not mean that OWA fuzzy rough sets are

isolated from vague quantification. In fact, as explained in

[49], from any OWA weight vector W = �w1, . . . , wn�, a

corresponding RIM quantifier Q can be derived by setting

Q(x) =
�

ifxn

wi (29)

and, vice versa, for every RIM quantifier Q and n g 1, the

associated OWA weights wi (i = 1, . . . , n) are determined by

wi = Q

�
i

n

�

2Q

�
i2 1

n

�

(30)

As such, the weight vectors W1 and W2 featured in Eq. (24)

and (25) are mutually interchangeable with their VQRS coun-

terparts Q1 and Q2. The resulting membership degrees, how-

ever, carry a different meaning; for example, aprW1

R
(A)(u)

should be understood as the truth value of the statement “for
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most objects in U , it holds that if they are indiscernible from u,

then they also belong to A”; in other words, the quantification

also takes into account objects completely unrelated to u (i.e.,

fully discernible from u), while for the computation of the

membership to the VQRS lower approximation, these objects

are excluded.

A more serious limitation of the OWA fuzzy rough set

model lies in the fact that it treats all objects symmetrically

during the aggregation process, i.e., an individual object’s

impact is determined merely by its fulfillment of a specific

logical formula. In practice, this means that we hypothesize

that “a limited amount” of objects are outliers, and that their

effect will be cancelled out by the chosen weighting scheme.

Suppose however that we have specific knowledge that some

specific objects are in fact certainly outliers, e.g., based on an

outlier score that was calculated for them separately. Then, a

more natural way to evaluate whether an object u belongs to

the lower approximation of concept A is by checking if all

objects indiscernible from u, except perhaps those which are

considered outliers, belong to A.

In order to accommodate the above and other related use

case scenarios, new definitions were proposed for the fuzzy-

rough lower and upper approximation in [49] recently. They

are based on the Choquet integral, a generalization of the

classical Lebesgue integral to non-additive measures which

has become popular as an aggregation function in decision

making [20]. It was shown how the resulting Choquet-based

fuzzy rough sets (CFRS) contain the OWA-based model as a

special case, while inheriting some of its desirable properties,

including set and relation monotonicity. At the same time,

they also maintain the intuitive interpretation in terms of

vague quantification. Considering that most of the existing

fuzzy rough set models still rely on “traditional” approaches

to fuzzy quantifiers such as those proposed by Zadeh [63]

and Yager [58], which were shown to suffer from some

serious conceptual flaws [19], this opens up exciting research

opportunities involving more recent developments (see e.g.

[15] for an overview).

An important unresolved question about the new CFRS

model is whether it still conforms to the granular structure

that the OWA-based model from Eq. (24) and (25), and the

traditional fuzzy rough set model from Eq. (15) and (16)

exhibit, in other words: whether its approximations are exact

fuzzy sets in the sense of Eq. (18). While technical in nature,

if this question can be answered positively, it opens the doors

to fuzzy rule induction methods based on these fuzzy-rough

approximations. Indeed, the fuzzy granules corresponding to

the approximations can be used inside the antecedent part of

fuzzy rules, and an unseen test object’s membership in them

may be interpreted as the firing strength of the corresponding

rule.

As a concrete example, let us consider rule-based classifi-

cation. In this case, U is partitioned into a number of decision

classes (concepts). Let C be one such decision class, and

denote its lower approximation, computed according to one

of the models discussed in this paper, by apr(C). Then, if

apr(C) is granularly representable, by Eq. (18) a correspond-

ing decision rule will be generated for every training object u,

such that for a given test object v, the firing strength of this

rule is obtained as

T (R(v, u), apr(C)(u)) (31)

in other words, as a conjunction between R(v, u), the observed

similarity between u and v, and apr(C)(u), the membership

of the training object u to the lower approximation.

Decision rules based on the lower approximation are usually

called “certain” rules, while we refer to those based on

the upper approximation as “possible” rules, distinguishing

their relative strength. More generally, fuzzy decision rules

can be derived from any granularly representable fuzzy set

associated to decision classes, for instance from the so-called

granular fuzzy-rough approximation introduced in [42], which

is defined as the closest granularly representable fuzzy set

(w.r.t. a certain loss function) to a given concept, and which

is obtained as the result of a linear programming problem.

In practice, however, generating one rule per training object

is not a viable approach, and an important challenge is

therefore to design proper rule induction algorithm that can at

the same time reduce the number of rules, as well as maximize

the number of objects that each rule covers. Such a strategy

was already pursued in [28], where it was combined with fuzzy

rough set guided feature selection, and various other attempts

(see e.g. [22], [38], [65], [66]) have also been made to integrate

fuzzy rough sets and rule induction; yet, a convincing proposal

of a “fuzzy LEM” classification algorithm is still missing and

could represent a breakthrough in this domain, not in the least

from the perspective of interpretable machine learning.

Indeed, the generation of compact fuzzy rules benefits the

human understanding of classification algorithms based on

them, as rule-based models are some of the most interpretable

models, and they closely resemble human cognition [1]. In

[2], various criteria were distinguished for interpretability

at different levels of a fuzzy rule-based system, including

linguistic variables and fuzzy granules. An integration of these

criteria with fuzzy-rough rule induction is therefore at hand

to develop a coherent and compact model of interpretable

granular computing. Apart from the granules themselves, an

important role should again be reserved for fuzzy quantifiers,

as they are useful to summarize knowledge in a concise,

linguistic way.
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tion of OWA-based fuzzy rough sets, Fuzzy Sets and Systems, in press.
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