
Modern C++ in the era of new technologies and
challenges4why and how to teach modern C++?

BogusCaw Cyganek
1AGH University of Science and Technology, Poland

Al. Mickiewicza 30, 30-059 Kraków, Poland
2Academic Computer Center Cyfronet AGH

Ul. Nawojki 11, 30-950 Kraków, Poland
cyganek@agh.edu.pl

Abstract4Computers are one of the most important inventions

in human history, and computer languages enable human-

computer communication. Undoubtedly, C++ is one of the most

important and influential in this group. Nevertheless, new

technologies and related industry challenges place high demands

on C++ and foster the development of new computer languages

that meet new needs. For this reason, and thanks to the

dynamically operating ISO standardization group, C++ is

constantly updated while maintaining its backward compatibility.

However, all this complicates and hinders not only the teaching of

beginners but also the use by professionals. In this article, we

briefly discuss the goals as well as proposed methodologies and

techniques for teaching contemporary C++ in the age of new

technologies and challenges.

Index Terms4C++, modern technologies, compilers, teaching

programming, computer science curricula

I. INTRODUCTION

++ is a multi-paradigm, imperative, procedural, functional,
object-oriented, generic, and modular language invented in

early 1980s and further developed by Bjarne Stroustrup [5][10]
[29]. Since 1991 standardization of C++ is supported by the
ANSI International Organization for Standardization (ISO),
with the latest standard version published in December 2020
[21]. With performance and efficiency in mind, C++ extends
and is compatible with the C programming language, while to
incorporate the object-oriented and abstraction mechanisms it
draws from Simula. This hybrid approach has proven extremely
useful over the years, especially in such domains as systems
programming, embedded systems, resource constrained plat-
forms, large computing and simulation libraries, machine learn-
ing & artificial intelligence (ML/AI) and many others.

C

Nevertheless, there are industries such as web applications
that favor the development of other languages as well. While
the popularity rankings of programming languages are in some
ways superficial and may be misleading, they provide some

insight into future trends in the IT industry and can help
students decide which language they want to learn. From these
the TIOBE Programming Community index shows the
popularity of programming languages based on 25 search
engines [16]. At its top are Python, C, Java, and C++, which
together are well ahead of the others, as shown in Fig. 1. In the
last two years, Python and C have swapped between 1st and 2nd

places in the ranking. Also C++ is gaining in popularity and
tends to surpass Java.

Fig. 1 An excerpt from the TIOBE list of the top-ranked programming

languages in 2022 (from [16]).

On the other hand, in the PopularitY of Programming
Language Index (PYPL), which shows how often language
tutorials are searched on Google, C/C++ are ranked 5th together
(Aug. 2022) [17]. However, neither of the above indexes is
about the best programming language or the language in which
most lines of code have been written.

A detailed analysis of various languages and their
applications is far from the scope of this paper, nevertheless we
can observe that while scripting tasks surely fall into the realm
of Python, and web development for Java, then vast majority of
high performance applications falls into the domain of C/C++.

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 35–40

DOI: 10.15439/2022F308

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 35

The latter are also the only languages in this group that compile

their code directly into the machine language. Although, there

are contenders such as Rust and the recent Carbon [11][12],

C++ endowed with hundreds of libraries, tools, and many years

of experience, and a superset of C in a sense, is and will

probably be the most important and productive language today,

especially for large and performance demanding systems.

Therefore, C++ is surely worth learning. However, the more

extensive the specification of modern C++ becomes, the more

critical the requirement to properly teach modern C++ to new

generations of programmers becomes. In this article, we tackle

this issue in an attempt to shed more light on why and how to

teach modern C++.

There are relatively large Internet resources [30][10][13] and

literature [27][20][23] about C++ and its features. However,

when it comes to teaching modern C++, the situation is not

bright. There are only few online presentations [2][3][4], web

services and books to recommend [28][29]. Nevertheless, even

these are a bit dated considering new C++17 and C++20

standards. To fill this gap the new book was written,

Introduction to Programming with C++ for Engineers, which

was published by Wiley-IEEE Press in 2021 [6]. It contains

teaching materials, from elementary to advanced level, intended

for the three-semester study cycle. Based on this, this article

provides an overview of methodology and techniques for

teaching modern C++.
It is worth mentioning that the problem of teaching and

disseminating knowledge about modern C++ also found wide
interest in the language committee. In this context, the SG20
group arose, whose aim is to prepare and provide guidelines for
content to be covered by C++ courses [31]. Their main
document is a resource for instructors to assist in the preparation
of C++ courses in a variety of environments, including
universities, colleges, and industry.

The rest of the paper is organized as follows. An overview
of the methodologies and techniques of teaching the C++
language in presented in Section II. It is organized into four
subsections. Section III provides scenarios for the different
levels of C++ learning. Section IV discusses the role of good
examples in the teaching process. Section V deals with the issue
of teaching for real life challenges. The paper ends with
conclusions in Section VI.

II. AN OVERVIEW OF TEACHING METHODOLOGIES &

TECHNIQUES

 In this section the basic methodologies and techniques for

teaching modern C++ are outlined. The main issue is to list the

most important steps in class preparation and to focus on the

most important factors.

A. Preparing for Teaching

First, there are some key factors to consider before starting

your class. The following is a list of them:

÷ Get to know your students 3 what are their backgrounds,

what are their motivations, whether they are kids or

students of electronics and telecommunication,

computer science students, or students of non-technical

faculties (biology, humanistic, etc.); or professionals

who want to expand their skills in modern C++? What

have they already learned, math, python, basics of

computer science?

÷ Organize your classes well 3 individual or group work

(some activities such as lectures can be for a group, but

some 3 such as tutorial 3 should be individual), group

sizes, etc. Have a plan but actively respond to students9
progress and expectations, have close contact and react

actively, similarly to the agile methodology for software

development. But also control the attitude and

experience of other fellow teachers in the group (in

many universities often the lecturer and laboratory

teacher are different people).

÷ Plan your time 3 how many hours for a lecture, for a lab,

for joint work, and for an individual project. Consider

time for individual consultations.

÷ Organize the class work well 3 consider exercises for

personal work as well as projects for team work.

÷ Teaching materials 3 students have access to various

sources, but they rely on your opinions, therefore the

correct selection of book(s), internet materials, video(s),

etc. is very important.

Certainly, these are only propositions based on many years

of our observations and conducted classes. However, for

different groups and teachers, the list and importance of each

factor may differ.

B. Choice of the Vital Language Features 3 the 20/80 Rule

What works well in our 25 years teaching experience is

getting the right preparation and then focusing on the most

important and productive features of the language at the given

teaching stage that allow students to quickly comprehend and

become proficient in basic programming techniques. As a

result, it allows the students to create useful and well-organized

programs as quickly as possible. The choice of features can be

arbitrary, but is best if these are based on the experience of the

teacher(s). As we have noticed, for this purpose the Pareto

20/80 principle is worth considering [14][6].

Fig. 2 The 20/80 rule states that many activities are not evenly distributed and

some contribute more than others. This idea can be used to prepare 20% of the

most important C++ features for the students9 classes.

36 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

The 20/80 paradigm, known also as the Pareto rule or law

of the vital few, states that in many life situations, 20% of

causes is responsible for roughly 80% of consequences, or

results, as shown in Fig. 2. This heuristic observation was

probably first noticed by the mentioned Italian economist

Vilfredo Pareto, who noted that at that time 80% of the land in

Italy was owned by 20% of the population. Interestingly, this

can also be observed in computers, which is usually manifested

that 20% of bugs contribute 80% of crashes, or that 80% of the

CPU time is spent on 20% of the code, etc.

Hence, the idea is to use this rule to prepare the most

important 20% of features to be taught in the beginning. This

approach can result in much better productivity and allows

students to faster reach the level of solid understanding of basic

programming constructs and techniques, compared e.g. to the

linear approach, as shown in Fig. 2.

C. The Spiral Development Model

As originally proposed by Boehm [1][15], the spiral model

of software development is associated with iteratively repeated

processes while managing risk for its active reduction, as shown

in Fig. 3.

Fig. 3 The spiral model, originally proposed by Boehm for development of

software, can be also applied to the C++ teaching process (from [1]).

However, it appears that the C++ teaching process is in

many ways similar to this spiral model. Namely, many topics

are, and should be, repeated with wider scope and level of

details. Risk management in this case means strict control of the

students' absorption of previous material before presenting an

advanced version of a topic. This also applies to the gradual

increase in the complexity of student developed projects.

III. EXEMPLARY TEACHING SCENARIOS

Some scenarios for teaching modern C++ are discussed

here. Assuming classes organized in the semester periods

(14/15 weeks per semester), and organized in the form of

a lecture per week, a laboratory per week for the half of the

semester, as well as the student9s own project and consultations

for the remaining part of the semester, the following scenarios

are presented for the entire three-semester C++ teaching cycle:

1. Introduction to programming with C++ (the

beginners program), followed by basics of C++.

2. Object-oriented design & programming with C++,

followed by advanced memory management.

3. Advanced C++ concepts, followed by basics of

parallel programming.

A possible organization of classes in the form of a state

diagram is shown in Fig. 4. Each of the three semesters consists

of two building states 3 the idea here is that the second state in

a semester is optional, i.e. it is undertaken if there is enough

time and the group have achieved good results in the first state.

State 1

 INTRODUCTION TO

PROGRAMMING

State 2

C++ BASICS

State 3

DELVING INTO THE OBJECT-

ORIENTED PROGRAMMING

Auxiliary A

COMPUTER ARITHMETIC

State 5

ADVANCING

OBJECT-ORIENTED

PROGRAMMING

State 4

MEMORY MANAGEMENT

State 6

BASICS OF PARALLEL

PROGRAMMING

Auxiliary B

INTRO TO C

& AUX LIBRARIES

SEMESTER 1

SEMESTER 2
SEMESTER 3

Fig. 4 Possible C++ teaching scenarios organized for the three semesters. Each

semester consists of two stages 3 compulsory and optional, which is carried out
if there is enough time and the group has demonstrated significant progress in

learning. Also visible are auxiliary topics <A= for computer arithmetic and <B=

for low-level features, such as the C programming language and introduction to

additional libraries.

These are supplemented with the auxiliary states, which can

be included to the program of teaching semesters depending on

the needs and progress of the students. Supporting topics

include: <A= computer arithmetic and <B= introduction to

programming in C and a supplemental introduction to using

libraries such as QT, FLTK, OpenGL, OpenMP, OpenCV, etc.,

depending on the students9 needs and the profile of their
faculties.

However, before providing some more concrete lists of

features for each teaching scenario, let9s highlight the following

issues and hints that should be considered:

÷ Well define the main goals of the classes.

÷ For each semester well define a minimal set of C++

features to be acquired by students; for this purpose the

20/80 rule can be applied.

÷ Throughout the term: stick to the developed teaching

plan (the curriculum) but actively respond to students9
progress 3 this resembles the agile concept, applied to

the teaching process.

BOGUSŁAW CYGANEK: MODERN C++ IN THE ERA OF NEW TECHNOLOGIES AND CHALLENGES—WHY AND HOW TO TEACH MODERN C++? 37

Not surprisingly, the aforementioned teaching scenarios

follow chapter layout in the book [6]. The more detailed

teaching scenarios are outlined in the following subsections.

A. Scenario for Beginners

Following the plan outlined in Fig. 4 let9s analyze a possible

minimal set of C++ features. This can be defined as follows.

1. Introduction to the computer API and the basic C++

development tools (editor, compiler, linker, IDE, etc.).

2. The main function.

3. Minimal libraries (#include), using directive.

4. Printing texts std::cout.

5. Defining and initializing variables: int and double

(explain the difference).

6. Entering values to the variables std::cin.

7. Conditional statement if and how to provide a logical

condition.
8. std::vector
9. std::string

10. The loop: =classical= for and =range= for

Especially for beginners it is important to provide diagrams

and ready recipes for project organization, tools, build process,

particularly compiling and dealing with compilation errors as

well as basics of debugging. Active support from the teacher is

essential at this stage. A possible diagram of an exemplary

program in the single main function is shown in Fig. 5.

int main()

{

List of header files with

predefined declarations
#include <cmath>

}

double x { 0.0 } ; // set x to 0

std::cin >> x ;

#include <iostream>

 another_statement ;

if(x >= 0.0)

Each statement ends

with a semicolon ;

Logical condition,

returns true or false

 No semicolon here

A function std::sqrt, declared in

cmath, is called to compute a

square root of xstd::cout << std::sqrt(x) ;

int in front of a function

defines its return value

(only formally here)

#include is a

preprocessor directive

Definition of a variable x

of type double

Enter x from the

keyboard represented

by the std::cin

Conditional statement if

Open function block

Close function block

The main function is where the

program starts. It takes no

arguments, therefor empty ()

Comments start with //

They convey additional

information for people

Fig. 5 A diagram showing basic constructions of a C++ program for absolute
beginners (from [6]). Many projects for beginners can be written on the canvas

of a single main function.

Although very simple, the code based on a single main

function can be used successfully in many beginner projects.

B. Scenario for C++ Basics

A possible scenario for teaching the basics of C++ may

include the following topics.

1. The most common built-in data types, their

applications and initialization.

2. Code debugging techniques.

3. Basic members and applications of std::vector.

4. A matrix as a vector of vectors.

5. Basics of std::string.

6. auto and when to use it.

7. Common standard algorithms (std::copy,
std::find, std::generate,

std::accumulate, etc.).

8. Structures as data containers with struct.

9. References.

10. Statements (the role of braces).

11. Functions (argument passing, recursive, lambdas).

12. Intro to (separate) classes: struct vs class +

constructor and member functions.

13. Basic of software testing.

14. Operators.

The beginners and basics scenarios constitute teaching

material for the 1st semester (Fig. 4).

C. Scenario for Object-Oriented Programming in C++

A natural follow up is introduction to the OOP domain with

C++. At this stage a possible list of topics can look as follows.

1. Intro to OOP.

2. Anatomy of a class (e.g. extended matrix class).

3. Right references.

4. Classes with all special functions 3 move semantics

explained (e.g. extending matrices into tensors).

5. Templates and generic programming (functions,

classes, member templates).

6. Virtual mechanism.

7. Some design patterns (e.g. wrapper, handle-

bode/bridge, proxy).

8. Memory management (RAII, std::unique_ptr,

std::shared_ptr, std::weak_ptr).

The virtual mechanisms and polymorphism should be

shown on class hierarchies. However, the more complex are

postponed to the advanced level, as discussed in the next

section. Nevertheless, the introduction to the OOP and topics of

memory management constitute material for the 2nd semester.

D. Teaching Advanced Topics of C++

After completing the OOP and memory management parts

of the course, the last stage can be coined <advanced C++=.
However, it is not less difficult to define what actually should

be included and how to teach such advanced concepts.

Nevertheless, a possible list of topics can be formed as follows.

1. Designing class hierarchies.

2. C++ filesystem.

3. Forward/universal references.

4. Regular expressions (std::regex).

5. Graphical user interface (various libraries, QT, MFC,

FLTK, &).
6. System clock and time measurement

(std::chrono).

7. Intro to functional programming and the

std::ranges.

8. Intro to expression parsing 3 the interpreter DP,

building the syntax trees, composite DP, visitor DP.

9. State machine pattern.

10. Advanced generic programming techniques.

38 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

11. Basics of parallel programming (std::par,

std::thread, OpenMP).

Certainly, all the aforementioned teaching scenarios are just

simple propositions [6]. They can be easily adjusted to best suit

the level and needs of the students as already discussed.

IV. THE IMPECCABLE ROLE OF GOOD EXAMPLES

As it is not possible to teach swimming without entering the

water, it is also not possible to teach programming without

writing code and developing projects by students. Hence, the

role of good code examples cannot be overestimated. However,

let9s consider what factors should be taken into account when

preparing code examples for teaching. A good example of code

should be:

÷ comprehensible,

÷ not too long,

÷ touch on 9real9 problems,

÷ can serve as a starting point for student9s project; i.e. it

can be used in an incremental development and the spiral

model in action.

The examples are very important because not only do they

illustrate some code concepts, but they provide "thought

patterns" that the developer evokes and then modifies while

working on a similar problem.

There are different ways students can use the code

examples, for instance:

÷ Compile, make it run, debug to observe the results.

÷ Re-type an example and make it run.

ADMIN

Currency exchange project

Exchange for
buying a
currency

Exchange for
selling a currency

USER

System setup

Actors

Use

cases

Fig. 6 Teaching software development is about more than showing C++ code.

The entire process should be presented, starting e.g. with the UML diagrams

and the complete development process, from design, till code unity tests and

deployment. Here is a UML use case diagram of the currency exchange

exemplary project (adopted from [6]).

÷ Don9t use the example 3 create your own version,

instead; then compare.

÷ Use as a 9startup9 for your own project/example.
It is also important for educators to realize that teaching

programming should encompass the deeper context of software

development. This means that instead of showing only parts of

C++, a teacher should present the entire development process,

starting with problem analysis, resulting UML diagrams such

as in Fig. 6, software design, code unity tests, deployment, etc.

However, we9d like to emphasize that not less important is
the process of consultations between the student and her/his

teacher. Such a code refinement process enables

comprehension of proper coding techniques.

V. TEACHING FOR THE REAL-LIFE CHALLENGES

The world did not start today, and there are millions of lines

of the legacy code that still need to be maintained, deployed,

refactored or extended. Therefore, teachers should ask

themselves questions such as how to prepare students to cope

with the existing code, as well as how to respond to the

expectations of employers. The problem is even deeper 3 there

is an ongoing discussion on mismatch between computer

science curricula and industry needs [22][24][25][26][32],

which generally is out of the scope of this paper. However,

when confining this to teaching modern C++ the teachers

should be aware of the what to address and how to go about, as

well as of the short time span issues.

Returning to the task of teaching modern C++ in the light of

the legacy code, we need to introduce the lower-level

constructions of C++ (such as pointers, unions, raw

memory/string operations, etc.), sometimes also at least the

basics of C. Certainly, the set of these low-level features

depends on the needs of the students. However, the most

important are the proper moments in the teaching scenarios

when these low-level features are taught. That is, low-level

features should be introduced after instilling good

programming habits in using modern features of C++, not the

other way around.

The low-level features will be inevitable when preparing

students to work with operating systems such as Linux or

FreeRTOS, or to use many common libraries, such as OpenMP,

OpenCV, OpenGL, QT or games with Unreal Engine, etc. But

even to explain at some point what is int main(int

argc, char ** argv)the teacher has to face how to

introduce the pointers. So the question is not <if= but <when=.

VI. CONCLUSIONS

The paper contains a short overview of the challenges related
to promoting the interest in modern C++, as well as in teaching
modern C++ to various groups of learners in the era of new
technological challenges. The subject is very wide and we only
scratched the surface.

Every three years, the C++ standardizing committee,
supported by thousands of enthusiasts, publishes a new
specification for the language. Thanks to this, it gained dozens
of new features, which makes it very efficient and effective.
However, such a dynamically changing environment also raises
some problems especially in terms of the stability of language
features as well as their presentation and acceptance from the
world C++ programming community.

This also makes teaching modern C++ a real challenge.
Accordingly, this paper introduces some teaching
methodologies and techniques, such as the 20/80 principle, as
well as some modifications to the software development

BOGUSŁAW CYGANEK: MODERN C++ IN THE ERA OF NEW TECHNOLOGIES AND CHALLENGES—WHY AND HOW TO TEACH MODERN C++? 39

methodologies, such as the spiral model and agile approach,
which were brought into the teaching domain. Further on, the
overviews of some teaching scenarios for different groups of
learners were provided. More detailed versions are available in
the book Introduction to Programming with C++ for Engineers
[6], whereas the code examples and additional materials are
available from the Internet [8][9].

In the end, the following list summarizes the main postulates
and guidelines for effective teaching of modern C++:

÷ As C++ programmers we are all students and many of
us are, or become, teachers.

÷ When teaching, get to know your students, get to know
their needs and wishes, then organize the classes well.

÷ At each stage think about selecting the appropriate C++
features for teaching, keeping in mind the 20/80 rule.

÷ Provide good and practical examples! They constitute
<mental patterns= for your students.

÷ Keep things simple and in right order 3 but be agile and
actively react to students9 progress.

÷ Teach in a repeated way, gradually introduce more
advanced concepts and techniques, raising the level 3
apply the spiral development model.

÷ Teach not only C++ itself, but C++ across the entire

computer science framework: show steps of software
design, UML, data structures, algorithms, design
patterns, development tools, software testing, etc.

÷ Do not forget about the programmers/companies reality,
the legacy code, etc. Provide information on lower-lever
features, teach basics of C if necessary, but at the right
time.

÷ Pay attention to the self-education, always improve the
skills of not only your students, but also yourself and
your team, watch/participate in lectures, conferences,
read books, etc.

With the increasing demands on high performance systems,
the embedded world moving from C to C++, the revolution in
big data, parallel computations, etc., undeniably C++ is, and
probably will be, the most powerful modern computing
language for many years to come. Therefore, there is no doubt
that C++ should be taught to a wide range of students,
especially of technical faculties. However, this should be well
organized as one of the important topics in wisely prepared
computer science curricula, containing a combination of various
programming languages, that respond to the needs of industry
in the era of new technologies and challenges.

As a concluding remark let's remember that: The quality of
the software of the future depends on the quality of education
today.

ACKNOWLEDGMENT

The author expresses his gratitude to Prof. Dominik [l�zak
for his invitation and encouragement to write this paper.

The author also commends Wiley-IEEE Press for the 2021
Wiley-IEEE Press Professional Book Award for the book Intro-
duction to Programming with C++ for Engineers (https://ieee-

press.ieee.org/wiley-ieee-press-awards/) and for financial sup-
port in participation in FedCSIS922.

REFERENCES

[1] Boehm, B: Spiral Development: Experience, Principles, and Refinements.
Special Report. Software Engineering Institute, 2000.

[2] CppCon 2017: Bjarne Stroustrup <Learning and Teaching Modern C++=
3 YouTube https://www.youtube.com/watch?v=fX2W3nNjJIo

[3] CppCon 2015: Kate Gregory <Stop Teaching C" 3 YouTube
https://www.youtube.com/watch?v=YnWhqhNdYyk

[4] CppCon 2018: Christopher Di Bella <How to Teach C++ and Influence a
Generation=4YouTube https://www.youtube.com/watch?v=3AkPd9Nt2
Aw

[5] C++ Wikipedia: https://en.wikipedia.org/wiki/C%2B%2B

[6] Cyganek B.: Introduction to Programming with C++ for Engineers.
Wiley-IEEE Press, 2021.

[7] Gurcan, F., Kose, C.: Analysis of software engineering industry needs and
trends: implications for education. International Journal of Engineering
Education, Vol. 33, pp. 1361-1368, 2017.

[8] https://home.agh.edu.pl/~cyganek/BookCpp.htm

[9] https://github.com/BogCyg/BookCpp

[10] https://cppreference.com

[11] https://thenewstack.io/google-launches-carbon-an-experimental-
replacement-for-c/

[12] https://9to5google.com/2022/07/19/carbon-programming-language-
google-cpp/

[13] https://stackoverflow.org

[14] https://en.wikipedia.org/wiki/Pareto_principle

[15] https://en.wikipedia.org/wiki/Spiral_model

[16] https://www.tiobe.com/tiobe-index/

[17] https://pypl.github.io/PYPL.html

[18] https://www.devjobsscanner.com/blog/top-8-most-demanded-languages-
in-2022/

[19] History of C++ https://en.cppreference.com/w/cpp/language/history

[20] Josuttis N.: C++17 - The Complete Guide: First Edition, 2019.

[21] JTC1/SC22/WG21 - The C++ Standards Committee 3 ISOCPP, 2022.
https://www.open-std.org/jtc1/sc22/wg21/

[22] Lawlis P.K., Adams K.A.: Computing Curricula vs. Industry Needs: A
Mismatch. Proc. 9th Annual ASEET Symposium, pp. 5-19, 1995.

[23] Meyers S.: Effective Modern C++: 42 Specific Ways to Improve Your
Use of C++11 and C++14, 2014.

[24] Moreno A.M., Sanchez-Segura M-I, Medina-Dominguez F., Carvajal L.:
Balancing software engineering education and industrial needs, Journal of
Systems and Software, Volume 85, Issue 7, pp 1607-1620, 2012.

[25] Oguz, D., Oguz, K.: Perspectives on the Gap Between the Software
Industry and the Software Engineering Education. IEEE Access, Vol. 7,
pp. 117527-117543, 2019.

[26] Paprzycki M., Zalewski J.: CS II: An Applied Software Engineering
Project. The Journal of Computing in Small Colleges, Vol. 12, No., pp.
47-52, 2, 1996.

[27] Stroustrup B.: The C++ Programming Language, Addison-Wesley, 2013.

[28] Stroustrup B.: Programming: Principles and Practice Using C++, 2nd Ed.,
Addison-Wesley, 2014.

[29] Stroustrup B.: A Tour of C++, Addison-Wesley, 2018.

[30] Stroustrup B., Sutter H.: C++ Core Guidelines, 2022.
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

[31] SG20 (ISO C++ Study Group on Education): Guidelines for Teaching C+
+, 2022. https://cplusplus.github.io/SG20/latest/

[32] Waks S., Frank M.: Engineering Curriculum versus Industry Needs 3 A
Case Study. IEEE Tr. on Education, Vol. 43, No. 3, pp. 349-352, 2000.

40 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

