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Abstract—This paper presents a novel approach towards link
prediction in clinical knowledge graphs. They play a central
role in linking data from different data sources and are widely
used in big data integration, especially for connecting data from
different domains. We present a knowledge graph initially built
on data from a clinical trial on Spinocerebellar ataxia type 3
(SCA3), which is a rare autosomal dominant inherited disorder.
The contributions of this paper are (1) to create a feasible data
representation schema capable of handling clinical imaging data
in a knowledge graph and to (2) convert the data efficiently
into a knowledge graph. Due to the limited amount of patient-
nodes usually common methods for link prediction and graph
embeddings are problematic and thus we will (3) present a
novel approach for link prediction utilising graph structures
and Conditional Random Fields. In addition, we present (4)
an extensive evaluation underlining the importance of (a) data
management and (b) further research on link prediction using
graph structures.

I. INTRODUCTION

K
NOWLEDGE graphs have been shown to play an im-

portant role in recent knowledge mining settings, for

example in the fields of life sciences or bioinformatics. Con-

textual information is widely used for NLP and knowledge

discovery tasks since it highly influences the exact meaning

of expressions and also queries on data. Here we will present

some results on link prediction in knowledge graphs in the

field of personalised medicine which aims for matching certain

risk groups and possibly yet unknown subgroups to treatments,

ultimately optimising patients’ responses, mainly to available

drugs. For this purpose, collected primary data of the examined

persons have to be linked with data from secondary sources

like publications or databases in an application-oriented way.

As part of the European Spinocerebellar Ataxia Type 3

Initiative (ESMI), SCA3 mutation carriers, their first-degree

relatives, and healthy controls were prospectively studied using

standardised clinical assessment as well as MRI imaging and

biosampling.

Spinocerebellar ataxia type 3 (SCA3) is a rare autosomal

dominant inherited disorder. The onset of the disease is in

adulthood. Patients develop ataxia, which is a disorder of

coordination of target movements that affects gait, fine motor

skills and speech. The disease is progressive and patients

in the advanced stages are usually dependent on the use of

first a walking aid and later a wheelchair. Not only the gait

disorder has a strong influence on everyday activities. Also

the independent preparation of meals, tool use of e.g. eating

utensils and an increasingly unclear speech severely restrict

the patients in their everyday life. Although SCA3 mutation

carriers are not yet symptomatic, disease activity is already

evident, for example, in atrophy of certain areas of the brain

where neuropathological changes are predominant, as well as

elevated blood levels of non-specific markers for neuron loss.

The data set contains not only patient data but also digital

imaging data [1], [2].

The goals of this paper are (1) to create a feasible data

representation schema capable of handling clinical imaging

data in a knowledge graph, see Figure 1, and to (2) convert

the data efficiently into a knowledge graph. Since the overall

amount of participants in clinical trials is usually not high,

employing common methods for link prediction and graph

embeddings is problematic [3]. We will (3) present a novel

approach to link prediction utilising graph structures and (4)

its evaluation.

This paper is divided into six sections. After an introduction,

the second section gives a brief overview of the state of

the art, related work and backgrounds used for our novel

approach. Therefore, we will refer to both knowledge graphs

and dedicated algorithms. In the third section, we present our

approaches regarding data integration and data schema. The

fourth section describes the novel approach to link prediction,

with the experimental results on both artificial and real-world

scenarios in the subsequent section.

Our conclusions and outlooks are drawn in the final section.

We will propose a novel CRF-field based approach which

presents promising performance. While the results at first

glance do not seem to be a significant improvement for

new algorithms for knowledge discovery on clinical data they

clearly show the importance of (a) data management and (b)

further research on link prediction using graph structures. We

also provide a short outlook for extensions of our work.

II. RELATED WORK AND BACKGROUND

Clinical research is more and more relying on data-intensive

approaches, thus facing increasingly complex challenges. Ex-

pert systems, for example, provide users with several methods

for knowledge discovery. They are widely used to find relevant
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Fig. 1. An example of the nodes and edges in the graph database after import is complete: a General Image node and its immediate neighbourhood are
shown.

or novel information. A popular example in biomedical re-

search is the attempt to find molecular pathways; controlled re-

action mechanisms within biological organisms, which might

be misregulated in pathogenic states. Obviously, understanding

these cascades, their players and relations to diseases is key

to designing and applying drugs in a targeted way.

Being confronted with patients’ clinical data and with expert

knowledge in the back of their minds, clinical researchers

usually consider an initial idea and start integrating external

content such as scientific papers. The most common approach

is inquiring with a search engine about some terms to find

closely related information. Effectively, users most frequently

query for additional documents or patient files to adjust the

search query. Similarly, for a given set of documents or

patients the question might be on commonalities considering

a certain topic. Both approaches are heavily related to the

context of data points, see for example [4] for PubMed data.

Topic labelling – or cluster labelling – and longitudinal data

are constantly being explored in several research fields, see

[5], [6], [7].

Graph structures and in particular knowledge graphs provide

several advantages for the integration of knowledge and its tar-

geted re-extraction. According to their generic character such

integrative knowledge graphs are important for life sciences,

medical research and associated fields, not least by supporting

their interconnection on a formal level. Considering systems

medicine applications, knowledge graphs provide grounds for

holistic approaches unravelling disease mechanisms. In these

and other common settings pathway databases play an impor-

tant role. As a basis, biomedical literature and text mining are

used to build knowledge graphs, see [8]. As part of the studies

on integrative data semantics within clinical research, data on

patients suffering from certain diseases have been collected

by various institutions. Some studies also integrate data from

several databases and ontologies which can implicitly form

a knowledge graph. For example Gene Ontology, see [9],

DrugBank, see [10] or [11] cover large amounts of relations

and references which other fields can refer to.

Link prediction on graphs, for example on knowledge

graphs and social networks, is usually done using embeddings

which form a low-dimensional representation of the graph. The

main assumption is that they provide an accurate reconstruct of

the graph, see [3], [12], [13]. In general, factorisation, random

walk and deep learning approaches are used, see [14]. While

these approaches have also been considered for applications

in other domains, see for example [15], a general approach

towards learning links solely based on graph structures is yet

missing. Some researchers have tried to propose features based

on graph structures and found promising results based on a

large amount of features modelling “different aspects of the

graph structure”, see [16]. According to our knowledge no

more work has been carried out in this field.

In [17] 27 real world clinical questions and queries

in scientific projects were collected to test the perfor-

mance and output of the knowledge graph. The authors

revealed that the performance of several queries was very

poor and some of them did not even terminate. Their

research is based on biomedical knowledge graphs as

described in [8] containing mainly scientific documents

and extracted data from PubMed. In [18] this approach
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was generalised to achieve interoperability with clinical

data.

In our case, the first step taken is the integration of data from

a very complex clinical trial. We will provide a data integration

schema in the next section. The data schema should be capable

of further data integration, for example Gene Ontology or data

from scientific documents like PubMed. The software importer

should be as generic as possible to work on multiple data

sources. This helps to provide experimental results on data

which is not affected by data protection regulations.

The experimental results are carried out using a Neo4j graph

database on a HPC environment utilising parallel learning

on several machines. We have provided a generic importer

capable of handling different data sources. It makes use of a

configurable ini-file which offers a predefined structure and

is read-in by the generic importer. All software is available

online1.

III. DATA INTEGRATION AND DATA SCHEMA

The actual data schema for the graph on which this work

is based is presented in Figure 2. For this purpose, the data

used was first considered, taking into account the underlying

data structure. This data structure is formalised and published

in the Registry of DICOM Data Elements2. There the dif-

ferent categories of objects within the DICOM metadata are

listed, described and linked. The underlying tree structure of

the information object definitions (IOD) and their sub-trees

consisting of other IODs, modules and attributes is very well

displayed in the DICOM Standard Browser3. Our data schema

was significantly influenced by these sources and represents

the inherent data structure using nodes, edges and attributes.

The given selection and arrangement of the individual nodes

has been made by the author as an exemplary instance. By

adjustments in the configuration file also other schemes arise.

However, for the graph used in this work it was necessary to

decide on a schema. First, it was important to keep the four-

level hierarchy of the DICOM data. This can be observed in

Figure 2 in the middle strand. Each patient has his or her own

node linked to his or her studies. These in turn contain the

associated series, which then contain the images. In addition

to this main strand within the schema, additional information

is then annotated. All modules classified as mandatory (M)

are included. In addition, at least one module from the classes

conditional (C) and user optional (U) was also used. For (C)

the class Contrast/Bolus is chosen, for (U) we decided on

Patient Study. Within the data schema, the IOD modules

used, which form their own node groups, are highlighted in

yellow for visualisation, and the attributes in red. The blue

line Node Group = True implies that the nodes listed below

belong to the node group of the heading. These are repre-

sented as triangles in the graph, but are shown here as node

groups for clarity. As an example, the Manufacturer node

1See https://github.com/TbsHbnthl/master-s-thesis-link-prediction-on-lar
ge-scale-knowledge-graphs.

2See https://dicom.nema.org/medical/dicom/current/output/chtml/
3See https://dicom.innolitics.com/ciods

can be considered. It belongs to the node group General

Equipment and forms a triangle in the graph with the node

General Equipment and the node General Series.

An example is shown in Figure 3.3. In contrast, the General

Series node, for example, has attributes such as Modality,

Series Instance UID, and others stored as node-owned

attributes rather than as separate nodes.

However, such specifications can be freely designed and

modified via the configuration file, as explained in the section

before. In addition to the data contained in the DICOM files,

two more nodes have been added. Source specifies the

source of the data. For the given data, this is stored under

the tag (0013, 1010). File stores the file name of the image

and therefore serves as a kind of provenance, allowing the

nodes to be uniquely assigned to a respective file. To ensure

that said two nodes can be included, it is important for the

configuration of the importer that the patient is contained in

the graph as a node. This means a minor restriction in the

sense of free configuration, however, such a graph without

patients should be difficult to justify in terms of content.

Due to data protection rules, we will present results using a

second data source, which is open-source and also supports

the generic usability of the importer. The SIMBA Image

Management and Analysis System4 is used as our source. From

the projects listed there, the ELCAP Database and from it

again the Zero-Change Dataset were selected. The data comes

from the Public Lung Database to Assess Drug Response,

as can be seen from the website. A second configuration file

named dev2.ini is created for them, which partly contains

different nodes from the first one. Since the only purpose is

to show conceptually that the script works for other data sets

and configurations, only a much smaller total number of node

types is used in the configuration file.

IV. LINK PREDICTION

A. Scores based on the topology of the graph

Link prediction belongs to the field of computational analy-

sis of a network, where the nodes represent persons or entities

and the edges represent relations. These networks are dynamic

and change over time. The link prediction problem deals with

a section of such a network at a time t0 and asks for the most

accurate predictions possible for edges that do not yet exist at

time t0 and will be added at a later time t. Among other things,

the network’s own topology plays a crucial role. To be able to

quantify this topology different neighbourhood measures from

graph theory and their relative effectiveness are investigated.

In [13] a so-called score is used for the measure of this

effectiveness. It is calculated in different ways. Examples are:

• Common Neighbours: Given a graph G = (V,E),
Score(x, y) := |Γ(x) ∩ Γ(y)| describes the number of

common neighbours of two nodes x, y ∈ V . Here, Γ(v)
denotes the direct neighbourhood of a node v ∈ V . [13]

4See Simba database - public lung database. http://www.via.cornell.edu/vi
sionx/simba/.
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Fig. 2. Data schema for the import of DICOM files.
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Fig. 3. Partial section of the graph: Exemplary triangle in the graph between the named example nodes Manufacturer (red), General Equipment

(blue) and General Series (orange).

• Preferential Attachment: Given again a graph G =
(V,E). The underlying premise is the assumption that the

probability that a new edge contains the node x ∈ V is

proportional to |Γ(x)|. Since the measure was originally

conceived for predicting future collaborations between

two authors, this yields Score(x, y) := |Γ(x)| · |Γ(y)|.
This builds on the idea that nodes with many edges have

a higher probability of even more edges. [13]

• Adamic/Adar: The coefficient found here originally yields

a measure that two homepages are strongly connected.

For this purpose, features z are computed from a feature

base set F of the two nodes, here web pages, and the

commonality is defined as:

�

z:features shared by x,y

1

log(frequency(z))

This gives less weight to more frequent features than

to less frequent ones. If features are to be left out and

only the topology of the graph is to be considered, the

following score is used for two nodes x, y ∈ V of a graph

G = (V,E):

Score(x, y) =
�

z∈Γ(x)∩Γ(y)

1

log(|Γ(z)|)

These measures belong to methods based on node adja-

cency. [13]

They are presented in the Neo4j database in two ways as

the basis of link prediction within the graph used there. First,

there is the possibility of making the addition of a new edge

conditional on whether the above score exceeds a pre-specified

bound. If it does, the edge is added. On the other hand, the

scores can be combined with supervised learning: They are

used as features to train a binary classifier. This then predicts

whether a particular pair of nodes will be connected by an

edge with high probability in the future. To train and evaluate

the classifier, the graph used is divided into training, testing

and validation sets. Then training is performed within the

training graph and the result is applied to the test graph. During

validation, promising results are shown for the use case. With

this work, as will be explained later, a different approach is

taken, but one that also uses these scores as features or as a

criterion for choosing a label.

B. Link prediction for paths based on node attributes

The approach adopted in this paper makes use of Con-

ditional Random Fields. Therefore, their origin is briefly

examined here and an introduction is given.

a) Markov chain: First, a simple Markov chain of order

n is considered. The idea is to be able to calculate the

probability of future states occurring. The order indicates on

how many previous states the next one depends. In a first-order

Markov process, the next state depends only on the current

state. At the beginning, the system is in the initial state. [19]

Definition IV.1. A Markov process is understood to be a tuple

(S,A, δ). Here S describes the finite set of states, A the set

of possible actions, and δ the state transition function. [19]

For each pair (st, at) with st ∈ S, at ∈ A the state st
transitions via δ(st, at) to the state st+1. The transitions in

this case are usually given in probabilities. The choice of

action depends on the current state and can be represented

as a function π : S → A; π(st) = at . It is also called a

strategy. [19]

b) Hidden Markov models: Hidden Markov models are

used to represent probability distributions over sequences of

observations. A distinction is made between the observation

Xt and the state Zt at time t. The latter is hidden, hence the

name of the model. Here, as in the 1-step Markov chains, the

so-called Markov property is assumed: Zt at time t depends

only on Zt−1 at time t − 1. An example of this can be seen

in Figure 4. The time t need not be an explicit time and can

also be implicitly considered as a location within the sequence.

The overall probability distribution of a sequence of states and

observations can be expressed as an equation as follows:

P (Z1:N , X1:N ) = P (Z1)P (X1|Z1)
N
�

t=2

P (Zt|Zt−1)P (Xt|Zt)

Since the states are hidden and only the observations are

considered, which in turn depend on the states, the probability

of an N-element sequence is represented by a product of
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Fig. 4. Example of a hidden Markov model: Zt describes the state and Xt the observation dependent on it at time t.

conditional probabilities. Moreover, except for the initial state,

each state depends on the previous one. [20], [21], [22]

According to [20], [21], there are five elements that char-

acterise a hidden Markov model:

• the number K of states that can be assumed in the model.

The states are represented as K × 1 vectors with binary

values such that the k-th state at time t takes the value 1

in the k-th row and 0 everywhere else.

• the number Ω of distinct observations that can be ob-

served in the model. Analogous to the states, an Ω × 1
vector is used.

• the state transition model A: This is also called the

state transition probability distribution and describes the

probability of changing from a state Zt−1,i to a state Zt,j

within one time step. Here i, j ∈ 1, ...,K. This can be

formulated as follows:

Ai,j = P (Zt,j = 1|Zt−1,i = 1)

Each row of A sums up to 1 in this case.

• the observation model B is an Ω×K matrix whose ele-

ments Bj,k give the probability of making the observation

Xt,k given the state Zt,j :

Bj,k = P (Xt = k|Zt = j)

• the initial state distribution π is a K × 1 vector with

πi = P (Z1,i=1).

The model is often abbreviated in literature as λ =
(A,B, π). [20], [21]

c) Markov Random Fields: Let G = (V,E) be an

undirected graph. The nodes v ∈ V correspond to the random

variables which can assume the states. Here, these depend only

on the states of the random variables u of their Markov cover

Bv := {u : (v, u) ∈ E}. This is expressed in the following

equation:

P (x1, ..., xn) =
1

Z

�

c∈C

Fc(xc)

Here C is the set of maximal cliques of the graph.

The functions F are non-negative and depend on the vari-

ables within a clique c. For normalisation, a function Z =
�

x1,...,xn

�

c∈C Fc(xc) is used so that the distribution sums

up to 1 overall. [23]

d) Conditional Random Fields: Conditional Random

Fields are a special case of Markov Random Fields and belong

to the field of supervised learning. Instead of only considering

the probability for a label sequence y, here the probability of

a label sequence y, conditioned by an observation sequence

x, is determined:

P (y|x) =
1

Z(x)

�

c∈C

Fc(xc, yc),

Z(x) =
�

y∈Y

�

c ∈ CFc(xc, yc)

The normalisation function Z(x) now also depends on x.

In other literature, the definition of a (linear chain) Condi-

tional Random Field is the conditional probability

p(y1:n|x1,n) =
1

Z
exp

�

N
�

n=1

F
�

i=1

λifi (yn−1, zn, x1:N , n)

�

.

Within the exponential function, the first sum is over

n = 1, ..., N , which indicates the position of a word, or

here a node, within the sequence. The second sum iterates

the features fi weighted by the scalars λi, i = 1, ..., F .

The values for the weights must be given or learned by the

CRF model. They ensure that certain labels are preferred or

even avoided. [24] For a given sequence, several features

can be active at the same time, i.e., not equal to 0. This is

called overlapping features. This can happen because, unlike

in hidden Markov models, it is also possible to look at

subsequent or previous elements of the sequence. [24] To train,

fully labelled training sequences (x(1), y(1)), ..., (x(m), y(m))

are required, where x(i) = x
(i)
1:Ni

∀i ∈ 1, ...,m. Thus, the

conditional probability of the training data is maximised:

m
�

j=1

log p
�

y(j)|x(j)
�

This is computed by default employing algorithms that use

the gradient descent method. [24]

To assess the quality of the prediction, the F1-score (also

balanced F-score or F-measure) is used. This can be regarded
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Fig. 5. The input path p consists of the nodes vi, i = 1, ..., n highlighted in
grey. The white nodes uj , j = 1, ...,m serve as labels of the nodes of p.

as a weighted average of the precision and the recall. The best

value is 1 and the worst value is 0. The formulas used for this

are:

F1 = 2 ·
Precision · Recall

Precision + Recall
,

Precision =
TPR

APR
,

and:

Recall =
TPR

APS
.

Here TPR means true positive results, APR means all posi-

tive results and APS are all samples that should have been

identified as positive.

e) Learning Paths: Link prediction is used to predict

possible, initially non-existent edges for the previously con-

structed graph. For this purpose, the graph is imported from

Neo4j into Python via the py2neo library5. Then, using a query,

paths are read in from the graph to be used as input for

the conditional random fields and link prediction. The paths

are converted to NER-compatible (named entity recognition)

form. Thus, a path p is considered first. Then, for each node v

contained in p, all neighbouring nodes u ∈ Γ(v) are taken as

possible labels. Thus, each node can be used both as a node

of a path and as a label for other nodes, see Figure 5.

In the next section, we describe and evaluate different

scenarios.

C. Creating one-node paths

The simplest form offers a path of length one, i.e. a single

node and its direct neighbourhood. For this purpose, these one-

node paths are read from the graph. It is specified which node

type is considered, e.g. patients or images. Then a graph query

is used to find the direct neighbourhood Γ(v) of these nodes

v ∈ G and Γ is stored as a set of labels l(v) for v. Since

the CRF library can only assign one label to each node v at

a time, criteria must be used for selection. For this purpose,

section IV-A is used here to select nodes with, for example,

5see https://py2neo.org/2021.1/

TABLE I
EXCERPT FROM THE OUTPUT OF QUERY Q1. THE TERM SCORE REFERS TO

THE VALUE CALCULATED FOR THE NODE AND ITS LABEL BY NEO4J’S

COMMON NEIGHBOURS ALGORITHM.

patientNode labelNode score

CT-Training-BE001 SPIE-AAPM Lung CT Challenge 251.0

CT-Training-BE001 1.2.840.113704.1.111.2112.1167842143.1 2.0

CT-Training-BE001g Patient_Study 2.0

CT-Training-BE001 073Y 1.0

CT-Training-BE001 1-001.dcm 1.0

...

the highest score in one of the link prediction algorithms

available in Neo4j. Later, alphabetical sorting is also given as

an alternative. The choice of the method for probing the labels

on the one hand influences the result and on the other hand

also the runtime of the queries. First, single patient nodes are

considered. As their label the neighbour with the highest score

first at Common Neighbours and then at Total Neighbours

is chosen. Afterwards we consider two other nodes, namely

General Image and Date. The queries used for this are

the following (Since some queries did not terminate they are

left out):
(Q1) MATCH (p:Patient)-[]-(a) RETURN p.nodeUID

as patientNode, a.nodeUID as labelNode,

gds.alpha.linkprediction.commonNeighbors(p,a)

AS score ORDER BY p.nodeUID,score

DESC,a.nodeUID

(Q2) MATCH (p:Patient)-[]-(a) RETURN p.nodeUID

as patientNode, a.nodeUID as labelNode,

gds.alpha.linkprediction.totalNeighbors(p,a)

AS score ORDER BY p.nodeUID,score,a.nodeUID

(Q4) MATCH (p:General_Image)-[]-(a) RETURN

p.nodeUID as imageNode, a.nodeUID as labelNode

ORDER BY p.nodeUID,a.nodeUID

(Q5) MATCH (p:Date)-[]-(a) RETURN p.nodeUID

as dateNode, a.nodeUID as labelNode ORDER BY

p.nodeUID,a.nodeUID

See table I for an example output for query Q1. The

algorithm we use for applying the CRFs to the paths from

the graph consists of the following steps:

Algorithm 1 INTEROPERABLE-DATA

Require: Graph G in Neo4j

Ensure: Label prediction, Measurement of prediction success

1: readNodePathsFromGraph(G)

2: splitValidationAndTrainingData()

3: for all P in AP:

4: assignFeaturesToNodesInPaths(N(P))

5: assignLabelsToNodes(N(P))

6: trainUsingCRFs(AP)

7: evaluateResultByComparingToValidationData()

8: return predictionVector, F1-Score, Precision, Recall

Here N(P) denotes the set of nodes in path P while AP

denotes the set of all paths read from the graph. The set of

output values consists of a prediction vector as well as the F1

score, the precision and recall.
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TABLE II
DETAILS FOR QUERY Q1

node precision recall f1-score support

SPIE-AAPM Lung CT Chall... 1.0000 1.0000 1.0000 14

accuracy 1.0000 14
macro avg 1.0000 1.0000 1.0000 14
weighted avg 1.0000 1.0000 1.0000 14

V. EVALUATION

A. Runtime

This subsection deals with the consideration of the

achieved runtimes of the link prediction programmes. First,

the runtime result of the queries Q1 - Q5 is presented.

Within the programme, times are measured for all individ-

ual sections. The problematic part of the programme is the

sent2features() method. For illustration the runtime of

the time-relevant parts is shown in Figure 6. All other parts

of the programme have a negligible very small runtime. This

is especially evident for Q4. In this query, the General

Image node is in the centre, which compared to other nodes

such as Patient has already got a lot of neighbours due

to the structure of the graph. The runtime, which is almost

completely generated by sent2features(), amounts to a

total of slightly less than 11 hours.

B. Quality

The first attempts at link prediction are carried out with

single-node paths. Here the focus is initially on the patient. For

Q1 link prediction shows the association of the data with the

associated study SPIE-AAPM Lung CT Challenge. In this case

a F1-score of 1 is obtained. This prediction is very accurate,

however this is not surprising given the data. The patient node

has a very limited type and number of neighbours. Sorting by

number of common neighbours leaves only the source. This

is also reflected in the detailed look at the labels, as can be

seen in Table II.

In these tables, available labels are shown under the heading

node. Precision, recall and the F1-score are shown to the right.

The value at support indicates the frequency of the find. The

opposite results are obtained for sorting by Total Neighbours.

Here a F1-score of 0 is obtained. Thus, the prediction has

completely failed here. The result can be seen in Table III.

Again, the actual result is not surprising considering the data.

The patients have different ages and due to the small group

of individuals, clustering is unlikely.

The penultimate one-node path query is Q4. Here labels for

the node General Image are being examined. The label

selection is based on alphabetical order. From a biological

point of view, a different weighting may be more appropriate,

but several methods of label selection should be tried for sci-

entific reasons. For Q4, a nominally very good value of 0.7737

was obtained for the F1-score. The detailed consideration of

the result is presented in excerpts in Table IV. It shows that

different labels were selected for the images in the prediction,

with priority given to the label -1024. For the last query Q5

TABLE III
DETAILS FOR QUERY Q2

node precision recall f1-score support

1-414.dcm 1.0000 1.0000 1.0000 0.0
1.2.840.113704.... 1.0000 1.0000 1.0000 0.0
... ...
060Y 1.0000 0.0000 0.0000 2.0
061Y 1.0000 0.0000 0.0000 1.0
063Y 1.0000 1.0000 1.0000 0.0
... ...

accuracy 0.0000 0.0000 0.0000 8.0
macro avg 0.9730 0.8108 0.7838 8.0
weighted avg 1.0000 0.0000 0.0000 8.0

TABLE IV
DETAILS FOR QUERY Q4

node precision recall f1-score support

-0.10 1.0000 1.0000 1.0000 0
... ...
-100.70 1.0000 1.0000 1.0000 0
-1000 1.0000 0.0000 0.0000 653
-1000.00 1.0000 1.0000 1.0000 0
... ...
-1024 0.8417 1.0000 0.9141 3786

accuracy 0.8417 0.8464 0.8441 4473
macro avg 0.9988 0.7664 0.7658 4473
weighted avg 0.8660 0.8464 0.7737 4473

there is only a limited set of available nodes and edges of

the graph due to the node selection and the given data. The

programme nominally returns a very high value with an F1-

score of 0.9819. The label predicted for the node Date is

SOP_Common. The values of precision and recall compared

to the F1-score are shown for the queries Q1 - Q5 in Figure 7

and Figure 8. The former relates precision and recall to each

other. The contour lines provide a visual impression of the

corresponding F1-score. The latter shows the three values for

precision, recall and F1-score side by side,

VI. CONCLUSION AND OUTLOOK

Our studies pursued several goals. The first and second

were to create a feasible data representation schema capable

of handling clinical imaging data in a knowledge graph and

the generic approach for importing imaging data into a graph.

Neo4j provides an easy way to import large amounts of data

with bulk import and we provide the source code of our

solution online. This can be individually configured by the user

with the help of the script presented here and the associated

configuration file. The design of the graph can be very much

defined by the user. For the combination with already existing

graphs and data systems an interface can be formed with few

lines of code. To do so, only the possibly overlapping node

types have to be identified. The corresponding CSV files of

the programme presented here can be read in a subsequent

programme and the node IDs can be stored in sets. Thus, our

solution could also be integrated in analysis workflows, for

example utilising text mining.

The third goal was to present a novel approach for link

prediction utilising graph structures and applying NER and
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Fig. 6. Average runtime (in seconds) of the relevant parts of the queries Q1 - Q5.

Fig. 7. Precision recall diagram for queries Q1 - Q5.

Fig. 8. Comparison of precision, recall and F1-score of queries Q1 - Q5.
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CRFs to paths from a graph. For single-node paths, excellent

results were obtained for the selected nodes. But we could

also show the importance of data management and further

research on link prediction using graph structures. For Q1 we

could provide trivial results and this clearly underlines the need

for data literacy, understanding the structures is essential. Our

proposed approach also states the importance of an evaluation

with state-of-the art graph embedding technologies to prove

the advantage of keeping graph structures for AI approaches

on graphs as [16] proposed.

The next step would be considering multi-node paths which

will show an increasing runtime for large data sets. Querying

features from the graph in our experimental setting turned out

to be very time consuming and scales accordingly with the

amount of data. The second problem is the increasing runtime

for machine learning as the number of nodes used in the

input path grows. At the same time, the requirements for the

available main memory also increase enormously. However,

both are related not only to the length of the input path,

but also to the local environment of the paths. We assume

that sparsely populated locations of the graph allow better

predictions and provide faster results.

While our proof of concept is both functional and generic,

extending the knowledge graph, e.g. with data from text

mining on scientific documents, is feasible and just a matter of

modelling connectors to the relevant sources since the software

is prepared for running in a workflow.
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