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Abstract4The block subspace iteration method for problems

of  structural  dynamics  oriented  on  multi-core  computers  is

presented  to  extract  the  natural  vibration  frequencies  and

modes.  The  investigation  is  focused  on  multithreaded

parallelization of all principal stages of the method allowing to

determine up to several  thousand eigenpairs  even for design

models with a lot of very close or multiple eigenfrequencies.  

I. INTRODUCTION

ODERN design  finite-element  models  of  buildings

and structures usually have a dense spectrum of natu-

ral vibration frequencies. Mathematically, the problem is re-

duced to solving a partial generalized algebraic eigenvalue

problem of a large dimension
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=0 , i∈ [1 , n ] . (1)

Here K is a sparse symmetric positive definite stiffness ma-

trix,  M 3 diagonal or sparse symmetric semi-definite mass

matrix, {»i,  vi} 3 eigenpair,  N 3 dimension of the problem

(1), n 3 number of required eigenpairs.

Requirements  of  seismic  norms  to  determinate  such  a

number of eigenpairs, which will provide a sufficiently high

percentage of modal masses [1], [2] for each of the seismic

input directions, leads to the fact that for many design mod-

els, with dimensionality,  N = 2,000,000 ÷ 6,000,000 often

has to obtain several thousands of eigenpairs [3].

The vast majority of such calculations are carried out by

small and medium-sized design bureaus, so the main tool for

numerical solutions of such problems are multi-core comput-

ers with shared memory, on which the solution of such prob-

lems by conventional methods can take from several hours

to several days. Thus, increasing the performance of numeri-

cal methods for solving problem (1) for large design models

with a large number of required eigenpairs is of great impor-

tance.

Both  the  Lanczos  method  and  the  subspace  iteration

method can be seen as varieties of the Arnoldi method [4].

However, within the framework of this article, we will con-

fine ourselves to treating these methods as a kind of inverse

matrix iteration method.

In the existing FEA software for the problems of struc-

tural  dynamics,  various  versions  of  the  block  Lanczos

method with spectral transformations  [5],  [6], etc. are very

popular. The block version of the Lanczos method allows us

to confidently solve problems for  which there  are a large

number of multiple or almost multiple eigenfrequencies, in

other words, the spectrum of eigenfrequencies has the area

of condenses. Spectral transformations of type      

Mv
i
2

1

»
i
2Ã

(K2ÃM ) v
i
=0 , i∈ [1 , n ] , (2)

where  Ã - shift, first, allow us to better separate the close

eigenfrequencies,  which speeds up the convergence of the

method, and secondly, divide the desired frequency interval

to relatively small sub-intervals,  limiting the dimension of

the reduced  problem on the Krylov  subspace  even  in  the

case  when  we need  to  determine  several  thousand  eigen-

pairs. At the same time, the maximum dimension of the re-

duced problem on the Krylov subspace does not depend on

the number of required eigenpairs, which provides a quasi-

linear computational complexity of the method instead of the

quadratic computational complexity typical  for versions of

the method operating on the single frequency interval.

With  the  development  of  multi-core  computers  with

shared memory, it turned out that existing implementations

of  the  Lanczos  method  face  difficulties  in  multi-threaded

parallelization. One of the reasons that reduce the effective-

ness of parallelization is the dimensionality of Krylov's sub-

space  changing  from step  to  step.  Our  observations  have

shown that while the dimension of the Krylov subspace is

approximately within the first third of the maximum dimen-

sion in the current frequency interval, it is not possible to ef-

fectively use all the cores of the processor.

The disadvantage of a simple version of the subspace iter-

ation method  [1] (section 14-6) is the quadratic increase in

the time of solving the problem with an increase in the num-

ber of required eigenpairs, which makes it practically unac-

ceptable for the class of problems presented here.

The block version of the shifted subspace iteration method

[7] corrects many shortcomings of the previous version of

the  algorithm.  The  essence  of  the  method  is  that  the

iterations  are  performed  in  a  block of  a  fixed  dimension,

which  is  much  smaller  than  the  number  of  required

eigenpairs.   As  soon  as  converged  eigenpairs  appear  in

the  block,  the  corresponding  eigenvectors  are  placed  in

the  special  storage,  excluded  from  the  block,  and  in

their  place  are  created  new  start  vectors  that
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are linearly independent of each other and orthogonalized 
both to the remaining vectors in the block and to the 
previously converged eigenvectors. At each step of the 
method, all the vectors in the block are orthogonalized to the 
previously converged eigenvectors in order to avoid 
duplication of eigenpairs. At each step of the method, all the 
vectors in the block are orthogonalized to the previously 
converged eigenvectors in order to avoid duplication of 
eigenpairs. These orthogonalization procedures are a 
bottleneck that limits the use of this method for problems in 
which several thousand eigenpairs need to be extracted. 

A similar drawback is the version of the method of 
conjugated gradients with preconditioning and spectral 
transformations [3].  

In this article, we present a block version of the subspace 
iteration method with spectral transformations as an 
alternative to the block Lanczos method. The dimensionality 
of Krylov's subspace remains constant all the time, which 
makes it possible to effectively use the capabilities of modern 
multi-core computers. Spectral transformations accelerate the 
convergence of the method by dividing the close natural 
frequencies, and most importantly, they make it possible to 
divide the frequency interval into computationally 
independent sub-intervals and provide a quasi-linear 
dependence of the solving time of the problem on the number 
of required eigenpairs. 

II. PARALLEL BLOCK SUBSPACE ITERATION METHOD WITH A 

SPECTRAL TRANSFORMATIONS 

A. Foundation 

Before proceeding to the presentation of the proposed 
method, let us first give a simple algorithm of the subspace 
iteration method, corresponding to the one described in [1], 
but at the same time, we will take into account the impact of 
the shift Ã. Let the approximation of the eigenvectors vi

k , 
forming a rectangular matrix be known at step k 
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·ij is a Kronecker symbol, m 3 block dimension (Krylov 
subspaces dimension). Perform an iteration step with the 
inverse matrix for the expression (2): 

ø ù kk
MQQMK ýóý û1 .                                        (5) 

Matrix 1ûk
Q  contains improved approximations of 

eigenvectors compared to the matrix Qk, but K 3 ÃM and M 

orthogonality of vectors û ými
k

i ,1,1 þû
v  is lost. Therefore, 

the next step is to orthogonalize the column vectors of the 

matrix 1ûk
Q : 
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Substituting (6) in (2), we get an algebraic generalized 
eigenvalue problem in the subspace Sm formed by the vectors  

1ûk
Q : 

û ý û ýø ù û ý û ýmiii

i
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qmqmk ,            (7) 

where {k} = QTKQ, {m} = QTMQ,  qi = {qi,1, qi,2, & , qi,m}T 

is a vector of dimension m containing the expansion 
coefficients (6). Here, the upper subscript k + 1 is omitted for 
the sake of brevity. Problem (7) is equivalent to a simpler 
problem: 

û ý û ý û ýmiiii ,1,0 þýüý qmqk ,                               (8) 

which is solved by using the LAPACK procedures 
implemented in the Intel Math Kernel Library  [8]. Having 
determined at step k + 1 the approximations of eigenvalues 
and eigenvectors in subspace Sm, we obtain approximations of 
eigenvectors (Ritz vectors) in the source space of dimension 
N: 

û ý111 ûûû ý kkk
qQQ .                                   (9) 

where {q} =  {q1, q2, & , qm}. This ensures the 

K 3 ÃM and M orthogonality of the vectors û ými
k

i ,1,1 þû
v , 

since  
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where KÃ = K 3 ÃM, {kÃ}={k} 3 Ã{m}.  

Here, the central moment that ensures the convergence of 
the method is the expression (5). Stages (6) to (9) provide the 
orthogonality of the improved Ritz vectors and prevent 
duplication of eigenpairs. Let's expand the expression (5) 
according to the eigenvectors of the problem (2) and multiply 
left by vj

T:  
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vv , vi
k  is an approximation of  eigenvector 

vi in the iteration step k. Taking into account the orthogonality 
of eigenvectors and the norming conditions with respect to the 
matrix M, and also applying the expression for Rayleigh's 
quantity »i = vi

TKvi  for the problem (1), we get: 
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from which it follows that the closer the shift Ã to the 
eigenvalue »i , the faster will be the convergence of the 
iterative process k = 1, 2, &  to eigenpair {»i, vi}. Figure 1 
presents a typical pattern of convergence of eigenvalues 
around the shift Ã: the closer the eigenvalue »i  is to the shift 
Ã, the faster <on average= the Ritz pair {»k

i, vi} converges to 
the corresponding eigenpair {»i, vi} with the required 
precision.  

 
Fig.  1 Typical convergence of eigenfrequencies for 

methods based on shifted inverse iterations 

 

The phrase "on average" should be understood in the 
statistical sense, since the rate of convergence depends not 
only on the difference »i 3 Ã, but also on the selection of the 
initial approximation determined by ³i

0 coefficients. Thus, 
with the help of a proper selection of the shift value Ã, we can 
control the position of the "center of convergence" on the axis 
». The information provided is well known and is presented 
here to facilitate understanding of the further presentation. 

B. Block subspace iteration method 

The disadvantage of the algorithm outlined above is that, 
with an increase in the number of required eigenpairs, the 
dimension m of the subspace increases, which leads to a rapid 
increase in the duration of such an analysis. To overcome this 
drawback, we divide the frequency interval into the 
subintervals, keeping a relatively small value of the parameter 
m, and also use multi-threaded parallelization. Unfortunately, 
the amount of RAM of modern multi-core computers does not 
allow us to concurrently solve the plurality of problems (2) 
for different shift values Ã, as is done for distributed memory 
systems, so we parallelize the separate stages of the method. 

The following Algorithm 1 presents the proposed 
approach. Step 1 performs the starting initialization of the 
method 3 it creates m orthogonal and M 3 orthonormal 
vectors forming the rectangular matrix Q0. LeftMark and 
Rightmark correspond to the left and right borders of the 
subinterval on the axis » (Fig. 2), and no_conv_modes means 
the number of converged eigenpairs.  

 
 

 
Fig.  2 Next frequency subinterval preparation 

 
 

 
 
Algorithm 1. General algorithm of the block subspace 

iteration method with spectral transformation. 
 

1. Creation of m linearly independent vectors Q0 
according (3). Set k = 1; no_conv_modes = 0; 
LeftMark = RightMark = 0; Ã = 0. 

2. while no_conv_modes < nModes do 
3.   Check status of vectors Qk in block. 
4.   Inverse iteration step (5). 
5.   Create subspace matrices {k}k and {m}k. 
6.   Solve reduced eigenvalue problem (8). 
7.   Calculate new Ritz vectors  (9). 
8.   k++. 
9. end while 

 
Algorithm 2. Check status of vectors Qk in block 
 

1. parallel for i = 1; i <= m; ++i do 
2.   ri

k = Kvi
k 3 »i

kMvi
k  

3.   if ||ri
k||2 / ||»i

kMvi
k||2 < tol 

4.    convi = true; 
5.   else 
6.    convi = false; 
7.  end of parallel for  
8. SetShiftProc(); 
9. if Ãnew == Ã then 
10.   return; 
11. else 
12.   Ã = Ãnew; 
13. end if 
14. "»i * [LeftMark, RightMark] store {»i, vi} as a final 

results. Put: list_new_vect ± i. 
15. LeftMark = RightMark; 
16. Parallel for i * list_new_vect do 
17.   Generate new start vectors instead of stored    

  eigenvectors, orthogonalize them against all    
  remaining vectors in the block and normalize   
  vi

TMvi = 1. 
18. end of parallel for 

 
 
Loop while (steps 2 3 9) works until the number of required 

eigenpairs nModes  are defined. 
In step 3, the status of vectors in the block is checked - 

Algorithm 2. In a parallel loop for (steps 1 3 7), the residual 
vector ri

k is determined. If the condition of step 3 is satisfied, 
this means that this Ritz pair has been converged with the 
required precision set by the tol parameter, and the ith element 
of the conv array is assigned to true.  

The SetShiftProc() procedure (step 8) calculates the 
number of converged eigenpairs, starting with LeftMark until 
the first non-converged Ritz pair meets, and the position 
RightMark (Fig. 2) is determined. Thus, segment [LeftMark, 
RightMark] contains only eigenvalues for converged 
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eigenpairs. The transition to a new subinterval (change in the 
value of the shift Ã) is carried out when the following two 
conditions are satisfied: 

÷ The number of converged eigenpairs on the segment 
[LeftMark, Ã] will be equal to NoNegSignes 3 
no_conv_modes. Here, NoNegSignes is the number of sign 
changes on the main diagonal of the factorized matrix K 3 ÃM  
(the number of eigenvalues enclosed in the interval from zero 
to Ã), and no_conv_modes is the number of converging 
eigenpairs, which should be equal to the number of 
eigenvalues enclosed in the interval from zero to LeftMark 
(Sylvester's theorem of inertia).  

÷ The number of converged eigenpairs on the [LeftMark, 
RightMark] segment is not less than the specified IncrEigVect 
value.  

The first condition ensures that there are no skipped 
eigenfrequencies during the transition from one subinterval to 
another, and the second is necessary to ensure a sufficient 
number of iterations of the method for reliable prediction of 
the RightMark value. 

As soon as the above conditions are satisfied, a transition 
to a new subinterval is carried out: a new shift value is 

calculated as ø ù 2úúú üûüýónew , where »* is an 

approximation of eigenvalue locating on a value IncrEigVect 

from rightmost converged eigenvalue belonging to segment 
[LeftMark, RightMark], and »** is the next eigenvalue 3 see 
Fig. 2.  To ensure the computational stability of the proposed 
algorithm, the prediction »** must be made with sufficient 
accuracy, which depends on the dimension of the block m and 
the value of the IncrEigVect parameter. The recommended 
values of these parameters are discussed in section III, E. 

If at least one of the above conditions is not fulfilled, the 
shift value does not change, there is no transition to a new 
subinterval, the exit from Algorithm 2 (step 9) is performed 
and the iterations in this Qk block continue. Otherwise, the Ã 
shift value is changed and the transition to a new frequency 
interval is made (step 12). All converged eigenpairs in the 
[LeftMark, RightMark] segment are the final result and are 
placed in special storage on disk (step 14) and the LeftMark 
value is reset (step 15). Then, in a parallel region (steps 16 3 
18), new starting vectors are generated in the addresses of 
converged eigenvectors, orthogonalized against themselves, 
as well as against the remaining vectors in the block and 
normalized, after which we proceed to step 4 of Algorithm 1. 

If at this step k there is a change in the magnitude of the 
shift Ã, the factorization of the matrix K 3 ÃM is performed. 
Otherwise, the lower triangular matrix with the previous 
factorization is used. Forward-back substitutions are then 
performed. Multithreaded parallelization is used when 
calculating the rectangular matrix of the right parts (5) is 
performed. To factorize the matrix, the PARFES solver [9] 
designed specifically for multi-core computers with shared 
memory is used. Also, a parallel method [10] is applied to 
perform forward-back substitutions. 

 

 
Fig.  3 Subdivision the matrix Q between threads 

Calculation of projection matrices {k}k = (Qk)T K Qk and  
{m}k = (Qk)T M Qk in subspace Sm = span{vi

k * Qk} 
(Algorithm 1, step 5), is produced using multithreading. 
To do this, the matrix Q (the iteration number k is omitted) is 
divided into blocks Q1, Q2 , & , Qnp, where np is the number 
of threads and mloc = m /np is the number of vectors in each 
block Qp, p * [1, np] (Fig. 3).  If the dimension m of the 
iterated block Q is not multiple to the number of threads, then 
for the last block is taken mloc = m 3 (np 3 1);m/np, where (np 

3 1);m/np is the integer part of this expression. The mapping 
of blocks Q1, Q2 , & , Qnp onto threads is shown in Fig. 3. 
Each thread performs a task:  

û ý û ý û ýnpipip

T

ipip

T

ip ,1,, þýý MQQmKQQk .     (14) 

First, the sparse matrix K is multiplied by a dense rectangular 
matrix Bip = K;Qip, and then {kip} = QTBip is calculated. 
Similarly, the dense matrix {mip} is evaluated. 

The generalized eigenvalue problem (8) in the Sm subspace 
(Algorithm 1, step 6) is solved using the LAPACK procedure 
of the Intel MKL library [8], after which the vectors vi

k+1, i * 
[1, m] are determined (9), using a parallel version of the 
dgemm procedure from the Intel MKL library (Algorithm 1, 
step 7).  

III. NUMERIC RESULTS 

Numerical results have been obtained on computer with 12-
core Intel® Core# i939920X CPU 3.50 GHz processor, 128 
GB RAM, 64-bit Windows 10 Pro OS. This processor 
supports SIMD instructions AVX512F and FMA, has 512-bit 
registers that allow loading eight double words and 
simultaneously perform 8 multiplications and 8 additions. 

The main attention is paid to the analysis of the time of 
solving the problem and the acceleration of the main stages of 
the proposed approach with an increase in the number of 
threads. The comparison is made with the block Lanczos 
method with spectral transformations [6], developed for the 
SCAD FEA software [11] and using the same PARFES solver 
to solve systems of linear algebraic equations with sparse 
symmetric matrices as the proposed approach. In addition, a 
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multi-threaded parallelization of all the main stages of the 
Lanzos method was performed. 

Design models are taken from the collection of problems 
of SCAD Soft 3 IT company, the developer of SCAD, one of 
the most widespread FEA software for the analysis and design 
of building structures in CIS countries, which has a certificate 
of compliance with regional building codes and a license for 
use in the design of nuclear power facilities. 

A. Example 1 

Figure 4 presents a design model of multistorey building 
comprising 4,262,958 equations. 500 eigenpairs are extracted. 
Such number of eigenpairs ensures the sum of modal masses 
90% for each seismic input direction and satisfies 
requirements of the seismic building codes.  

Dimension of block is accepted as m = 96 and parameter 3   
IncrEigVect = 15. Table I depicts the total duration for the 
entire time of solving the problem of each basis stage of the 
proposed parallel block subspace iteration method (PBSI) 
depending on the number of threads. The number of threads 
does not exceed the number of physical core. This used thread 
binding to logical processors, where only one thread runs on 
each physical core. With the exclusive use of a computer for 
only one computing task, this strategy allows us to achieve 
the greatest performance and speed up the method while 
increasing the number of threads. 

 

Fig.  4 Multistorey building 4,262,958 equations. 

 
 

TABLE I. 

DURATION OF THE BASIS STAGES OF THE PARALLEL BLOCK SUBSPACE ITERATION METHOD, S 

# threads Check status  
of Qk vect. 

Factorization Resolution Subspace 
matrices 

Improved Ritz 
vectors 

Rest Total 

1 1674 4744 5358 1719 284 1568 15347 

2 1028 2386 3014 902 191 802 8323 

4 638 1259 1770 491 123 409 4689 

6 542 878 1342 365 105 298 3531 

8 501 711 1159 310 101 242 3024 

10 488 631 1024 275 92 203 2713 

12 461 544 1013 262 98 206 2584 

S12  3.63 8.73 5.23 6.56 2.89 7.61 5.94 

 
 

TABLE II. 

DURATION OF THE BASIC STAGES OF THE BLOCK LANCZOS METHOD WITH SPECTRAL TRANSFORMATIONS, S 

# threads Generation of Lanczos 
vectors 

Reorthogonalization Subspace eigenvalue 
problem 

Check of precision Total 

1 7516 3769 1230 319 13264 

2 4445 2225 1238 235 8196 

4 2741 1310 1227 214 5472 

6 2655 1374 1218 189 5029 

8 2222 945 1229 192 4480 

10 2208 936 1224 180 4360 

12 2194 937 1256 198 4343 

S12  3.43 4.02 0.98 1.61 3.05 

 
The column «Check status of Qk vect.» shows the duration 

of step 3 of Algorithm 1, the column «Factorization» 3 shows 
the duration of factorization of the sparse matrix K 3 ÃM by 
the PARFES solver [9], and the column «Resolution» depicts 
the time spent on performing multiplication of the mass 
matrix M by a rectangular matrix Qk and on forward-back 

substitutions (5). At least for the diagonal mass matrix used 
in this problem, the main time of this step is forward-back 
substitutions, since the calculation of MQk is performed in 
about 5 seconds. The column «Subspace matrices» presents 
the time of evaluation of matrices {k} and {m} (step 5, 
Algorithm 1). The column «Improved Ritz vectors» depicts 
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the time of the improved Ritz vectors evaluation Qk+1 (step 7, 
Algorithm 1), the column «Rest» demonstrates the time of all 
remaining operations which are parallelized too, and column 
«Total» 3 total time for solution of problem. Reduced 
generalized eigenvalue problem on subspace Sm (step 6, 
Algorithm 1) is solved in sequential mode, and the total 
duration of this stage for the given problem is about 0.2 s. 

The last row shows the speedup for 12 threads: S12 = T1/T12, 
where T1 is the total time of this stage on one thread, and T12 
is on 12 threads.  

The total speedup of the PBSI method is 5.94 on 12 threads, 
with the highest speedup achieved at the matrix factorization 
stage and the lowest 3 at the improved Ritz vector calculation 
stage. Taking into account that the duration of this stage is 
about an order of magnitude less than the duration of forward 
and back substitutions, we conclude that the buttlenecks of the 
proposed method are the stages "Check status of Qk vect." and 
forward-back substitutions, having a speedup 3.63 and 5.23, 
respectively. 

The forward and back substitution algorithms are presented 
in details in [10]. It also shows that the greater the number of 
right-hand sides, the higher the speedup of this algorithm with 
increasing the thread number. In the block Lanczos method 
[6], we usually have 7 right-hand sides and speedup does not 
exceed 2.5. The proposed approach has much more than 7 
right-hand sides, so the speedup of forward-back substitutions 
is higher compared with the block Lanczos method. 

Table II shows the results for the block Lanczos method 
with spectral transformations. The basis stages here are 
"Generation of Lanczos vectors", "Reorthogonalization", 
"Subspace eigenvalue problem", "Check of precision". 
Factorization of the K 3 ÃM matrix is performed with each 
change in the shift Ã. The factorization time of the matrix and 
the time of forward and back substitutions are included in the 
total time of the "Generation of Lanczos vectors" stage. The 
"Subspace eigenvalue problem" stage is executed on a single 
thread. The total speedup of the block Lanczos method was 
almost two times worse than the PBSI method, and the total 
duration of the solution on 12 threads was 1.7 times longer. 

B. Example 2 

Figure 5 presents a design model of a shopping and 
entertainment center (TRK), containing 2,442,846 equations. 
Here we use an abbreviator TRK in the original (Ukrainian) 
language. 

 
Fig.  5 Design model of a shopping and entertainment center (TRK),  

2,442,846 equations. 

Unlike the previous one, this design model, due to its low 
height, has much greater rigidity in the horizontal direction, 
which leads to slow convergence of the corresponding sums 
of modal masses. To achieve 90% of the sums of modal 
masses for each of the directions of seismic excitation, it was 
necessary to extract 2270 eigen pairs. At many parts, the 
natural vibration frequency spectrum undergoes condensation 
3 Table III. In red color, especially close eigenfrequencies are 
highlighted. 

For the PBSI method, the following parameter values are 
accepted: m = 96, IncrEigVect = 15. The duration of solving 
the problem on 12 threads is 6,729 seconds.  

The time to solve this problem by the block Lanczos 
method is 11,883 s. Thus, the proposed PBSI method was 
1.77 times faster than the block Lanczos method. 

 
TABLE III. 

FRAGMENT OF EIGENFREQUENCIES SPECTRUM 
# mode » Ë = :»  1/s f = Ë / (2Ã) Hz 

391    1418.3925    37.6616    5.9940 

392    1421.5990    37.7041    6.0008 

393    1422.8605    37.7208    6.0035 

394    1426.9157    37.7745    6.0120 

395    1427.4229    37.7813    6.0131 

396    1428.8853    37.8006    6.0162 

397    1429.2057    37.8048    6.0168 

398    1430.2163    37.8182    6.0190 

399    1432.9059    37.8537    6.0246 

400    1433.9266    37.8672    6.0268 

401    1437.4244    37.9134    6.0341 

402    1439.1556    37.9362    6.0377 

403    1439.8368    37.9452    6.0392 

404    1441.4548    37.9665    6.0426 

405    1444.9049    38.0119    6.0498 

406    1445.5251    38.0201    6.0511 

407    1450.2098    38.0816    6.0609 

408    1450.8574    38.0901    6.0622 

409    1451.5816    38.0996    6.0637 

410    1452.5786    38.1127    6.0658 

411    1454.6621    38.1400    6.0702 

412    1456.4738    38.1638    6.0740 

413    1459.8107    38.2075    6.0809 

414    1462.4419    38.2419    6.0864 

 415     1464.1232     38.2639     6.0899 
 

C. Example 3 

Figure 6 shows a design model of an industrial building 
comprising 1,807,218 equations. The bearing system of such 
a structure is the cross walls and floors (Fig. 7), which 
generates a huge number of local natural vibration modes, 
which practically do not contribute anything to the sums of 
modal masses both in horizontal directions and in vertical. To 
achieve 90% of the sum of modal masses in all directions, 
20,352 eigenpairs had to be determined for this task. 

For the PBSI method, the following parameter values are 
accepted: m = 96, IncrEigVect = 15. The duration of solving 
the problem on 12 threads is 45,819 s. The duration of solving 
the same problem by the block Lanczos method is 61,910 s. 
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Fig.  6 Design model of industrial building 3 1,807,218 equations. 

 

 

Fig.  7 Fragment of industrial building. 

 

 
Fig.  8 Sum of modal masses in each seismic input direction 

 

Fig. 8 shows the process of increasing the sums of modal 
masses with an increase in the number of eigenpairs taken into 
account in the modal analysis. Here SUM{Mx}, SUM{My}, 
SUM{Mz} are the sums of modal masses in directions OX, 
OY, and OZ correspondingly. This problem is an excellent 
test for checking the computational stability and reliability of 
methods for determining the frequencies and modes of natural 
oscillations since to achieve at least 90% of the sums of modal 
masses in the horizontal and vertical directions, it was 
necessary to extract more than 20,000 eigenvalue pairs. 

D.  Example 4. 

Design model of multistorey building is shown in Fig. 9 and 
Fig. 10. This model comprises 2,002,428 equations and has a 
complex shape of the spatial configuration. 

 

 Fig. 9 Multistorey building of complex shape, 2,002,428 equations 
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Fig. 10 Fragment of multistorey building of complex shape. 

 

 

Fig. 11 Typical natural vibration mode for one from floor slabs. 

 
A lot of local vibration modes (Fig. 11) making a very 

small contribution to the sum of modal masses turn out 
determination a large number of eigenpairs for seismic 
analysis 3 1048 eigenpairs are required to obtain 90 % of the 
modal masses sum in horizontal directions and 75% in 
vertical (Fig. 12).  This problem contains the condensation 
parts of the eigenvalue spectrum, one of which is presented in 
table IV. In red color, especially close eigenfrequencies are 
highlighted. 

Fig. 11 demonstrates typical vertical vibrations of floor 
slabs. There are many such floors in the design model, so 
there are a large number of very close natural frequencies. In 
addition, the corresponding local forms of oscillation give a 
small contribution to the seismic response of the system, so it 
is necessary to determine a large number of eigenpairs to 
obtain reliable seismic response. 
 Fig. 12 demonstrates a slow increase of the sums of modal 
masses. 
 

For the PBSI method, the following parameter values are 
accepted: m = 96, IncrEigVect = 15. The duration of solving 

the problem on 12 threads is 2,687 s. The duration of solving 
the same problem by the block Lanczos method is 4,200 s. 

 
 
 
 

TABLE IV. 

FRAGMENT OF EIGENFREQUENCIES SPECTRUM 

# mode » Ë = :»  1/s f = Ë / (2Ã) Hz 

31 2530.432 50.3034 8.006 
32 2536.1223 50.3599 8.015 
33 2542.0002 50.4183 8.0243 
34 2547.2958 50.4707 8.0327 
35 2556.1409 50.5583 8.0466 
36 2560.5829 50.6022 8.0536 
37 2567.1267 50.6668 8.0639 
38 2567.9224 50.6747 8.0651 
39 2568.2671 50.6781 8.0657 
40 2575.9373 50.7537 8.0777 
41 2580.8602 50.8022 8.0854 
42 2582.9832 50.8231 8.0887 
43 2611.8944 51.1067 8.1339 
44 2634.0931 51.3234 8.1684 
45 2673.8288 51.7091 8.2298 
46 2700.4928 51.9663 8.2707 
47 2713.0356 52.0868 8.2899 
48 2721.6674 52.1696 8.3031 
49 2732.2792 52.2712 8.3192 
50 2752.7392 52.4666 8.3503 
51 2764.7959 52.5813 8.3686 
52 2784.2313 52.7658 8.3979 
53 2789.7365 52.818 8.4062 
54 2791.1561 52.8314 8.4084 
55 2808.2844 52.9932 8.4341 
56 2809.4438 53.0042 8.4359 
57 2836.3514 53.2574 8.4762 
58 2844.4709 53.3336 8.4883 

 

Fig.  12 Sum of modal masses in each seismic input direction 

E. Reasoning about the parameters that control the 

convergence and numerical stability of the PBSI method. 

The convergence rate and computational stability of the 
proposed method are determined by the values of the 
parameters m and IncrEigVect. It is desirable that the value of 
m be a multiple of the number of threads np. Then the number 
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of vectors in each subblock Qp,  p ∈ [1,  np] (Fig. 3) will be

the  same,  which  will  favorably  affect  the  balance  of  the

computational load between threads. If the values of the pa-

rameter m are too small, the Ritz pairs located to the right of

RightMark are determined with insufficient accuracy, which

often leads to an unreliable forecast when choosing a new

value of the shift of the new Ã 3 Fig. 2. In this case, it may

turn out that at the new frequency interval,  the number of

natural  frequencies  of  NoNegSignes 3  no_conv_modes en-

closed  between  the  shift  value  Ã and  LeftMark 3  signifi-

cantly exceeds the  IncrEigVect, which often leads to a loss

of convergence of the iterative process. Another danger of

not having enough iterations in a given frequency interval is

that there will be skipped some of the natural frequencies in

the [LeftMark,  RightMark] segment, and then the condition

that number of converged eigenpairs on the segment [Left-

Mark,  Ã] must be equal to  NoNegSignes 3  no_conv_modes

(see  the  description  of  the  SetShiftProc()  procedure)  will

never be fulfilled 3 there will be an emergency interruption

of the calculations after the control number of iterations ex-

ceeds. 

Too small values of the IncrEigVect parameter lead to in-

sufficient accuracy in determining Ritz pairs (too few itera-

tions in a given frequency interval), and too large 3 to shift

the new Ã to the right boundary of the interval. 

Testing  of  a  large  number  of  different  tasks  from  the

SCAD Soft collection showed that the values of the parame-

ters m and IncrEigVect, close to optimal, are as follows: m ∈

[96, 192], IncrEigVect ∈ [10, 30]. In this case, lower m val-

ues correspond to smaller IncrEigVect values. 

It should be noted that when debugging the block Lanczos

method with  spectral  transformations  [6],  we encountered

similar problems when choosing the values of the parame-

ters that ensure the computational stability and convergence

of the method.

IV. CONCLUSION

The considered class of problems often requires determin-

ing  a  large  number  of  natural  vibration  frequencies  and

modes to satisfy to requirements of seismic codes. In addi-

tion, in many cases, due to the presence of a large number of

local oscillation modes,  there are areas of condensation of

the natural  frequency spectrum. These features lead to the

fact that the considered class of problems requires the devel-

opment of effective numerical methods for their solution.

The parallel block method of subspace iteration proposed

in this paper, designed to solve large-scale problems of de-

termining  the  natural  vibration  modes  and  frequencies  of

buildings,  structures,  and  deformable  solids  on  multi-core

computers with shared memory, demonstrates a shorter anal-

ysis time and greater speedup with an increase in the number

of  threads  than  the  block  Lanczos  method  with  spectral

transformations [6], which has been used in many industrial

software over the years.
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