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Abstract—This paper aims to analyze longitudinal data, serial
data related to different time points, in knowledge graphs.
Knowledge graphs play a central role for linking different
data. While multiple layers for data from different sources are
considered, there is only very limited research on longitudinal
data in knowledge graphs. However, knowledge graphs are
widely used in big data integration, especially for connecting
data from different domains. Few studies have investigated the
questions how multiple layers and time points within graphs
impact methods and algorithms developed for single-purpose
networks. This manuscript investigates the impact of a modeling
of longitudinal data in multiple layers on retrieval algorithms.
In particular, (a) we propose a first draft of a generic model for
longitudinal data in multi-layer knowledge graphs, (b) we develop
an experimental environment to evaluate a generic retrieval
algorithm on random graphs inspired by computational social
sciences. We present a knowledge graph generated on German
job advertisements comprising data from different sources, both
structured and unstructured, on data between 2011 and 2021.
The data is linked using text mining and natural language pro-
cessing methods. We further (c) present two different shrinking
techniques for structured and unstructured layers in knowledge
based on graph structures like triangles and pseudo-triangles.
The presented approach (d) shows that on the one hand, the
initial research questions, on the other hand the graph structures
and topology have a great impact on the structures and efficiency
for additional data stored. Although the experimental analysis of
random graphs allows us to make some basic observations we
will (e) make suggestions for additional research on particular
graph structures that have a great impact on the analysis of
knowledge graph structures.

I. INTRODUCTION

KNOWLEDGE graphs have been shown to play an impor-

tant role in recent knowledge mining and discovery, for

example in the fields of computational social sciences, digital

humanities, life sciences or bioinformatics. They also include

single purpose networks (like social networks), but mostly

they contain also additional information and data, see for

example [1], [2], [3]. Thus, a knowledge graph can be seen as a

multi-layer graph comprising different data layers, for example

social data, spatial data, etc. In addition, scientists study net-

work patterns and structures, for example paths, communities

or other patterns within the data structure, see for example

[4]. Very few studies have investigated the questions how

multiple layers within graphs impact methods and algorithms
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Fig. 1. Knowledge graph representation of German job ads, see Figure 1. In
this case the red edges build the pseudo-triangles explaining the context of
the job ad.

developed for single-purpose networks, see [5]. In addition, it

is possible to store and analyze longitudinal data in knowledge

graphs. This is an important topic in medical informatics, for

example when working with longitudinal patient records. For

example, in [6], the authors use a temporal query language

on clinical knowledge graphs. Other authors like [7] use

longitudinal patient records within a medical knowledge graph

for predictive models. Longitudinal knowledge graphs are

related to the versioning of knowledge graphs and other graph-

based structures like ontologies. Although research started

early on versioning RDF knowledge bases, see [8], only little

research has been done on this field. Some attention was

paid to the field of the evolution of data structures within

information management, see for example [9], [10], [11], and

the decentralized collaborative work on knowledge resources,

see [12], [13]. Other researchers were interested in parallel

world frameworks to analyze scenarios in knowledge graphs,

see [14]. Nevertheless, a generic framework for modeling

longitudinal data in knowledge graphs is still missing.

In this paper, we focus on an example use case from

computational social sciences. In labor market research, ex-
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tracting skill requirements from job advertisements (short: job

ads) becomes a feasible approach to observe which skills are

in demand by employers [15], [16], [17], [18]. Job ads are

one way for a company to recruit new employees. Beside

general information about the hiring company and the working

conditions, they document the current skill needs on the labor

market. For a longitudinal view on how skill demands develop,

it is necessary to build a model which is capable of not only

utilizing these data within a knowledge graph with contextual

data, but also for efficient analysis.

We present a detailed overview of the knowledge graph

representation in Figure 1. We give a detailed formal definition

and overview in the next section.

The main research question of this paper is: How can

we model longitudinal knowledge graphs on job ads for an

efficient analysis of the development of skills while preserving

all contextual data? In order to answer that question, this

manuscript investigates both the impact of shrinking triangles

in multiple layers and the runtime needed for this approach.

This paper is divided into five sections. The first section

gives a brief overview of the research question, state of

the art and related work. The second section describes the

preliminaries and background. We will in particular introduce

knowledge graphs and describe the knowledge graph models

on job ads. In the third section, we present the experimental

setting and the methods used. The fourth section is dedicated

to experimental results and their evaluation. Our conclusions

are drawn in the final section.

II. PRELIMINARIES

The term knowledge graph (sometimes also called a seman-

tic network) is not clearly defined, see [19]. In [20], several

definitions are compared, but the only formal definition was

related to RDF graphs which does not cover labeled property

graphs. However, a knowledge graph is a systematic way to

connect information and data to knowledge.

Definition 1 (Knowledge Graph). We define a knowledge

graph as mixed graph G = (E,R) with entities e * E =
{E1, ..., En} coming from formal structures Ei, like ontolo-

gies.

By using formal structures within the graph, we are implic-

itly using the model of a labeled property graph, see [21] and

[22]. Here, nodes and edges form a heterogeneous set. Nodes

and edges can be identified by using a single label or multiple

labels, using a mapping λ : V * E ³ Σ, where Σ denotes

a set of labels. We need to mention that both concepts are

equivalent, since graph databases use the concept of labeled

property graphs.

Context is a widely discussed topic in text mining and

knowledge extraction since it is an important factor in de-

termining the correct semantic sense of unstructured text. In

[23], Nenkova and McKeown discuss the influence of context

on text summarization. Ambiguity is an issue for both common

language words and those in scientific context. The challenge

in this field is not only to extract such context data, but

TABLE I
DIFFERENT LAYERS WITHIN THE KNOWLEDGE GRAPHS OF GERMAN JOB

ADS.

Content Size Structure

E1 Job Ads ca. 600,000 per year unstructured

E2 Classification of Occupations ca. 18,700 Taxonomy

E3 Sources 1 unstructured

E4 German Skill Taxonomy (AMS) va. 600 Taxonomy

E5 Tools ca. 350,000 Taxonomy

E6 Industrial Sectors ca. 1,814 Taxonomy

E7 Storage Period unstructured

E8 Regional Data unstructured

also to be able to store this data for further natural language

processing (NLP), like querying and discovery approaches, see

for example [4].

In general, for a node n * V , the neighborhood N(n)
contains all relevant contextual information. But usually in-

formation is best understood using information-triangles. Thus

every two nodes v, w * N(n) form an implicit triangle

v, n, w and when adding an additional edge (v, w) this forms

a triangle K3, see Figure 1 for an illustration. Here, the

additional edges that form pseudo-triangles are red.

Definition II.1 (Pseudo-Triangle). Let G = (E,R) be a

knowledge graph and let n, v, w * G be three nodes in G.

Moreover, let n * Ei for some i and let v, w * N(n). Then

n, v, w form a pseudo-triangle in G.

The knowledge graph on German job ads is build upon

different corpora of job ads from multiple sources. In this

paper, we will focus on a corpus from the German Federal

Employment Agency. The corpus that we use to extract skills

and tools contains approximately 600,000 job ads per year that

were advertised from 2011 to 2021. In Table I we present the

different knowledge graph layers.

Thus, combing Figure 1 and Table I, it appears that we

are working on a knowledge graph G = (V,E) with eight

different layers, thus G = E1*E2* ...*E8*T1*I1 with the

given data subsets E1, ..., E8 and the text mining results T1

and other data integrated in I1. We will now discuss how this

knowledge graph can be connected with data from different

years to build a longitudinal knowledge graph representation.

To test the efficiency of the analysis, we will focus on a

very generic question: Given a structured layer which is not

constantly changing (e.g. a taxonomy), how do the results on

unstructured data (in our case: the job ads) evolve with respect

to another structured layer (e.g. another taxonomy, for example

tools or skills)? In other words: How can we efficiently retrieve

data from a structured layer Es ordered by another structured

layer Ei when both are connected over time by different sets

of unstructured data? For the sake of simplicity, we will define

Es = E4 as skills retrieved by text mining and Ei as E2 given

by the classifications of occupations. Both sets are connected

by the job ads.
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III. METHOD

We can extend the knowledge graph with the information for

one particular time point t, in our case for a year: Gt = Et
1 *

Et
2* ...*Et

8*T t
1 *It1. With this, we can build a generic graph

model comprising multiple times T = {t1, ..., tm}: GT =
Gt1 * Gt2 * Ct1,t2 * Gt2 * Gt3 * Ct2,t3 * ...Gtm−1 * Gtm *
Ctm−1,tm

In this case, Cti,tk comprises all edge relations from Gti

to Gtj . This contains relations like isEqual if two entities

are equivalent or isSuccessor if an entity in Gtj is the

successor of an deprecated element in Gti .

Classification of Occupations

Year a1 Year an...

isEqual isEqual isEqual isEqual
isSuccessor

isSuccessor

Fig. 2. Merging maximal paths P = p1, ..., pm containing equal data in
multiple years.

Thus, a first step to shrink the volume of the knowledge

graph is to merge the multiple existence of elements in multi-

ple years. Thus, we search for maximal paths P = p1, ..., pm
in GT where pi * Ej "pi * P . The edges between pi
and pi+1 are either isEqual or isSuccessor edges, see

Figure 2. Thus for every edge (pi, pi+1) * Ctj ,tk we can either

merge pi and pi+1 if they are the same (isEqual) or leave

the isSuccessor edges. In our case we are in particular

working on E2, the classification of occupations.

This can be done with depth-first search, see Algorithm 1,

because we explicitly only use the directed subgraph induced

by R = GT

�

Ct1,t2 * Ct2,t3 * ... * Ctm−1,tm

�

. The worst-case

behavior is in O(E(R)+V (R)) and since every node pi has at

most ∆(E2) neighbors in E2 and at most N(E1) neighbors in

E1 the time complexity of merging the nodes is O(∆(E2) +
N(E1)). Thus, the runtime of this step is linear, O(n) in GT .

We denote the graph after step 1 with G1
T .

Algorithm 1 STEP-1

Require: Knowledge Graph GT with layer (tree) Et
x and

mappings Cti,ti+1
for all t * T = {t1, ..., tm}

Ensure: Shrinked G1
T

M = N(
�

i=1,...,m Ei
x) * E(

�

i=1,...,m21 Cti,ti+1
)

2: V = N(
�

i=1,...,m Ei
x)

P = []
4: for every v * Ei

x with v * V "i * {1, ...,m} do

p =DFS(M , v)

6: del(V , y) "y * p

P .add (p)

8: end for

return G1
T =

�

i=1,...,len(P ) (pi * P )

isSuccessor

Classification of Occupations

Year a1 Year an...

Job Ads

Other structured Data

isSuccessor

Classification of Occupations

a1 a2 a3 an

Job Adsn=3 n=2 n=5 n=3

Fig. 3. Merging all job ads for a given year preserving the further links to
other structured data.

In general we can make the following observations:

" Since the number of jobs in the classification schema

does not increase dramatically, we can assume N(Et
2) j

N(Et+1
2 ).

" Thus, even though a number of e1 jobs may either be

deprecated or are added as new items, the size of E1
2 in

G1
T is maxi N(Ei

2) + e1 * O(maxi N(Ei
2)).

In a next step, we can merge all job ads for a given year

preserving the further links to other structured data. Thus for

every time point t and every vt * Et
2 we merge all nodes

in N = {nt| nt * N(vt) and nt * Et
1} to a meta node at

and add an edge (vt, at) with weight |N |, see Figure 3. These

form pseudo-triangles in E1.

The runtime of this step is in O(tN(E1)N(E2) and thus

is quadratic, O(n2) in GT , see Algorithm 2. We denote the

changed graph after step 2 with G2
T and the new shrinked

nodes in E1 with E2
1 .

Before continuing with a possible third step of shrinking

graph structures, we should consider the theoretical results.

Given the question, how the description of skills in job ads

evolves in job classifications over the years, in the initial graph

GT we need to consider the following steps:

" Consider the evolution of any classifications v for all

times T = {t1, ..., tm}, runtime O(mmaxi V (Ei
2)).

" Consider all skills for any job ad in N(vt) for all times,

runtime O(V (Et
1)V (Et

4)).

Thus, the average runtime is in O(n3).For the graph with

shrinked pseudo-triangles this reduces to linear runtime:

" Consider any shrinked path p in E1
2 , runtime

O(maxi N(Ei
2)).

" Consider all skills for all times, runtime O(m).

With this third step we can reduce the data complexity, but

while in step 1 we do not lose any relevant data, in step 2 we

lose the information about specific job ads while preserving
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Algorithm 2 STEP-2

Require: Knowledge Graph GT with an unstructured layer

Et
x and a target layer Et

y containing paths in P and

mappings Cti,ti+1
for all t * T = {t1, ..., tm} and

Ensure: Shrinked G2
T

V = '
2: E2

x = '"t * {1, ...,m}
P = []

4: for every p * P in Et
y do

for every pi * P = {p1, ..., pz} do

6: for every t * {1, ...,m} do

V 2 = N(pi) + Et
x

8: add v2 to Et
x

change all edges (v̂, u)"(̂v) * V 2 and u ;* Ex,

u ;* Ey to (v2, u)
10: end for

end for

12: end for

return G2
T = (GT \ Ex) * E2

x

the information for a complete time set. Thus we can make

the following observations:

" Structured data like taxonomies and ontologies can be

shrinked without any data loss.

" Shrinking unstructured data in triangles or pseudo-

triangles always goes along with data loss of particular

data points while accumulated information might be

preserved.

" Thus, it highly depends on the initial research question

which layers and information can be shrinked to improve

the runtime of algorithms.

For the given research question, steps 1-2 are the maximum

reduction of the initial graph if considering the change for

years.

IV. EXPERIMENTAL RESULTS

Our testing environment contains a random graph with m

time points containing several graph layers. First, we have a

random tree E1
2 with 18,700 nodes and two probabilities pp

and pd denoting a rate of a changing predecessor or a deleted

node. These probabilities lead to m copies of E1
2 and their

mapping from one time point to the next as described in the

previous section.

Second, we generate m times 600,000 random nodes in

E1
1 , ...E

m
1 with equal distributed mappings to E1

2 , ..., E
m
2 as

described in the last section. In addition, these nodes receive

random edges to 600 descriptive elements. Thus, our experi-

mental setting is highly related to our real-world environment

describes in the second section.

We used 50 instances to evaluate the runtime and perfor-

mance of the algorithms presented in the last section. In Table

II and Figure 4 we show the runtime of the two optimization

steps. In general, we can see that both steps in average take

0.6 seconds.

TABLE II
RUNTIME OF STEP 1 AND STEP 2 IN SECONDS.

Step 1 Step 2

Min 0.06 0.09

Max 0.79 0.24

Avg 0.45 0.13

TABLE III
RUNTIME OF RETRIEVAL ALGORITHM ON GT AND G2

T
IN SECONDS.

GT G2

T

Min 0.17 0.01

Max 1.01 0.02

Avg 0.58 0.01

In Table III and Figure 5 we show the runtime of the

retrieval described in the last section. We can see that the

runtime of both optimization steps is nearly the same as one

retrieval on the initial graph GT . This is not surprising, since

the steps are quite similar. The retrieval on the optimized graph

G2
T is much faster and at latest with the second run of a

retrieval algorithm, we see a good improvement of runtime.

V. DISCUSSION AND OUTLOOK

This paper investigates the impact of longitudinal data in

knowledge graphs. Knowledge graphs play a central role for

linking different data. While multiple layers for data from

different sources are considered, there is only very limited re-

search on longitudinal data in knowledge graphs. We presented

an experimental environment to evaluate one generic retrieval

heuristic given different – both structured and unstructured –

data layers. The result clearly shows that the graph structures

and topology has a great impact on the efficient retrieval of

additional data stored. The initial very generic question was:

Given a structured layer which is not constantly changing

(e.g. a taxonomy), how do the results on unstructured data

(in our case: the job ads) evolve with respect to another

structured layer (e.g. another taxonomy, for example tools or

skills) evolve? In other words: How can we efficiently retrieve

data from a structured layer Es ordered by another structured

layer Ei when both are connected over time by different sets

of unstructured data? We specified three example layers to

illustrate our optimization approach on (pseudo-)triangles and

to evaluate the efficiency.

In particular, we propose a first draft of a generic model

for longitudinal data in multi-layer knowledge graphs. This

approach stores copies of the knowledge graph on multiple

time points and the mapping between nodes in one and a

following time point. Since some optimization can be done

without losing data, e.g. step 1, we propose further research

on a generic longitudinal data model to use these approaches

when building the knowledge graph. Second, we develop

an experimental environment to evaluate a generic retrieval

algorithms on random graphs inspired by computational social

sciences. This example was highly influenced by the boundary

conditions given by the real-world problem, a knowledge
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Fig. 4. Resulting runtimes of step 1 and step 2 in seconds.

Fig. 5. Resulting runtimes of retrieval algorithm on GT and G2

T
in seconds.

graph generated on German job advertisements comprising

data from different sources, both structured and unstructured,

on data between 2011 and 2021. The data is linked using text

mining and natural language processing methods. In general,

we present two different shrinking approaches for structured

(step 1) and unstructured (step 2) layers in knowledge graphs

based on graph structures like triangles and pseudo-triangles.

Here, more research needs to follow. While we have argued

that these approaches are generic and can be used for any

content, further attention for triangles and pseudo-triangles is

needed. They form a crucial factor both for understanding the

data context and for efficient retrieval of these data.

The presented approach shows that on the one hand the

initial research questions (what are the layers to shrink) and

on the other hand the graph structures and topology have a

great impact on the structures and efficiency for additional data

stored. The experimental results show promising results, but

further research is necessary to build a generic, time-efficient

representation of longitudinal data in knowledge graphs.
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[1] D. Suárez, J. M. Dı́az-Puente, and M. Bettoni, “Risks identification and
management related to rural innovation projects through social networks
analysis: A case study in spain,” Land, vol. 10, no. 6, p. 613, 2021.

[2] L. M. Berhan, A. L. Adams, W. L. McKether, and R. Kumar, “Board
14: Social networks analysis of african american engineering students
at a pwi and an hbcu–a comparative study,” in 2019 ASEE Annual

Conference & Exposition, 2019.
[3] C. Rollinger, “Amicitia sanctissime colenda,” Freundschaft und soziale

Netzwerke in der Späten Republik, 2014.
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[15] M. Stops, A.-C. Bächmann, R. Glassner, M. Janser,

B. Matthes, L.-J. Metzger, C. Müller, and J. Seitz,
“Machbarkeitsstudie kompetenz-kompass: Teilprojekt 2: Beobachtung
von kompetenzanforderungen in stellenangeboten.” [Online]. Available:
https://www.bmas.de/DE/Service/Publikationen/Forschungsberichte/
fb-553-machbarkeitsstudie-kompetenz-kompass.html

[16] Bertelsmann Stiftung and Burning Glass Technologies, “Digitalization
in the german labor market: Analyzing demand for digital skills in job
vacancies.”
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[19] D. Fensel, U. Şimşek, K. Angele, E. Huaman, E. Kärle, O. Panasiuk,
I. Toma, J. Umbrich, and A. Wahler, Introduction: What Is a Knowledge

Graph? Cham: Springer International Publishing, 2020, pp. 1–10.
[Online]. Available: https://doi.org/10.1007/978-3-030-37439-6 1

[20] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge graphs.”
SEMANTiCS (Posters, Demos, SuCCESS), vol. , no. 48, 2016.

[21] M. A. Rodriguez and P. Neubauer, “The graph traversal pattern,” in
Graph data management: Techniques and applications. IGI Global,
2012, pp. 29–46.

[22] ——, “Constructions from dots and lines,” Bulletin of the American

Society for Information Science and Technology, vol. 36, no. 6, pp. 35–
41, 2010.

[23] C. C. Aggarwal and C. Zhai, “An introduction to text mining,” in Mining

text data. Springer, 2012, pp. 1–10.
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