
Insights into Neural Architectures for Learning

Numerical Concepts from Simple Visual Data

Andrzej Śluzek

Warsaw University of Life Sciences-SGGW

ul. Nowoursynowska 166, 02-787 Warszawa, Poland

Email: andrzej_sluzek@sggw.edu.pl

Abstract—The paper reports some results on neural archi-
tectures for learning numerical concepts from visual data. We
use datasets of small images with single-pixel dots (one to
six per image) to learn the abstraction of small integers, and
other numerical concepts (e.g. even versus odd numbers). Both
fully-connected and convolutional architectures are investigated.
The obtained results indicate that two categories of numerical
properties apparently exist (in the context of discussed problems).
In the first category, the properties can be learned without
acquiring the counting skills, e.g. the notion of small, medium
and large numbers. In the second category, explicit learning of
counting is embedded into the architecture so that the concepts
are learned from numbers rather than directly from visual data.
In general, we find that CNN architectures (if properly crafted)
are more efficient in the discussed problems and (additionally)
come with more plausible explainability.

I. INTRODUCTION AND MOTIVATION

T
HE CONCEPTS of numbers and numerical properties

develop primarily (e.g. [1], [2]) from sensory experiences,

with visual inspection playing the pivotal role.

Researchers investigate the topic of learning numerical

abstractions mainly (apart from actual and prospective appli-

cations) as a challenging AI/ML problem.

Initially, the works were focused on object counting rather

than understanding the abstractions, with efforts on counting-

by-localizing sub-tasks, e.g. [3]. This was an application-

oriented approach, and some sources (e.g. [4]) indicate that

true understanding of numbers may not be even needed to

perform counting tasks in visual data.

Later, researchers expressed more interests in grasp-

ing/learning the concept of numbers and numerical abstrac-

tions. First, it was done in the context of human brain func-

tioning (e.g. [5]) but recent works focus on machine learning

aspects as well. In particular, visual data have been explicitly

used as inputs to learning algorithms and architectures, e.g. [6],

[7], [8]. Complexity of those visual inputs is usually limited

to avoid complicated image processing sub-tasks, i.e. either

binary [6], [7] or near-binary [8] low-resolution images are

used.

In this paper, we follow the same approach. Using results

of [6] and [8] as the starting point, we attempt to develop

simple neural architectures for learning the concept of numbers

(from a limited range 1 to 6) and other numerical abstractions

which can exist within such a narrow range of integers.

Examples of such abstract concepts are:

• even and odd numbers;

• small (1, 2), medium (3, 4) and large (5, 6) numbers;

• etc.

Formally, each concept is a division of integers (from 1
to 6 range) into classes. For example, enumeration from 1 to

6 corresponds to six classes (1), (2), (3), (4), (5) and (6),
even and odd numbers form two classes (1, 3, 5) and (2, 4, 6),
etc. Then, an input image should be assigned to the correct

class based on the number of dots it contains.

In Section II, we explain the proposed methodology and

overview the developed datasets. The considered neural ar-

chitectures are also briefly explained. Section III presents the

conducted experiments and achieved performances. Informal

explanations of the trained architectures are provided there

as well. The concluding Section IV highlights the most

significant facts, underlines unsolved problems and proposes

directions for the future work.

II. METHODOLOGY

A. Assumptions

In [6], two neural models are proposed for estimating

numbers of white non-overlapping rectangles (up to 10) in

small black images of 28× 28 resolution.

In [7], more general (but still simple) tasks are discussed,

i.e. estimating either the numbers of white isolated pixels or

white connected components in 256× 256 black images. The

assumed numbers of counted objects are much larger (e.g. up

to 3, 000 isolated pixels).

In [8], the task is to count isolated pixels (up to 10) in 10×
10 images. However, the images are only approximately binary

with random polarity (bright pixels on dark backgrounds or

another way around).

In this paper, the proposed scenario (based on the above

approaches) is further simplified. Images are very small (7×7)

and contain up to 6 dots. Such small numbers of dots are

motivated by a well known psychological fact that humans

can visually perceive (without explicit counting) at most 7
objects. The images are only approximately binary and their

polarity is random.

We consider both fully-connected (FcNN) and convolutional

(CNN) neural networks. This is motivated by inconlusive

reports from the past papers, where pros and cons of both

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 205–209

DOI: 10.15439/2022F48

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 205



Fig. 1. Exemplary dataset images.

TABLE I
FIRST CNN ARCHITECTURE (CNN1).

Layer Parameters Activation

input 7× 7
conv. 16× 3× 3, str=1 relu

maxpool 2× 2, str=1

conv. 16× 16× 2× 2, str=1 relu

fc 10 outputs tanh

fc 6 (or 2, or 3) outputs softmax

output 6 (or 2, or 3)

architectures are highlighted. Obviously, the considered ar-

chitectures are rather simple to reflect small size and low

complexity of input images.

B. Datasets

The developed dataset consists of 12, 000 7× 7 near-binary

images (6, 000 dark images with bright dots and 6, 000 images

of the opposite polarity). The numbers of dots range from 1
to 6 (each number in 2, 000 images).

Near-binary images are used to alleviate overfitting, and to

more realistically represent the real-world visual conditions.

Figure 1 shows a small sample of dataset images.

For the actual training and testing, the dataset is divided

into two parts of 6, 000 images each (with the same ratio of

all types of images). Only one half is used for training and

validation, while the other half is used for testing only.

C. Neural architectures

As mentioned earlier, both FcNN and CNN architectures are

considered. After extensive try-and-error tests (and partially

following the ideas from [6] and [8]) we eventually propose

two CNN and two FcNN architectures shown in Tables I- IV.

It can be noticed that (CNN1, CNN2) and (FcNN1, FcNN2)

pairs are very similar. Actually, ’variant 2’ architectures are

obtained by embedding ’variant 1’ (with 6 nodes in the

terminal layer) and adding an additional FC layer. In the

embedded ’variant 1’, its last layer is assumed to learn

numbers from 1 to 6. Thus, the terminal layer of ’variant

2’ architectures would infer the numerical abstractions from

presumably learned concepts of enumeration. This is further

explained in Section III (with some special cases separately

discussed).

TABLE II
SECOND CNN ARCHITECTURE (CNN2).

Layer Parameters Activation

input 7× 7
conv. 16× 3× 3, str=1 relu

maxpool 2× 2, str=1

conv. 16× 16× 2× 2, str=1 relu

fc 10 outputs tanh

fc 6 outputs softmax

fc 2 (or 3) outputs softmax

output 2 (or 3)

TABLE III
FIRST FCNN ARCHITECTURE (FCNN1)

Layer Parameters Activation

input 49
fc 53 outputs tanh

fc 10 outputs tanh

fc 6 (or 2, or 3) outputs softmax

output 6 (or 2, or 3)

Actually, the architectures can be much slimmer than pre-

sented here. For example, the first hidden layer of FcNN

architectures can be reduced from 53 nodes to, for example,

20 nodes. The current size is proposed to satisfy theoretical

conditions of approximation theorems.

Similarly, the number of filters in convolutional layers of

CNN architectures can be much smaller (see Section III); the

proposed numbers just provide safe margins.

III. EXPERIMENTS AND RESULTS

The proposed architectures were separately trained for var-

ious concepts, including:

• learning the concept of numbers from 1 to 6;

• differentiating between even and odd numbers;

• differentiating between medium (3, 4) numbers and other

numbers (i.e. either small (1, 2) or large (5, 6));

TABLE IV
SECOND FCNN ARCHITECTURE (FCNN2)

Layer Parameters Activation

input 49
fc 53 outputs tanh

fc 10 outputs tanh

fc 6 outputs softmax

fc 2 (or 3) outputs softmax

output 2 (or 3)

Fig. 2. Training (continuous line) and validation (circles) accuracy plots for
CNN1 learning numbers from 1 to 6.

206 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Fig. 3. Confusion matrices for FcNN1 (top) and for CNN1 (bottom) trained
to identify numbers from 1 to 6.

Fig. 4. Examples of images with incorrectly identified numbers of dots by
CNN1.

• and a few other (sometimes slightly artificial) numerical

concepts.

In the following subsections, we discuss how the architec-

tures can handle the above tasks.

A. Learning numbers from 1 to 6

This task is the only one similar to the problems discussed

in earlier papers (e.g. [4], [6], [7], [8], [9]).

We found that both CNN1 and FcNN1 architectures can

easily learn to nearly flawlessly recognize the number of dots

in test dataset images. As an example, Fig. 2 shows training

performances of CNN1.

The overall accuracies (on the test dataset, see Section II-B)

are almost the same, i.e. 99.68% for CNN1 and 99.17% for

FcNN1. However, the confusion matrices (given in Fig. 3)

indicate more plausible performances of CNN1. Errors are

located within classes with larger numbers of dots, i.e. in the

scenarios where humans can make mistakes more frequently.

Examples of some incorrectly identified images are given

in Fig. 4. At the first glance, they may look confusing even

for humans.

B. Learning even and odd numbers

In this task, classification is not directly related to magni-

tudes of numbers but to their specific quantifiers (which should

be identified by trained networks). In [5], it is argued that

in human perception knowledge of numbers makes important

contributions to acquiring meanings of such quantifiers. Our

observations confirm this conclusion.

We find that 2-output architectures of CNN1 and FcNN1

type (i.e. the hidden layer for learning numbers is missing)

are apparently unable to learn the abstraction of even and odd

Fig. 5. Training (continuous line) and validation (circles) accuracy plots for
CNN1 learning even and odd numbers.

Fig. 6. Training (continuous line) and validation (circles) accuracy plots for
CNN2 learning even and odd numbers.

numbers. The most typical accuracy for CNN1 is the random-

choice 50.00%. FcNN1 performs slightly better, reaching

60.48%. Thus, the architectures are unable to learn such

numerical abstractions.

An exemplary plot of CNN1 performances during training

is shown in Fig. 5.

When ’variant 2’ architectures are used, the situation

changes. Although accuracy of FcNN2 architecture deterio-

rates compared to FcNN1 (58.52% versus 60.48%), a signifi-

cant improvement can be noticed for CNN2. Accuracy reaches

83.32% and training is very fast, as shown in Fig. 6.

In other words, if the concept of numerical values is

embedded in the process (as explained in Section II-C) the

convolutional architecture is able to quickly generalize the

abstraction of even and odd numbers with reasonable accuracy.

This can be considered a kind-of-projection of [5] observations

onto machine learning domain.

C. Learning other numerical abstractions

The other exemplary numerical abstractions considered in

the experiments are:

• medium numbers, i.e. (3, 4) versus all other numbers,

• various classes of compact and disconnected subsets of

integers (see Table V).

In the first experiment, the overall conclusions are similar to

Section III-B. CNN1 architecture achieves results equivalent

to random choice (66.67% accuracy; a training plot shown in

Fig. 7) while FcNN can reach 74.36%.

Again, a switch from CNN1 to CNN2 architecture signif-

icantly improves performances. With the concept of numbers

embedded, CNN2 achieves almost perfect 99.38% accuracy,

and the learning curve is very steep (see Fig. 8). For FcNN2,

however, there is no real improvement.

In other experiments, various classes have been proposed

within the range 1, 6; examples are shown in Table V. We

ANDRZEJ ŚLUZEK: INSIGHTS INTO NEURAL ARCHITECTURES FOR LEARNING NUMERICAL CONCEPTS FROM SIMPLE VISUAL DATA 207



Fig. 7. Training (continuous line) and validation (circles) accuracy plots for
CNN1 learning to distinguish {3, 4} from other numbers.

Fig. 8. Training (continuous line) and validation (circles) accuracy plots for
CNN2 learning to distinguish {3, 4} from other numbers.

found that learning abilities of proposed architectures strongly

depend on whether the classes consist of compact subsets of

integers (e.g. even and odd numbers are disconnected classes).

For FcNN architectures (regardless the variant) the results

are satisfactory only if the classes are compact. Table V con-

tains a number of examples with the top accuracies obtained by

FcNN architectures (either FcNN1 or FcNN2). The accuracy is

always very high for compact classes, while for disconnected

classes the results are unacceptable (often even below the level

of random choice).

For CNN architectures the results are generally much better.

For compact classes, almost perfect accuracies can be obtained

both by CNN1 and CNN2, while for disconnected classes

only CNN2 are able to reach very high accuracies. CNN1

architectures usually struggle to go beyond the random-choice

level.

However, some interesting examples of disconnected classes

have been identified, where even CNN1 are able to score near-

perfect performances. Learning numbers divisible by 3 (i.e.

(3, 6) and (1, 2, 4, 5) classes) is one of such examples.

As expected, FcNN architectures perform rather poorly

(63.25% for FcNN1 and 64.92% for FcNN2) in this example.

However, CNN architectures can almost perfectly grasp this

abstraction, even in CNN1 variant (i.e. without the embedded

concept of numericals). Accuracy reaches 99.97% for the test

TABLE V
ACCURACY OF FCNN ARCHITECTURES IN SELECTED OTHER PROBLEMS.

Classes accuracy compact?

(1, 2)(3, 4)(5, 6) 99.1% YES

(1)(2)(3, 4, 5, 6) 99.5% YES

(1, 4)(2, 5)(3, 6) 56.1% NO

(2, 4)(1, 3, 5, 6) 74.7% NO

(3, 5)(1, 2, 4, 6) 68.3% NO

(4, 5)(1, 2, 5, 6) 74.1% NO

Fig. 9. Training (continuous line) and validation (circles) accuracy plots for
CNN1 learning numbers divisible by 3.

Fig. 10. First-layer of 3×3 filters for (from top to bottom): CNN1 for learning
1 to 6 numbers, CNN2 for learning even and odd numbers and CNN1 for
learning numbers divisible by 3.

dataset, and the learning curve is very steep (see Fig. 9).

Very similar results are obtained for another (somehow

artificial) case, where the first class consists of (2, 6) and all

other numbers form the second class.

D. Explainability issues

The complexity of proposed architectures is (deliberately)

very low to correspond to low complexity of the input data.

Therefore, it is possible to inspect the learned values of NN

parameters, and informally explain their roles in the process.

Again, the conclusions are very different for FcNN and

CNN architectures. In FcNN structures, it is hardly possible

to identify any intuitive explanations for the obtained weights.

The numbers look random, and even if some specific features

(e.g. near-zero columns in the weight matrix of the second

hidden layer) can be noticed, they do not exist in other nets

trained to learn similar concepts.

For CNN structures, however, the convolutional layers of

successfully trained architectures are almost identical. Fig. 10

shows visual representations of 3 × 3 filters of the first

convolutional layer for several such cases. It looks obvious

that in all of them only one filter plays an active role (others

are approx. averaging filters) and its apparent role is to detect

isolated pixels.

Fig. 11 presents the corresponding filters for an unsuccess-

fully trained CNN1 (see Fig. 5) for learning even and odd

numbers. Again, only one active filter can be noticed, but

its effective functionality is unclear. Thus, the failure of this

architecture can be attributed to unsuccessful building of the

first-layer filters.

Similarly, 2×2 filters of the second convolutional layer are

virtually identical for all CNN architectures, and (again) only

Fig. 11. First-layer of 3 × 3 filters in CNN1 unsuccessfully trained to
distiguish between even and odd numbers.

208 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Fig. 12. Second-layer of 2 × 2 filters for CNN architectures. They are
virtually the same for all trained CNN1 and CNN2 structures. Only one filter
(in the last row) seems to perform actively.

one of the filters seems active (see Fig. 12). Apparently, its

role is to accumulate large-magnitude instances of the first-

layer results, i.e. to effectively count the number of dots.

Thus, the inferred explanations accurately correspond to

the common-sense understanding of the investigated learning

tasks.

IV. SUMMARY

The paper presents some insights into processes of learning

basic numerical concepts from visual data (small near-binary

images containing several single-pixel dots) by using simple

FcNN and CNN architectures.

It was found that in case of concepts with classes forming

compact subsets in the domain of integers (e.g. (1), (2) and

(3, 4, 5, 6)) both FcNN’s and CNN’s can be trained to achieve

nearly perfect accuracy on test datasets. However, for dis-

tributed classes (e.g. even and odd numbers) the conclusions

are less straightforward.

For distributed classes, FcNN architectures are sometimes

able to achieve accuracies above the random-choice level,

but generally their performances are unsatisfactory. Typically,

CNN’s in CNN1 variant also do not go above the random-

choice levels. However, CNN2 architectures (where learning

numbers is embedded into a hidden layer of the net) can

achieve very high (or almost perfect) accuracies even for

distributed classes. There are, nevertheless, specific cases

where both CNN2 and CNN1 architectures can achieve almost

perfect accuracy after very short learning period (with very

steep learning curve). Further experiments and analysis are

needed to better understand this phenomenon.

In many aspects, the obtained results supplement conclu-

sions from past works on similar topics (mainly [6], [7]

and [8]). In particular, we can (partially) support opinions

from [7] about limited usefulness of fully connected archi-

tectures for counting tasks in visual data. The concepts of

using small-scale CNN’s for learning numerical abstractions

(proposed in [6]) is also confirmed.

However, conclusions from our earlier work [8] about lim-

ited capabilities of CNN architectures should be significantly

revised.

Additionally, we found that in the investigated problems

CNN architectures can be much better explained. In particular,

the weights of convolutional filters nicely correspond to the in-

tuitive understanding of the problems. In FcNN architectures,

we did not find any regularities coincidenting with the nature

of learned problems.

Last but not least, our investigations can be (distantly)

related to works discussing learning numerical concepts from

neuropsychological perspectives. For example, relations be-

tween numerical and logical quantifiers are discussed in [5],

while early stages of sensory-based counting abilities and

understanding numbers by animals (from insects to humans)

are presented in [1], [10], [11], [12] (and many other works).

We believe that similar investigations can be continued in the

domain of AI agents and systems.

REFERENCES

[1] A. J. Kersey and J. F. Cantlon, “Primitive concepts of number and the
developing human brain,” Language Learning and Development, vol. 13,
no. 2, pp. 191–214, 2017. doi: 10.1080/15475441.2016.1264878

[2] M. H. Fischer and S. Shaki, “Number concepts: abstract and embodied,”
Phil. Trans. Royal Society B, vol. 373, no. 1752, p. 20170125, 2018. doi:
10.1098/rstb.2017.0125

[3] E. Walach and L. Wolf, “Learning to count with cnn boosting,” in
Proceedings of the 14th European Conference on Computer Vision, part

II, vol. LNCS 9906, 2016. doi: 10.1007/978-3-319-46475-6_41 pp. 660–
676.

[4] S. Sabathiel, J. L. McClelland, and T. Solstad, “Emerging representations
for counting in a neural network agent interacting with a multimodal
environment,” vol. ALIFE 2020: The 2020 Conference on Artificial Life,
2020. doi: 10.1162/isal_a_00333 pp. 736–743.

[5] V. Troiani, J. E. Peelle, R. Clark, and M. Grossman, “Is it logical to
count on quantifiers? dissociable neural networks underlying numerical
and logical quantifiers,” Neuropsychologia, vol. 47, no. 1, pp. 104–111,
2009. doi: https://doi.org/10.1016/j.neuropsychologia.2008.08.015

[6] C. Creatore, S. Sabathiel, and T. Solstad, “Learning exact enumeration
and approximate estimation in deep neural network models,” Cognition,
vol. 215, p. 104815, 2021. doi: 10.1016/j.cognition.2021.104815

[7] S. Guan and M. Loew, “Understanding the ability of deep neural
networks to count connected components in images,” in 2020 IEEE

Applied Imagery Pattern Recognition Workshop (AIPR), 2020. doi:
10.1109/AIPR50011.2020.9425331 pp. 1–7.

[8] A. Śluzek, “Counting dots: On learning numerical concepts from visual
data,” Proceedings of the 3rd Polish Conference on Artificial Intelli-

gence, April 2022, Gdynia, Poland, pp. 16–19, 2022.
[9] M. Fang, Z. Zhou, S. Chen, and J. L. McClelland, “Can a recurrent

neural network learn to count things?” Cognitive Science, 2018.
[10] A. Cope, E. Vasilaki, D. Minors, C. Sabo, J. Marshall, and A. Barron,

“Abstract concept learning in a simple neural network inspired by the
insect brain,” PLoS Computational Biology, vol. 14, no. 9, p. e1006435,
2018. doi: 10.1371/journal.pcbi.1006435

[11] M. Tomonaga and T. Matsuzawa, “Enumeration of briefly presented
items by the chimpanzee (pan troglodytes) and humans (homo sapi-
ens),” Animal Learning & Behavior, vol. 30, p. 143–157, 2002. doi:
10.3758/BF03192916

[12] K. Wynn, “Children’s understanding of counting,” Cognition, vol. 36,
no. 2, pp. 155–193, 1990. doi: 10.1016/0010-0277(90)90003-3

ANDRZEJ ŚLUZEK: INSIGHTS INTO NEURAL ARCHITECTURES FOR LEARNING NUMERICAL CONCEPTS FROM SIMPLE VISUAL DATA 209


