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Abstract—An instance of a weighted Stackelberg load bal-
ancing game is given by a set of identical machines, a set of
variable-length jobs and a parameter 0 ≤ α ≤ 1. A centralized
authority, denoted the leader, selects a subset of the jobs whose
total length is at most an α-fraction of the total length and
determines their assignment on the machines. After the controlled
jobs are assigned, the remaining jobs join the schedule. They act
selfishly, each determining its own assignment.

Our work combines theoretical and experimental results for
this setting. We suggest various heuristics for the leader and
analyze their performance.

I. INTRODUCTION

I
N RESOURCE allocation applications, a set of resources

is used by a set of clients (users). For example, in job-

scheduling applications, servers process jobs; in communica-

tion or transportation networks, traffic is routed on network

links. In some settings, the users are assigned to the different

resources by a centralized authority. The centralized authority

is aware of all clients’ requests and can utilize the system in

the best possible way. Other resource allocation applications

lack a central authority and are managed by multiple strategic

users, whose individual payoff is affected by the assignment of

other users. As a result, game theory has become an essential

tool in the analysis of resource-allocation services. In the

corresponding game, every client is a selfish player who aims

at maximizing his own utilization.

In this work, we consider systems in which the two models

are combined. That is, some of the users obey a central

authority and some are selfish. The goal of the system is

to assign the centrally controlled users such that the total

system performance is optimized. We formulate this goal as

an optimization problem via Stackelberg games, in which one

player, corresponding to the centralized authority, acts as a

leader and the rest of the players, corresponding to the selfish

users, as followers. The problem is then to compute a strategy

for the leader (a Stackelberg strategy) that cause the followers

to react in a way that is as good as possible for the social

utility.

We focus on load balancing games in job scheduling sys-

tems. The users are jobs having variable weights and the

resources are machines. Every job should be assigned on a

single machine. The cost of a job depends on the total load

on its machine and the social cost is given by the load on

the most loaded machine. In centralized systems, this load

balancing scenario is the well-studied minimum Makespan

problem. It was well-studied also as a game where all the

jobs are selfish, however, it has not been studied in an

environment with a mixed type of jobs. All previous works on

Stackelberg strategies consider non-atomic (splittable) players

– every player has a neglected load and the total load can be

distributed among the machines in an arbitrary way. Thus, our

work initiate the study of Stackelberg strategies for weighted

singleton congestion games.

Our goal is to develop Stackelberg strategies that guarantee

load balancing and a low social cost. We will consider several

different models, depending on the different capabilities of the

leader.

In our model, the leader can select the jobs it controls and

its power is given by a parameter 0 f ³ f 1, such that it

can select any subset of jobs whose total load is at most an ³
fraction of the total load.

As we show, in some instances, the leader should better

exploit its power only partially and let more jobs select their

strategy selfishly. Intuitively, this is due to the fact that the

leader acts first and its assignment is irrevocable.

The scenarios we propose to study arise in real life ap-

plications that provide service to a mixture of independent

and controlled clients. For example, several companies suggest

computing services on shared machines for private users (using

cloud services) as well as local computation tasks. Similarly,

in routing problems, some users obey and consult a navigation

app, while others don’t. The navigation app acts as a leader

that determines the decisions (selected path) of some of the

clients.

A. Notation and Problem Statement

A load balancing game is given by G = ïJ ,M, {pj} "j *
J ð, where J is a set of n jobs, M is a set of m machines,

pj is the weight (also denoted size) of job j. In unweighted

games, all the jobs have the same unit size, that is, "j, pj = 1.

A Stackelberg load balancing game is given by ïG,³ð,
where G is a load balancing game and 0 f ³ f 1 denotes the

maximal fraction of the load controlled by the leader.

Let A be the set of jobs controlled by the leader. Let P =
�

j pj . We have that
�

j*A pj f ³P . A profile of a game is a

schedule s = ïs1, . . . , snð * Mn describing the machines on

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 373–382

DOI: 10.15439/2022F52

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 373



which the jobs are assigned1. If j * A then sj is determined

by the leader and if j * J \A, then sj is selected by player j.

For a machine i * M, the load on i in s, denoted Li(s), is

the total size of the jobs assigned on machine i in s, that is,

Li(s) =
�

{j|sj=i} pj . When s is clear from the context, we

omit it. It takes pj time-units to process job j on machine i.
As common in the study of job-scheduling games, we assume

that all the jobs assigned on the same machine are processed

in parallel and have the same cost, defined as the machine’s

completion time. Formally, the cost of job j in profile s is

Cj(s) = Lsj (s). The players that control jobs act selfishly,

trying to minimize the cost of the job they control. The leader

is trying to optimize some global objective function. Note that

if A = J then all the jobs are controlled by the leader and

we have a classical job scheduling problem.

The leader applies its strategy first and determines an

assignment for the players in A. Afterwards, the players in

J \ A join this partial schedule, each selecting selfishly an

assignment for its job. The jobs assigned by the leader cannot

change their assignment. The selfish jobs may change their

assignment in response to other jobs’ assignments.

For a profile s, a job j * J \A and a machine s2j ;= sj , let

(s2j , s
2
j) denote the profile obtained from s by replacing the

strategy of job j by s2j . That is, the profile resulting from a

migration of job j from machine sj to machine s2j . A profile

s is a pure Nash equilibrium (NE) if no selfish job can benefit

from unilaterally deviating from its strategy in s to another

strategy; i.e., for every job j * J \ A and every machine

s2j it holds that Cj(s2j , s
2
j) g Cj(s). The cost of a schedule

is defined to be the maximal completion time of a job, also

known as the Makespan of the schedule, that is, cost(s) =
maxj*J Cj(s).

It is well known that decentralized decision-making may

lead to sub-optimal solutions from the point of view of

society as a whole. For a game G, let S(G) be the set of

feasible profiles of G. We denote by OPT (G) the cost of a

social optimal (SO) solution; i.e., OPT = mins*S(G) cost(s).
We quantify the inefficiency incurred due to self-interested

behavior according to the price of anarchy (PoA) [16] and

price of stability (PoS) [1], [20] measures. The PoA is the

worst-case inefficiency of a pure Nash equilibrium, while

the PoS measures the best-case inefficiency of a pure Nash

equilibrium. Formally,

Definition 1.1: Let G be a family of games and let G be a

game in G. Let Υ(G) be the set of pure Nash equilibria of the

game G. Assume that Υ(G) ;= '.

" The price of anarchy of G is the ratio between the

maximal cost of a NE and the social optimum of G.

That is, PoA(G) = maxs*Υ(G) cost(s)/OPT (G). The

price of anarchy of the family of games G is PoA(G) =
supG*GPoA(G).

We now define the inefficiency measure of a Stackelberg

game.

1In this paper, we only consider pure strategies. Unlike mixed strategies,
pure strategies may not be random or drawn from a distribution.

Definition 1.2: Let ïG, ³ð be a family of Stackelberg games

where G is a family of games and let G be a game in G. Let

Υ(G,³) be the set of pure Nash equilibria of the game ïG,³ð.
Assume that Υ(G,³) ;= '.

" The price of anarchy of ïG,³ð is the ratio between the

maximal cost of a NE and the social optimum of G.

That is, PoAL(G,³) = maxs*Υ(G,α) cost(s)/OPT (G).
The price of anarchy of the family of Stackelberg games

ïG, ³ð is PoAL(G, ³) = supG*GPoAL(G,³).

B. Related Work

The two extreme cases, of A = J and A = ' are well

studied. The case A = J is the classical minimum makespan

problem, while the case A = ' is the classical load balancing

game.

The minimum makespan problem is an NP-hard problem

and has a rich collection of approximation algorithms. For

identical machines, the simple greedy List-scheduling (LS)

algorithm [10] provides a (2 2 1
m
)-approximation to this

problem. A bit better approximation ratio of ( 43 2 1
3m ) is

guaranteed by the Longest Processing Time (LPT) algorithm

[11]. A PTAS for the minimum makespan problem on identical

machines is given in [12]. For related machines (with various

speeds), List-scheduling guarantees Θ(m)-approximation [4]

and a PTAS is presented in [6].

Load balancing game consist of a set of jobs (players) and a

set of machines. Each job is controlled by a selfish agent who

aims to minimize his cost - given by the load on the machine

it is assigned to ([21]). The concept of the price of anarchy

(PoA) was introduced by Koutsoupias and Papadimitriou in

[16]. They proved that the price of anarchy of job scheduling

games is 22 1
m

. In [7], Finn and Horowitz presented an upper

bound of 22 2
m+1 for the price of anarchy in load balancing

games with identical machines. Czumaj and Vöcking [5] gave

tight bounds for related machines that grow as the number of

machines grows.

Other related work consider Stackelberg strategies for

resource allocation games with identical players and non-

decreasing latency functions which can vary between the

resources. In these games, the leader is characterized by the

fraction ³ * [0, 1] of the players it controls and an optimal

allocation can be computed in polynomial time. Our model

differs from the previous studies as we do not assume the

players to have identical weight or strategy space, hence, the

leader is characterized by the specific set of players it controls

and calculating a socially optimum assignment is an NP-hard

problem.

For routing games on parallel networks for with non-

decreasing latency functions, it is known that computing an

optimal Stackelberg strategy is NP-hard. There are two known

approximation algorithms for the case of splittable (non-

atomic) symmetric games with non-decreasing latency func-

tions presented by Roughgarden in [18]; The Scale strategy

which simply employs the optimal configuration scaled by

the fraction of coordinated players . The best bound known

for Scale PoA is 4
3 2 X

3 where X = (12
:
12α)(3

:
12α+1)

2
:
12α+1
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[13]. The LLF (Largest Latency First) strategy presented by

Roughgarden in [18] assigns the controlled players to the

largest cost strategies in the optimal configuration. The best

known upper bound, achieved by Karakostas and Kolliopoulos

[13], is equal to 4
3 for ³ f 1

3 and
2(12α2)

22α2
:
4α23α2

for ³ > 1
3 .

Subsequently, Kumar and Marathe [17] presented a fully

polynomial-time approximation scheme for the problem of

computing an optimal Stackelberg configuration on parallel

links with polynomial latencies. Stackelberg routing in arbi-

trary networks is studied in [2].

The work mostly related to our study considers games with

unsplittable (atomic) flows with non-decreasing latency func-

tions. In these games, different machines may have different

latency functions, that are not necessarily linear. The players

are identical, but they do have a non-splittable constant size.

Thus, the problem of calculating the optimal assignment is

polynomially solvable, contrary to our model. Fotakis [8]

studied LLF and a randomized version of Scale and gave upper

and lower bounds for them. He also introduced the Stackelberg

strategy ¼-Cover which assigns to every resource either at

least ¼ or as many coordinated players as the resource has in

the social optimum. Finally, he also gave upper bounds for

strategies obtained by combining ¼-Cover with either LLF or

Scale and upper bounds for games played on parallel links.

Vittorio and Vinci [3] then presented improved bounds for

the three Stackelberg strategies studied by Fotakis [8]. For

LLF they showed PoA of exactly 20211α
8 for ³ * [0, 4

7 ] and
423α+

:
4α23α2

2 for ³ * [ 47 , 1]. For ¼-Cover they showed that

the PoA is for affine functions is 4λ21
3λ21 and 1 + 4λ+1

4λ(2λ+1)
for linear ones. Finally, for Scale they give a bound of

1 + (12α)(2h+1)
(12α)h2+αh+1 , where h is the unique positive integer

such that ³ * [rL(h), rU (h)], with rL(h) =
2h223
2(h221) , rU (h) =

2h2+4h21
2h(h+2) and rL(1) = 0.

To the best of our knowledge our work is the first to consider

a model with unsplittable variable size jobs.

C. Our Results

Let ïG,³ð be a Stackelberg load balancing game. The leader

aims to minimize the makespan of the schedule achieved after

the addition of selfish jobs. We consider two questions:

1) How should the leader choose the jobs it controls?

2) How should it schedule them on the machines?

In Section II, we present results for games with two job

sizes, that is, for all j * J , pj * {1, p}. First, in Section

II-A we characterize the social optimum in these instances

in leader-free settings. In Section II-B, we consider settings

where the leader must exploit all of its power and we show

that it may result with a worst schedule than a NE in a

leader-free environment. In Section II-C we show that when

³ g min{n1

P
,
npp

P
} the leader can guarantee an optimal NE.

Furthermore, we show that for every ³ g 0, for every game

G with two job sizes, PoAL(G,³) f 1 + p21
OPT (G) .

In Section III, we analyze the PoAL as a function of ³ and

compare it to the PoA in a leader-free game. We show that for

³ < 1
m+1 , PoAL(G, ³) = PoA(G). We also show a lower

bound of ³ g 1
m

from which we can guarantee PoAL(G, ³) <
PoA(G). Furthermore, we present and analyze two strategies

for choosing and scheduling the controlled jobs.

In Section IV, we present the leader’s heuristics for both

choosing the controlled jobs and assigning them to machines.

In Section V we present our experimental results.

We conclude in Section VI, where we summarize the work

and suggest some directions for future work. Due to space

constraints, some of the technical proofs are omitted.

II. INSTANCES WITH TWO JOB SIZES {1, p}

In this section, we consider the class G2 of game instances

with only two different job sizes, w.l.o.g., 1 and p. Formally,

G * G2 if there exists a constant p > 1 such that "j * J ,

pj * {1, p}. We denote by 3-job a job of size 3. Let n1 and

np denote the number of 1-jobs and p-jobs, respectively. It is

easy to see that LPT algorithm is optimal for any G * G2.

A. Social Optimum in Leader-Free Games

We first provide some simple observations regarding the

social optimum and leader-free games in G2.

First, we denote rG to be the number of machines with

exactly +np

m
, p-jobs on them on a LPT schedule. Thus, rG =

np mod m when
np

m
;* N and there are m2rG machines with

+np

m
, p-jobs. Also, let h = +np

m
,, meaning, np = hm+ rG.

Proposition 2.1: For every load balancing game G * G2,

OPT (G) =

�

+np

m
,p if n1 f (m2 rG)p and np > 0

+ P
m
, otherwise

Proof: Consider an optimal LPT schedule of G * G2. If

np > 0 then LPT first schedules all the p-jobs in a balanced

way. The makespan after this stage is +np

m
,p. For the makespan

to remain +np

m
,p, the number of 1-jobs must be at most (m2

rG)p, since otherwise,
n1+npp

m
> +np

m
,p. If n1 > (m2 rG)p,

then the number of 1-jobs is sufficient to perfectly balance the

load on the machines, up to a gap of 1, hence, the resulting

schedule has a makespan of + P
m
,.

Proposition 2.2: For every load balancing game G * G2, if

PoA(G) > 1, then in every sub-optimal NE s, every machine

a with La(s) > OPT (G) processes only p-jobs.

Proof: Let G * G2 such that PoA(G) > 1. Let s be a NE

of G such that cost(s) > OPT (G). Let a be a machine with

La(s) > OPT (G). By the pigeonhole principle, there must

be a machine b for which Lb < OPT (G). Hence, La(s) >
Lb(s)+1. Machine a processes only p-jobs, as otherwise, any

1-job on machine a would benefit from migrating to machine

b, contradicting the stability of s.

Next, we characterize instances for which every NE is op-

timal. First, we calculate some useful values. Denote G * G2

to be a game with n1 > (m2 rG)p. In order to calculate the

value of OPT (G) we take s to be an LPT schedule which we

know is optimal. Each machine has at least h p-jobs on it and

there are m2 rG machines with exactly h which has exactly

(m2 rG)p 1-jobs scheduled on them since OPT (G) > +np

m
,.

Thus, we have np p-jobs and (m 2 rG)p 1-jobs in order to

have all the machines with load of +np

m
,. Hence, there are
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more n1 2 (m2 rG)p 1-jobs in J and the maximal load they

reach is +n12(m2rG)p
m

,. Denote this value to be BG and we

get in total OPT (G) = + P
m
, = +np

m
,+BG.

For some schedule s2 if there is a machine i with Li(s
2) >

OPT (G) then it must be that there are only p-jobs on i. The

number of p-jobs on i is +np

m
, + +BG

p
, + 1, meaning, the

number of p-jobs that fits in a machine with load OPT (G)
and additional 1 p-job. We denote the number of p-jobs on

i to be CG. Using the above definitions, we can characterize

instances for which every NE is optimal (proof omitted).

Proposition 2.3: For every load balancing game G * G2,

PoA(G) = 1 iff at least one of the following conditions holds:

1) np f 1
2) OPT (G) = +np

m
,p

3) OPT (G) > +np

m
,p and n1 < (2(np 2 CG) mod m2

1)p or CGp > + (np2CG)p+n1

m21 ,+p or (npp21)(m21) f
n1

B. The Leader Controls Maximal Load from ³P

In this section we assume that the leader must fully exploit

its power, that is, the leader must control a subset of jobs

whose total size is maximal among subsets of total size at

most ³P . We assume that the leader has the computational

power to identify such a subset. In particular, if there exists

a subset of the jobs with total size ³P , then the leader must

control such a subset. A game in which the leader must control

such a subset is denoted ïG,= ³ð.
The definition of PoAL is adjusted to fit this case as follows:

Definition 2.1: Let ïG,= ³ð be a family of Stackelberg

games, and let G * G. Let Υ(G,= ³) be the set of pure Nash

equilibria of the game ïG,= ³ð. Assume that Υ(G,= ³) ;= '.

" The price of anarchy of ïG,= ³ð is the ratio between the

maximal cost of a NE and the social optimum of G. That

is, PoAL(G,= ³) = maxs*Υ(G,=α) cost(s)/OPT (G).
The price of anarchy of the family of Stackelberg games

ïG,= ³ð is PoAL(G,= ³) = supG*GPoAL(G,= ³).

We first show that controlling the maximal possible load

may not always minimize the PoAL.

Proposition 2.4: There exists a game G * G2 and 0 f ³ f 1
such that PoAL(G,= ³) > PoA(G).
Proof: Let G be a weighted Stackelberg load balancing

game with m = 2, p = 4, np = 3 and n1 = 2 and let

³ = 5
14 . Let J = {j1 . . . j5} where p1 = p2 = p3 = 4 and

p4 = p5 = 1.

We have P = 14, thus, the leader must control jobs of total

size 5. This implies that the leader controls one 4-job and

one 1-job. W.l.o.g. the leader controls jobs j1 and j4. Figure

1(a) presents an optimal schedule of J . OPT (G) = 8 and by

Proposition 2.1 PoA(G) = 1. We show that PoAL(G,= ³) >
1. If the leader schedules both of the jobs on the same machine,

w.l.o.g., on machine m1, then a possible NE is depicted in

Figure 1(b). We have L1(s) = 9 and L2(s) = 5. The only job

that may benefit from a migration is the 1-job on m1. However,

this job was assigned by the leader and cannot change its

assignment.

If the leader schedules each of the two controlled jobs on a

different machine, w.l.o.g., s1 = 1 and s4 = 2, then a possible

NE is a one where j2, j3 are scheduled on m1 and j5 on m2.

We have, L1(s) = 9 and L2(s) = 5 as depicted in Figure

1(c). The only job that may benefit from a migration is the

1-job on m1. However, this job was assigned by the leader

and cannot change its assignment.

Hence, PoAL(G) = 9
8 > 1 = PoA(G).

Fig. 1. PoAL(G) > PoA(G). (a) optimal and worst case schedule with
only selfish jobs, (b),(c) possible NE profiles with controlled jobs

We show that there is no constant ³ < 1 such that

controlling ³ of the total load is sufficient to guarantee an

optimal assignment.

Theorem 2.5: For every ÷ > 0 and every p > 1, there exists a

load balancing game G * G2 such that PoAL(G,= ³) g 1+ 1
p

for ³ g 12 ÷.

Proof: Given ÷, p, let m g 3 be an integer such that 2p21
m

f
÷ and let ÷2 = 2p21

pm
. Let G be a game on m machines. Let

n1 = p and np = m 2 1. Thus, P = pm. Since the leader

controls a fraction 12 ÷2 of the total load and ÷2P = 2p21, it

must be that the leader does not control exactly one p-job and

p 2 1 1-jobs, that is, A consists of a single 1-job and m 2 2
p-jobs.

In every optimal schedule for G, all the machines have load

p. Specifically, on m2 1 machines there is one p-jobs and on

one machines there are p 1-jobs. Thus, OPT (G) = + P
m
, = p.

In order to achieve an optimal solution, the leader must

schedule the jobs in A in a sub-assignment of an optimal

schedule, since otherwise it cannot be completed to an optimal

schedule. We show that the leader cannot schedule the jobs of

A such that any stable addition of the selfish jobs is optimal.

The only possible assignment for the leader, is to schedule

m 2 2 p-jobs on m 2 2 machines and the single 1-job on

another machine. After the assignment of A, there is an empty

machine. A possible stable assignment of the selfish jobs is

produced by adding one p-job to the machine with load 1 and

assigning the p2 1 1-jobs on the empty machine. (see Figure

2)

In this case, it is easy to see that the resulting schedule is

stable against deviations of the selfish jobs, thus, the resulting

schedule has cost p+ 1 and PoAL = 1 + 1
p

.
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Fig. 2. The only optimal Stackelberg strategy of the controlled (shaded) jobs
and a possible non-optimal stable completion of the assignment by the selfish
(light) jobs.

C. Games with Optional Control

As shown in section II-B, forcing the leader to fully exploit

its power may be harmful. We therefore consider next the more

flexible and reasonable setting in which the leader may choose

the amount of load it controls out of the maximal allowed

fraction ³.

Theorem 2.6: For every game ïG,³ð with G * G2 and

³ g min{n1

P
,
npp

P
} it holds that PoAL(G,³) = 1.

Proof: Let G * G2. If ³ g npp

P
, the leader may choose to

control all of the p-jobs and none of the 1 jobs. If ³ g n1

P
,

it can choose to control all of the 1-jobs. The leader would

schedule the controlled jobs in a sub-assignment of an optimal

schedule. Since all of the selfish jobs have the same size, they

will complete the assignment in a balanced schedule, which

is optimal.

Theorem 2.7: For every ³ g 0 and G * G2, PoAL(G,³) f
1 + p21

OPT (G) .

Proof: Let G * G2 be a weighted Stackelberg load balancing

game. Assume that the leader assigns the controlled jobs in a

sub-assignment of an optimal schedule. We show that for any

completion of this sub-assignment to a NE, s, it holds that

cost(s) f OPT (G) + p2 1.

Assume by contradiction that there is a machine mi with

Li(s) g OPT (G)+p. By Proposition 2.2 the only selfish job

on mi are p-jobs. Also, since the leader schedule the jobs in

a sub-optimal assignment then there is at least one selfish job

j on mi. By the pigeonhole principle there is a machine mi2

with Li2 < OPT (G). Thus, j would benefit from migrating

to mi2 and s is not stable.

III. INSTANCES WITH ARBITRARY JOB SIZES

Algorithm 1 presents a strategy for the leader, given the job

sizes and the fraction of load 0 f ³ f 1 that the leader may

control. Recall that P =
�

j pj . Thus, the leader may choose

to assign any subset of jobs of total load at most ³P . We

assume that the leader has unlimited computational power, in

particular, it may solve NP-hard problems.

Algorithm 1 - A strategy for assigning the controlled jobs on

m machines
1: Sort the jobs such that p1 g · · · g pn
2: Let k be the maximal index for which

�

jfk pj f ³P .

3: Assign the k first jobs in a way that minimizes the

maximal load on a machine.

Claim 3.1: Algorithm 1 gives a (1+
12 1

m

1++ k
m

, )-approximation.

Proof: The analysis is similar to the analysis of the PTAS

for the minimum makespan problem [9]. Let s2 be the schedule

of the k longest jobs and let s denote the NE profile after the

selfish jobs join. If cost(s2) = cost(s) then s is optimal for

G. Otherwise, cost(s) g OPT (G).

Let j be the job determining cost(s). Since s is NE,

every machine has load of at least cost(s) 2 pj . Therefore,

P g m(cost(s) 2 pj) + pj . Also, since the jobs are sorted

in nonincreasing order of processing times, we have that

pj f pk+1 and therefore, P g m · cost(s) 2 (m 2 1)pk+1.

Furthermore, a lower bound for the optimal solution is a

perfectly balanced schedule, thus, OPT (G) g P
m

, which

implies that cost(s) f OPT (G) + (12 1
m
)pk+1.

Next we bound pk+1 in terms of OPT (G). To obtain such a

bound, consider the k+1 longest jobs. In an optimal schedule,

some machine is assigned at least +k+1
m

, g 1 + + k
m
, of these

jobs. Since each of these jobs has processing time at least

pk+1, we conclude that OPT (G) g (1 + + k
m
,)pk+1, which

implies that pk+1 f OPT (G)

1++ k
m

, and finally,

cost(s) f OPT (G)(1 +
12 1

m

1 + + k
m
,
)

Our next results identify the threshold fraction ³, such that

controling less than fraction ³ may not be helpful at all while

controlling at least fraction ³ is guaranteed to be beneficial.

Theorem 3.2: If ³ < 1
m+1 then PoAL(G, ³) = PoA(G).

Proof: Recall that PoA(G) = 22 2
m+1 . We show that there

exists a game G for which PoAL(G,³) = 22 2
m+1 for every

³ < 1
m+1 .

Given m, the set of players in G consists of m22m jobs of

size 1 and two jobs of size m. Thus, P = m2+m. OPT (G) =
m + 1 achieved by assigning the two long jobs on different

machines and balance the load with the unit jobs.

Assume the leader controls a fraction ³ < 1
m+1 of the load.

Thus, it controls load less than m, implying that it controls

at most m2 1 unit jobs. Therefore, after the leader schedules

the controlled jobs, there is an empty machine m1.

In a possible NE schedule s the two m-jobs are assigned

on m1 and all of the unit jobs are balanced on the remaining

machines, each having load m.

We show that s is NE. Clearly, none of the unit jobs on

machine i ;= 1 may benefit from a migration since Li(s) = m
and L1(s) = 2m. Moreover, since for every i ;= 1 Li(s) = m
and there are only two m-jobs scheduled on m1, they will not

benefit from a migration.

Therefore, for any ³ < 1
m+1 we have a NE s with cost(s) =

2m. Thus, PoAL(G,³) = 2m
m+1 .

In order to show that controlling a fraction ³ g 1
m21

guarantees a reduced equilibrium inefficiency, we characterize

instances that achieve the worst PoA. We first show that every

optimal solution must be perfectly balanced and then that there

are at least m relatively short jobs.

Claim 3.3: For every game G with PoA(G) = 2m
m+1 ,

OPT (G) = P
m

.
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Proof: Let G be a game with PoA(G) = 2m
m+1 and let

r = OPT (G)
m+1 . Let s be a schedule such that cost(s) = 2mr.

Therefore, there is a machine Ma with La(s) = 2mr.

Assume by contradiction that OPT (G) > P
m

, thus, P <
r(m2 +m) then

�

i ;=a Li(s) < r(m2 2m). Therefore, there

is a machine b ;= a with Lb < rm. Also, since La(s) = 2mr
and OPT (G) = r(m + 1) it must be that Ma processes at

least two jobs and the shortest job on Ma has size at most

rm. By migrating to Mb, the shortest job on Ma will reduce

its cost below 2rm, contradicting the stability of s.

Theorem 3.4: If ³ g 1
m

then PoAL(G, ³) < 22 2
m+1 .

Theorem 3.5: If the leader controls m jobs, PoAL(G) <
PoA(G).

Proof: Let G be a load balancing game with PoA(G) = 22
2

m+1 and m g 3 and let s be the schedule for which cost(s) =

(22 2
m+1 )OPT (G). Denote i to be a machine with Li(s) =

cost(s). Also, Li(s) 2 OPT (G) = (2 2 2
m+1 )OPT (G) 2

OPT (G) = (12 2
m+1 )OPT (G) and for m g 3 we get Li(s)2

OPT (G) g OPT (G)
2 . Since Li(s) > OPT (G) there must be

a machine i2 with Li2(s) < OPT (G). Therefore, i contains

two jobs with pj >
OPT (G)

2 , since otherwise, s is not NE.

Moreover, there are at most m jobs with pj >
OPT (G)

2 since

otherwise, for every schedule s2 there must be a machine i2

with Li2(s
2) > OPT (G) and the optimal value of G can not

be achieved. Contradicting the definition of OPT (G).

Let A be the group of jobs with pj >
OPT (G)

2 . If the leader

controls A, since |A| f m, it may schedule each job on a

different machine. Let s2 be the resulted schedule s2 after the

selfish jobs reach NE.

We show that the schedule s2 is a NE for a game with all

selfish jobs. Assume there is a job j scheduled on machine a
that may benefit from a migration. Then since all of the jobs

with p f opt(G)
2 are satisfied, it must be that pj >

OPT (G)
2 and

there is a machine b with Lb(s
2) < OPT (G)

2 . Also, machine

b has an additional job j2 scheduled on it, since otherwise j
is the only job on a and it may not benefit from a migration.

It must be that pj2 f
OPT (G)

2 since the leader scheduled all

of the larger jobs on distinct machines. Thus, j2 may benefit

by migrating to b. Contradicting the stability of the jobs with

sizes smaller than
OPT (G)

2 .

Since s2 is a NE then it must be that cost(s2) f (2 2
2

m+1) )OPT (G). Also, we showed that in every NE with cost

(2 2 2
m+1) )OPT (G) it must be that there is a machine with

two jobs larger than
OPT (G)

2 . Thus, since s2 does not satisfy

the condition, cost(s2) < (22 2
m+1) )OPT (G).

Algorithm 2 presents a strategy for the leader, given a

fraction ³, which is the load of jobs the leader control.

Algorithm 2 - A strategy for finding an approximation for a

schedule with m machines
1: Sort the jobs such that p1 g · · · g pn
2: Assign the k first jobs such that

�k

i=1 pi f ³P in First-Fit

with limit of C7.

Theorem 3.6: For every ³ f m
m+1 , Algorithm 2 gives

PoAL(G, ³) g 22 2
m+1 .

Proof: Given m, let G be a game for which the set of

players in G consists of m jobs of size m and m jobs of size

1. Thus, OPT (G) = m+1 is achieved in a balanced schedule

and PoA(G) = 2 2 2
m+1 . Let ³ f m

m+1 be the fraction of

controlled load. Therefore, the leader controls at most m2 1
jobs with size m.

If C7 g 2m, if the leader controls only one job, then the

cost after the selfish jobs join may be the worst case. Other-

wise, the leader assigns at least two m-jobs on a machine. in

both case cost(s) g 2m and PoAL(G,³) g 22 2
m+1 .

If C7 < 2m the leader assigns only one m-job on at most

m 2 1 machines. Let M1 be one of those machines. In a

possible NE schedule s a selfish m-job is assigned on M1,

the selfish m-jobs are assigned on different machines and all

of the unit jobs are assigned on a single machine. Therefore,

each machine having load m except M1, with L1(s) = 2m.

Thus, PoAL(G,³) = 22 2
m+1 .

IV. OUR HEURISTICS

In this section we describe the heuristics we have designed

and implemented. An instance in our experiments is character-

ized by a set of jobs, a number of machines and two different

heuristics. The first defines the leader’s strategy and depends

on the fraction of load it controls and the second defines

the selfish players behaviour. We describe each of these two

classes of heuristics separately.

A. Leader’s Strategy

A leader’s strategy consists of two steps: (i) Choosing the

controlled jobs, (ii) Scheduling the controlled jobs. In this

section we describe the heuristics we propose for these steps.

Note that the leader’s strategy is independent of the selfish

jobs’ behaviour, however, the leader may benefit and adjust

its heuristic if it is known in advance how the selfish jobs will

act after it is done assigning the controlled jobs.

1) Choosing the Controlled Jobs: Given a fraction 0 f ³ f
1, the leader needs to choose the jobs it controls. Recall that

P =
�

j pj . Given 0 f ³ f 1, the leader may control jobs of

total load at most ³P . We implemented three simple heuristics.

In the first heuristic, denoted Pick Smallest, the leader sorts the

jobs in non-decreasing order of size and adds jobs according

to this order as long as their total size is at most ³P .

In the second heuristic, the leader sorts the jobs in non-

increasing order. For choosing the controlled jobs there are

two options: it may choose the largest jobs prefix of this sorted

set whose total size is at most ³P and stop when the next job

can not fit, we denote this heuristic Pick Largest - Stop, or

it may add jobs according to the sorted order and skip jobs

whose addition will make the total load more than ³P , we

denote this strategy Pick Largest - Skip.

For example, assume the jobs sizes are {1, 2, 3, 4} and let

³ = 1
2 . Using Pick Smallest, the leader controls jobs of sizes

{1, 2}, in Pick Largest - Stop, it controls only the job of size

4 and in Pick Largest - Skip it controls jobs of sizes {4, 1}.
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2) Leader’s Scheduling Strategy: Given the set of con-

trolled jobs, the leader’s next mission is to schedule them on

the machines. We assumed the leader has limited computa-

tional power, meaning, it cannot solve NP -hard problems and

in particular, it cannot calculate an optimal schedule for the

jobs.

The first algorithm we implemented returns an LPT sched-

ule. Meaning, the leader first sorts the controlled jobs in a

non-increasing order. Next, it assigns one job at a time to a

least loaded machine. We denote this heuristic Leader’s LPT.

The second algorithm uses the bin packing algorithm First

Fit. We denote this heuristic Leader’s FF. The bin pack-

ing problem is an optimization problem, in which items of

different sizes must be packed into a finite number of bins

or containers, each of a fixed given capacity, in a way that

minimizes the number of bins used. First Fit algorithm packs

each item into the first bin where it fits, possibly opening a

new bin if the item cannot fit into any currently open bin.

We consider the machines as bins and the jobs as items.

Let L =
�

j*J
pj

m
. Clearly, L is a lower bound on OPT . In

our heuristics, the bins’ capacity is determined to be µL for

different values of µ * {0.9, 1, 1.1}. The leader sorts the job

on non-increasing order and then uses First Fit with the chosen

bins capacity to schedule the controlled jobs on the machines.

If some job cannot fit into any machine without an overflow

beyond µL (this may happen if ³ is relatively large), then the

jobs is assigned on a lightly loaded machine.

B. Selfish Player’s Strategies

The selfish players behaviour also has significant impact on

the results. We considered two methods according to which

the selfish players reach a NE.

In the first method the selfish players are added to the game

sequentially, each added to a least loaded machine at that time.

The jobs are considered in LPT order. We denote this

strategy Player’s LPT. We claim that in this case, after adding

the selfish players, the schedule is stable against deviation

of the selfish players. The proof of the following claim

follows from the analysis of LPT for classical load balancing

games [21].

Claim 4.1: LPT algorithm for non-empty machines produces

a NE for the selfish jobs.

In the second method the jobs are added greedily in arbitrary

order and then we use Best Response Dynamics (BRD). The

best response dynamics is one of the most elementary methods

in game theory. Using Round Robin according to the jobs

assignment order. Each player at its turn tries to improve its

state. If there is a machine for which the player may benefit

from a migration, it will migrate to a most beneficial option.

Otherwise, it stays on the same machine. The algorithm stops

when non of the players has a beneficial migration. It is known

that BRD algorithm converges to a NE when starting the

algorithm with empty machines. The discussed case of adding

players to non-empty machines is a sub-problem of it and

achieves NE similarly.

V. EXPERIMENTAL RESULTS

Our instances consist of 20 machines and 100 jobs. It is

common to use exponential times for job processing times as

it is often a good approximation of service times [19]. In order

to work with integers, we used geometrical distribution and

chose parameter 0.13 which provides instances with mostly

small jobs, with an amount of larger jobs that allows many

combinations of equilibrium with different makespan values.

Diversity of job sizes and relatively low loads, enables a good

comparison between different heuristics.

The random jobs generator may create jobs whose size is

larger than the optimal makespan, calculated by

�
j*J

pj

m
. We

address these jobs as outliners. The presence of such jobs

hurts the comparison of the different heuristics, since they

may cause that an instance will have the same makespan

for all strategies. By scheduling one such long job on a

machine, non of the selfish jobs may benefit by choosing

this machine. In order to emphasis the differences between

the different heuristics, we remove the outliners using the

following method. We note that on average 1 2 2 jobs were

removed from each instance.

Algorithm 3 - Removing outliners

1: Calculate avgLoad(G) =
�

j*J
pj

m

2: Remove every job j * J with pj > avgLoad(G).
3: Repeat steps 1, 2 while some job was removed.

In the following sections we present our experimental

results. These results were obtained by running our heuristics

on the same 100 instances, each consisting of 100 players and

20 machines. For each instance we calculated the lower bound,

L =
�

j pj/M , on the optimal makespan. For each experiment

we present in the diagrams the average makespan scaled by L.

For example, if the average makespan in all the runs performed

in some experiment is 1.2L then the corresponding bar in the

figure has height 1.2. Since L f OPT , this ratio is an upper

bound on the price of anarchy.

A. Choosing the Controlled Jobs

In this section, we present our results for the comparison

of the first part in the leader’s strategy. Specifically, we

compare how the performance is affected by the fraction of

load controlled by the leader and the different heuristics for

choosing the leader’s controlled jobs. We consider all the

possible combinations of leader and selfish players strategies.

Recall that Leader’s FF algorithm schedules each job on the

first machine where it fits with limit of µ
�

j*J
pj

m
on the

totals’ machine load for µ * {0.9, 1, 1.1}, possibly starting

to schedule on a new machine if the job cannot fit into any

currently open machine. In the experiment described below,

we fixed µ = 1 as a representative case for the strategy.

NETA STEIN, TAMI TAMIR: STACKELBERG STRATEGIES FOR WEIGHTED LOAD BALANCING GAMES 379



Fig. 3. Comparing jobs choosing strategies for Leader’s FF
with BRD

Fig. 4. Comparing jobs choosing strategies for Leader’s FF
with Player’s LPT

Fig. 5. Comparing jobs choosing strategies for Leader’s LPT
with BRD

Fig. 6. Comparing jobs choosing strategies for Leader’s LPT
with Player’s LPT

Figures 3,4,5 and 6 present the differences between the

possible leader’s strategies for choosing controlled jobs for

every possible combination of considered strategies for the

leader and selfish players. The figures present the PoA (y axis)

as a function of ³ for every strategy.

First, we can conclude that Pick Smallest provides the worst

results for all ³ values and heuristics. As shown in the figures,

the PoA increases with ³, meaning that the leader’s control

hurts the social cost.

In contrast, we can also conclude that for the other two

strategies Pick Largest - Skip and Pick Largest - Stop, as ³
increases, the final schedule is better and the leader reduces

the makespan in average by factor 1.16, 1.11, 1.08 if it controls

0.3, 0.5, 0.7 fraction of the load respectively. Other than that,

the difference between both strategies is minor, with a slight

advantage to the Pick Largest - Stop strategy in most of the

cases.

B. Leader’s Scheduling Strategy

In this section we discuss the optimal strategy we recom-

mend the leader to apply on the controlled jobs. The best

strategy may differ between the amount of load the leader

controls, the selfish players behaviour or other parameters we

examine.

The experiments that consider the selection of the controlled

jobs, reported in section 5.1, reveal that Pick Largest - Stop

has the best performance, thus, we use it in the following

experiments.

1) Leader’s First Fit: Our next experiments analyze the in-

fluence of the parameter µ in the Leader’s FF strategy. Recall

that the Leader’s FF strategy schedules the controlled jobs

using First Fit algorithm with machine capacity of µ
�

j

pj

m

for µ > 0. We applied this strategy with µ * {0.9, 1, 1.1}.

These values were chosen since we aim to have approximate

PoA closer to 1; if we choose a low µ value, the selfish players

may determine the makespan since larger jobs may join non-

empty machines.

If we choose higher µ value, then already the jobs assigned

by the leader may cause a high makespan. On the other

hand, this leaves more empty machines for the selfish jobs

and potentially prevents them from reaching load higher than

µ
�

j

pj

m
on the reamaining machines.

Figures 8 and 7 present the approximated PoA with re-

gards to the discussed options for µ parameter and the

controlled fraction ³ achieved with ³ * {0.3, 0.5, 0.7} and

µ * {0.9, 1, 1.1}. In the experiments described in Figure 7

the selfish jobs join and perform BRD. In the experiments

described in Figure 8 they are added using LPT rule.
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Fig. 7. Comparing γ parameter for Leader’s FF strategy with
BRD

Fig. 8. Comparing γ parameter for Leader’s FF strategy with
Selfish LPT

As presented in Figure 7, when the selfish players use

Player’s BRD strategy, for every fraction ³, the best per-

formance is achieved when µ = 1. For µ = 0.9 we have

significantly worst result for ³ * {0.3, 0.5}, but better than

µ = 1.1 for ³ = 0.7. This difference is explainable since

the leader have the most significant control for this ³ and

both approximated PoA results values are below 1.1 and for

µ = 1.1 the leader schedules as much as it can near the load

of 1.1
�

j

pj

m
which ensured result near 1.1. In contrast to

µ = 0.9 which allowed lower results.

On the other hand, for Player’s LPT in Figure 8 we get

consistent results for all ³ values. We get the worst results

for the value µ = 0.9. Next, we have µ * {1, 1.1} with close

results, with a minor advantage to µ = 1.1.

2) Leader’s Strategy: We conclude with experiments that

compare the leader’s strategy choice with regards to the selfish

players behaviour. Based on the results of thee previous

experiments, in all the experiments we report in this section,

the controlled jobs are chosen using Pick Largest - Stop and

for Leader’s FF we use parameter µ = 1. In the experiments

presented bellow, we compared which leader’s strategy gives

better results with respect to the applied player’s strategy for

every ³ choice.

Fig. 9. Comparing leader’s possible strategies for Player’s
BRD

Fig. 10. Comparing leader’s possible strategies for Player’s
LPT

The results shown in both Figures 9 and 10, imply that for

³ = 0.3 we get better makespan when using Leader’s FF

strategy. On the other hand, for larger ³ we get that Leader’s

LPT perform better. Moreover, we can conclude that when the

selfish players use BRD, the difference between the makespans

resulting from the two leader’s strategy are more significant

comparing to games in which the selfish players are added by

LPT.

Another interesting result we can infer from these experi-

ments, is the difference between the results for selfish players

behaviour. For all ³ values and leader’s strategy choice, we

get much lower makespans when the selfish players use BRD.

VI. CONCLUSIONS

In this work we examined the potential influence of a leader

who control a subset of the jobs in load balancing games.

The leader assigns the jobs it controls and the other jobs then

select their assignments in a selfish way. We present theoretical

as well as experimental results answering several questions

regarding the advantages and disadvantages of controlling

a fraction of the load. We have designed and implemented

several heuristics for possible strategies the leader may apply

when choosing the jobs to control and when scheduling them

on the machines.

In the theoretical results, we proved that if the leader is

obligated to control a maximal amount of the given fraction,

the resulting schedule may be worse than a NE schedule in

a leader-free environment. On the other hand, for a setting

in which the leader may choose to exploit only part of its

power, we presented tight bounds on the fraction ³ of the

controlled load that may improve the game cost. Additionally,
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we presented several relations between the common PoA(G)
measure and the PoAL(G, ³) measure which we defined.

Our experiments show that controlling the largest jobs in a

game is the best strategy for the leader, while controlling the

smallest jobs may cause significant damage. In fact controlling

no job may be better than controlling only small ones. One

of the main conclusions that resulted from the experiments is

that controlling a larger fraction of the load improves the game

cost when controlling the larger jobs.

We have observed that when using the heuristic Leader’s

FF, the performance is significantly influenced by the choice

of the capacity to which the machines are loaded. Let L =
�

j

pj

m
, then for a parameter µ, the leader adds jobs to machine

in a First-Fit matter, where each job is added to the first

machine whose addition will result in total load at most µL.

In general, the best result achieved for this strategy is when

µ = 1. Although, if the selfish players scheduling strategy is

known to be LPT, then filling the machines up to capacity 1.1L
results is slightly better outcomes. Also, for large ³ values the

results for all µ values are very close, but on the other hand

for low ³ we can definitely conclude that we should not use

µ less than 1. Future work on this algorithm may find more

characteristics for choosing the µ value.

Another conclusion we can infer, is that knowing the selfish

player’s behaviour in advance may be helpful for the leader.

Similarly, the strategy choice depends also on ³ - the fraction

of controlled jobs. In general, for both selfish players methods

it holds that the Leader’s LPT strategy gives the best results,

but if it is known that the selfish players acts in BRD and the

controlled fraction is low we may consider using Leader’s FF.

For future work it may be interesting to improve the

Leader’s FF strategy and characterize the jobs that the leader

should choose specifically for using this heuristic. Leader’s

FF is a heuristic in which the leader assigns the controlled

jobs on a subset of the machines and leave some of the

machines empty for the selfish jobs. We believe that additional

algorithms using this approach should be considered and

analyze and may perform even better than Leader’s FF. Also,

it may be interesting to get inspiration from additional known

approximation algorithms for the minimum makespan problem

as we did with Leader’s LPT which is based on the algorithm

presented in [7].

In the theoretical side, we believe that there are many inter-

esting open problems in this setting. For example, analyzing

weighted Stackelberg games of congestion games with non-

singelton strategy space, non symmetric singelton games, or

games with non-uniform resources, that is, machines with

different speeds. Also, in our settings the leader has unlimited

computational power, meaning, it is able to solve NP-hard

problems. It will be interesting to have results for a leader with

a limited computational power. Another interesting direction

is to analyze the consequences of controlling a specific given

subset of jobs A ¦ J instead of a fraction ³ of the load.
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