
 Abstract4This paper reports on the evaluation of Deep Learn-

ing  (DL)  transformer  architecture  models  for  Named-Entity

Recognition (NER) on ten low-resourced South African (SA)

languages. In addition, these DL transformer models were com-

pared to other Neural Network and Machine Learning (ML)

NER models. The findings show that transformer models sub-

stantially  improve  performance  when  applying  discrete  fine-

tuning  parameters  per  language.  Furthermore,  fine-tuned

transformer models outperform other neural network and ma-

chine learning models on NER with the low-resourced SA lan-

guages.  For  example,  the  transformer  models  obtained  the

highest F-scores for six of the ten SA languages and the highest

average F-score surpassing the Conditional Random Fields ML

model.  Practical  implications include developing high-perfor-

mance NER capability with less effort and resource costs, po-

tentially  improving downstream NLP tasks such as  Machine

Translation  (MT).  Therefore,  the  application  of  DL  trans-

former  architecture  models  for  NLP  NER  sequence  tagging

tasks on low-resourced SA languages is viable.  Additional re-

search could evaluate the more recent transformer architecture

models on other Natural Language Processing tasks and appli-

cations, such as Phrase chunking, MT, and Part-of-Speech tag-

ging.

Index   Terms4Named-Entity  Recognition,  Natural  Language

Processing, Neural Networks, Sequence Tagging, XLM-R, Ma-

chine Learning, Transformer Models.

I. INTRODUCTION

ATURAL Language Processing (NLP) which has been

in existence for more than 70 years, is a branch of Arti-

ficial  Intelligence [7].  NLP uses  computational techniques

for  the  analysis  and  representation  of  naturally  occurring

texts to achieve human-like language processing for various

applications and tasks.  Machine Translation (MT) was the

first computer-based NLP application [7]. Thereafter, appli-

cations utilizing NLP such as Information Retrieval, Infor-

mation Extraction (IE), and Question-Answering (QA) were

introduced [7]. These IE applications include sequence tag-

ging  tasks  such  as  Named-Entity  Recognition  (NER)  and

Part-of-Speech (POS) tagging.

N

NER is a task that processes natural language, classifying

and  grouping,  for  example,  words  into  categories  (also

known as phrase types) [20]. With the advent of big data and

large datasets, classifying natural language in these datasets

has become increasingly important. For example, organiza-
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tions are able to  apply NER in customer support,  content

classification, and search and recommendation engines [21].

Furthermore, NER findings may be transferred to other NLP

tasks such as MT, automatic text summarization, and knowl-

edge base construction [20]. Lack of data severely impedes

performance  on  NER  tasks  with  low-resourced  lan-

guages [20].

Recently, within NLP research, the use of Neural Network

(NN) architectures, also referred to as Deep Learning (DL)

architectures, has generated state-of-the-art results for MT,

IE, and QA tasks [2], [8]. NN has seen several additions in

the past few decades, from Convolutional Neural Networks

(CNN)  and  Recurrent  Neural  Networks  (RNN)  to  Trans-

former  architectures  [3],  [4],  [8].  CNN  is  an  extensively

studied  DL architecture  inspired  by  the  visual  perception

mechanisms of living creatures [11]. RNN is concerned with

sequential data that display correlations between data points

within  a  time  sequence  [12].  Transformers  are  prominent

NN  architectures  in  NLP  research,  surpassing  RNN  and

CNN in model performance [13].

Transformers facilitate the creation of high-capacity mod-

els that are pre-trained on large corpora. These transformers

capture long-range sequence features that facilitate parallel

training,  and the  pre-trained models  are  easily  adapted to

specific  tasks  with  good performance [13].  XLM-Roberta

(XLM-R) is  a  recent  transformer  model  that  has  reported

state-of-the-art results for NLP tasks and applications, such

as NER, POS tagging, phrase chunking, and MT [2], [9].

NLP  sequence  tagging  tasks  such  as  NER  and  POS

tagging have been extensively researched [1]-[7], [9], [10].

However,  within the past  few years,  new DL transformer

architecture  models  such  as  XLM-R,  Multilingual

Bidirectional  Encoder  Representations  from  Transformers

(M-BERT),  and  Cross-Lingual  Language  Model  (XLM)

lower the time needed to train large datasets through greater

parallelization. This allows low-resourced languages to be

trained and tested with less effort and resource costs while

achieving state-of-the-art results for sequence tagging tasks

[1], [2], [9]. M-BERT, a single language model pre-trained

from  monolingual  corpora,  performs  cross-lingual

generalization  very  well  [14].  Furthermore,  M-BERT  is

capable of  capturing multilingual representations [14].  On

the  other  hand,  XLM  pre-training  has  led  to  solid
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improvements in NLP benchmarks [15]. Additionally, XLM 

models have contributed to significant improvements in NLP 

studies involving low-resourced languages [15]. These 

transformer models are usually trained on very large corpora 

with datasets that are terabytes (TB) in size. 

II. BACKGROUND 

A recent study by [1] researched whether NN9s are viable 

for NLP sequence tagging (POS tagging and NER) and 

sequence-to-sequence (Lemmatization and Compound 

Analysis) tasks for resource-scarce languages. These 

resource-scarce languages are ten of the 11 official South 

African (SA) languages, with English being excluded. The 

languages are considered low-resourced, with Afrikaans (af) 

being the more resourced of the ten [1], [10]. This recent 

study compared two Bidirectional Long Short-Term Memory 

with Auxiliary Loss (bi-LSTM-aux) NN models to a baseline 

Conditional Random Fields (CRF) model. The annotated 

data used for the experiments are derived from the National 

Centre for Human Language Technology (NCHLT) text 

project. The results suggest that NN architectures such as bi-

LSTM-aux are viable for sequence tagging tasks for most SA 

languages [1]. However, within the study by [1], NN9s did 

not outperform the CRF Machine Learning (ML) baseline 

NER model. Rather the CRF model performed better on 

NER than the bi-LSTM-aux models. Loubser and 

Puttkammer [1], therefore, advised further studies to be 

conducted using NN transformer models on resource-scarce 

SA languages. Additionally, because of the considerable 

variation in performance per language during their study, [1] 

suggests conducting further research on the variation in 

performance per language.  

Similarly, a previous study by [18] evaluated XLM-R 

transformer models for NER on low-resourced languages. 

However, the fine-tuning of the transformer models was at 

the model level and not the language level. In other words, a 

transformer model was fined-tuned on, for example, the 

Afrikaans (af) language. Thereafter, the model with the fine-

tuned parameters for the Afrikaans (af) language was applied 

to the other remaining nine SA languages. The reason for 

this decision was due to resource capacity constraints. As a 

result, the study by [18] produced only a couple higher F-

scores than the CRF and bi-LSTM-aux baseline models. 

Albeit, the CRF model retained the highest average F-score 

for the ten languages.  

For this reason, this study builds upon these previous 

studies by evaluating the performance of DL transformer 

architecture for NER on low-resourced languages with fine-

tuning of the model applied at the language level. Therefore, 

the purpose of this study is to evaluate the performance of 

the NLP NER sequential task using two XLM-R transformer 

models applying fine-tuning to each model and language 

combination. In addition, the experiment results are 

compared to previous research findings. 

A. Research Hypotheses 

H1 3 There is a performance improvement for NER on the 

low-resourced SA languages using fine-tuned XLM-R 

transformer models. 

H2 3 Fine-tuned XLM-R transformer models outperform 

other neural network and machine learning models on NER 

with the low-resourced SA languages. 

B. Paper Layout 

The remainder of this paper comprises of the following 

sections: Sect. III provides information on the languages and 

datasets while Sect. IV presents the language model 

architectures. The experiment settings are presented in Sect. 

V. The results and a discussion of the research findings are 

provided in Sect. VI and Sect. VII respectively. Section VIII 

concludes the paper, providing practical implications, 

limitations of this study and recommendations for future 

research. 

III. LANGUAGES AND DATASETS 

As mentioned by [1], SA is a country with at least 35 

spoken languages. Of those languages, 11 are granted 

official status. The 11 languages can further be broken up 

into three distinct groups. The two West-Germanic 

languages, English and Afrikaans (af). Five disjunctive 

languages, Tshivenda (ve), Xitsonga (ts), Sesotho (st), 

Sepedi (nso) and Setswana (tn) and four conjunctive 

languages, isiZulu (zu), isiXhosa (xh), isiNdebele (nr) and 

Siswati (ss). A difference between SA disjunctive and 

conjunctive languages is the former has more words per 

sentence than the latter. Therefore, disjunctive languages 

have a higher token count than conjunctive languages. For 

further details on conjunctive and disjunctive languages and 

examples thereof, see [1]. 

The datasets for the ten evaluated languages are available 

from the South African Centre for Digital Language 

Resources online repository (https://repo.sadilar.org/). These 

annotated datasets are part of the NCHLT Text Resource 

Development Project, developed by the Centre for Text 

Technology (CTexT, North-West University, South Africa) 

with contributions by the SA Department of Arts and 

Culture. The annotated data is tokenized into five phrase 

types. These five phrase types are: 

1. LOC - Location 

2. MISC - Miscellaneous 

3. ORG - Organization 

4. OUT - not considered part of any named-entity 

5. PER - Person 

The LOC, ORG and PER phrase types are entity names 

and are the main named entity category used in this study. 

The MISC phrase type as explained by [10] are for phrase 

types that form part of either the number expressions or 

temporal named entity categories so as not to lose the 

opportunity to annotate the data, which can be further 

annotated in the future [10].  
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It is important to note that this annotated data is the same 

dataset used by the previous studies [1], [10], [18]. However, 

the studies by [10] and [18] clearly indicates the inclusion of 

the MISC phrase type whereas, the study by [1] does not.  

The previous studies made use of the CoNLL-2003 shared 

task protocol for data tagging [19]. Additionally, the named 

entities are further annotated with the beginning [B], inside 

[I], and outside [O] labelling scheme, which is posited to be 

ideal for sequence tagging training [10]. 

The datasets consist of SA government domain corpora. 

Therefore, the SA government domain corpora are used to 

do the experiments and comparisons. Eiselen [10] provides 

further details on the annotated corpora. 

IV. LANGUAGE MODEL ARCHITECTURES 

A. XLM-R 

XLM-Roberta (XLM-R) is a transformer-based 

multilingual masked language model [2]. This language 

model trained on 100 languages uses 2.5 TB of 

CommonCrawl (CC) data [2]. From the 100 languages used 

by the XLM-R multilingual masked language model, it is 

noted that Afrikaans (af) and isiXhosa (xh) are included in 

the pre-training. 

As indicated by [2], the benefit of this model is training 

the XLM-R model on cleaned CC data increases the amount 

of data for low-resourced languages. Further, because the 

XLM-R multilingual model is pre-trained on many 

languages, low-resourced languages improve performance 

due to positive transfer [2]. 

The study by [2] reports the state-of-the-art XLM-R model 

performs better than other NN models such as mBERT and 

XLM on QA, classification, and sequence labelling. For this 

research study, two transformer models are used for NER 

evaluation. The XLM-RBase NN model and the XLM-RLarge 

NN model. The XLM-RBase model has 12 layers, 768 hidden 

states, 12 attention heads, 250 thousand vocabulary size, and 

270 million parameters. The XLM-RLarge model has 24 

layers, 1024 hidden states, 16 attention heads, 250 thousand 

vocabulary size, and 550 million parameters [2]. Both pre-

trained models are publicly available (https://bit.ly/xlm-

rbase, https://bit.ly/xlm-rlarge).  

These pre-trained models (XLM-RBase and XLM-RLarge), as 

mentioned in Sect. I allow low-resourced languages to be 

trained and tested with fewer resource costs and effort. 

Therefore, they were fed into this study9s DL transformer 

architecture NER model as part of the NER evaluation 

process. The model was developed with the Python 

programming language, the PyTorch ML framework, the 

Facebook AI Research Sequence-to-Sequence Toolkit 

(written in Python), and the PyTorch Transformers library. 

The developed model incorporated the AdamW PyTorch 

algorithm (optimizer) with warm-up scheduling was trained, 

validated and then evaluated on the test data. Section V 

discusses the model9s experimental settings. 

B. CRF 

Conditional Random Fields (CRF) is used for building 

probabilistic models for segmentation and labelling of 

sequence data [5]. CRF as ML models are simple, yet, 

successfully used for NLP sequence tagging tasks, such as 

NER and POS tagging [4]. Before the use of CRF, Hidden 

Markov Models (HMM) and stochastic grammars were 

widely used probabilistic models for tagging tasks [5]. The 

benefit of using CRF as a sequence modelling framework is 

it addresses label biases much better than HMM [5]. 

Additionally, CRF also provides for better stochastic 

context-free grammar generalization. More information on 

the CRF ML model is provided by [5]. 

Eiselen [10] used a CRF ML model for NER on the ten 

low-resourced SA languages, and [1] included this model as 

the baseline to compare their two bi-LSTM-aux NN 

architecture models. Loubser and Puttkammer9s [1] findings 

show that the bi-LSTM-aux models were almost on par with 

the CRF model, meaning that the NN models did not 

outperform the ML model. For this reason, this study 

includes the CRF model as it would be good to compare the 

DL models with ML models that consistently performs well 

on NLP sequence tasks. The code for this model is publicly 

available (https://taku910.github.io/crfpp). 

C. bi-LSTM-aux 

Bidirectional Long Short-Term Memory with Auxiliary 

Loss (bi-LSTM-aux) NN models have been reported as 

successful with NLP sequence modelling tasks [3]. 

Modelling tasks include POS tagging, NER, sentiment 

analysis, and dependency parsing [3]. While both LSTM and 

bi-LSTM models are classified as RNN, bi-LSTMs 

implement a backward and forward pass through the 

sequence before proceeding to the next layer within the 

network [3]. The inclusion of the auxiliary loss function in 

the model is to help improve performance gains for rare 

words used within the corpora [3]. The bi-LSTM-aux model 

was trained on 22 languages, using polyglot embeddings, and 

data obtained from the Universal Dependencies project [3]. 

Additional details on the model are obtainable from [3]. The 

findings from the study by [3] using their novel bi-LSTM-

aux model for POS tagging suggests that the model is as 

effective as HMM and CRF tagging models. Loubser and 

Puttkammer [1] used bi-LSTM-aux and bi-LSTM-aux with 

embeddings model variations for their study. The code for 

these models is publicly available 

(https://github.com/bplank/bilstm-aux). 

V. EXPERIMENTAL SETTINGS 

The experimental settings for the XLM-RBase and XLM-

RLarge models are described next, followed by the evaluation 

metrics and the corpora descriptive statistics. 
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A. XLM-R Settings 

The training, validation, and test dataset split was 80%, 

10%, and 10%, respectively. Table I provides the fine-tuned 

parameters at the model and language level while the shared 

settings across the models and languages are as follows: 

¯ Gradient accumulation steps: 4 

¯ Maximum sequence length: 128 

¯ Training batch size: 32 

¯ Training epochs: 10 

B. Evaluation Metrics 

Precision, Recall and F-score are evaluation metrics used 

for text classification tasks, such as NER. These metrics are 

used to measure the model9s performance during the 

experiments. The formulas for these metrics leave out the 

correct classification of true negatives (tn) and false 

negatives (fn), referred to as negative examples, with greater 

importance placed on the correct classification of positive 

examples such as true positives (tp) and false positives (fp) 

[16]. For example, correctly classified spam emails (tp) are 

more important than correctly classified non-spam emails 

(tn). In addition, multi-class classification was used for the 

research experiments to classify a token into a discrete class 

from three or more classes. The metric9s macro-averages 

were used for evaluation and comparison. Macro-averaging 

(M) treats classes equally, while micro-averaging (µ) favors 

bigger classes [16]. Each evaluation metric and its formula 

as described by [16] are listed below. 

PrecisionM: <the number of correctly classified positive 

examples divided by the number of examples labeled by the 

system as positive= (1). 

 

                                                                        (1) 

           

RecallM: <the number of correctly classified positive 

examples divided by the number of positive examples in 

the data= (2). 

(2) 

 

 

FscoreM: <a combination of the above= (3). 

(3) 

 

 

C. Corpora Descriptive Statistics 

Table II provides descriptive statistics for the language9s 
training data. As mentioned earlier, disjunctive languages 

have a higher token count than conjunctive languages. 

Albeit, the unique phrase type and named entity count for 

conjunctive languages are, on average, higher than the 

disjunctive languages. 

VI. RESULTS 

Fig. 1 depicts the precision scores for the ten low-

resourced SA languages under the five NER models. The 

Afrikaans (af) language has the highest precision score with 

81.74% for the XLM-RLarge model, while the Sesotho (st) 

language has the lowest precision score of 50.31% for the bi-

LSTM-aux emb model. Table III displays the precision 

scores of the two XLM-R transformer models compared to 

 ��ÿ��ÿ + �ÿÿýÿ=1 ý  

 ý2
+ 1 ÿÿÿýÿ�ÿ�ÿýýÿýÿýýýý2 ÿÿÿýÿ�ÿ�ÿý + ýÿýÿýýý  

TABLE I. 

FINE-TUNED PARAMETERS PER LANGUAGE AND MODEL COMBINATION 

Language Model Learning 

Rate 

Warmup 

Proportion 

Dropout 

Afrikaans 

(af) 

Base 6e-5 0.0 0.0 

Large 6e-5 0.0 0.2 

isiNdebele 

(nr) 

Base 6e-5 0.0 0.0 

Large 6e-5 0.0 0.0 

isiXhosa (xh) Base 6e-5 0.0 0.2 

Large 6e-5 0.1 0.2 

isiZulu (zu) Base 6e-5 0.1 0.2 

Large 6e-5 0.0 0.2 

Sepedi (nso) Base 7e-5 0.1 0.3 

Large 7e-5 0.1 0.3 

Sesotho (st) Base 6e-5 0.0 0.2 

Large 6e-5 0.1 0.2 

Setswana (tn) Base 6e-5 0.1 0.3 

Large 6e-5 0.0 0.0 

Siswati (ss) Base 6e-5 0.0 0.2 

Large 6e-5 0.0 0.2 

Tshivenda 

(ve) 

Base 6e-5 0.0 0.2 

Large 6e-5 0.0 0.2 

Xitsonga (ts) Base 6e-5 0.0 0.2 

Large 6e-5 0.0 0.0 

TABLE II. 

THE TEN LANGUAGES TRAINING DATA DESCRIPTIVE STATISTICS 

Language Writing 

System 

Tokens Phrase 

Types 

Named 

Entities 

af Mixed 184 005 22 693 21 100 

nr Conjunctive 129 577 38 852 25 030 

xh Conjunctive 96 877 33 951 15 185 

zu Conjunctive 161 497 50 114 25 216 

nso Disjunctive 161 161 17 646 19 163 

st Disjunctive 215 655 18 411 19 211 

tn Disjunctive 185 433 17 670 18 993 

ss Conjunctive 140 783 42 111 21 403 

ve Disjunctive 188 399 15 947 14 119 

ts Disjunctive 214 835 17 904 24 376 
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models used by [1] and [10]. The XLM-R models share five 

of the ten highest precision scores, with the highest average 

score belonging to the CRF model with 75.64%. The bold 

scores in Tables III, IV, V and VI show the highest 

evaluation metric score for each language and the model 

with the highest average score. 
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Fig.  1 The precision % for the 10 low-resourced SA languages visual 

representation 

 

 Fig. 2 depicts the recall scores for the ten SA languages 

under the five NER models. As with the precision evaluation 

metric, the Afrikaans (af) language has the highest recall 

scores for three of the five models, with an 87.07% for the 

XLM-RLarge model. Sesotho (st) has the lowest recall score of 

55.56% for the bi-LSTM-aux model. Table IV displays the 

recall scores for the ten low-resourced SA languages. The 

XLM-R models share the highest recall scores for seven of 

the ten languages, with the highest average score belonging 

to the XLM-RBase model with 76.34%. 
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Fig.  2 The recall % for the 10 low-resourced SA languages visual 

representation 

  

Fig. 3 depicts the F-scores for the ten languages under the 

five NER models. The Afrikaans (af) language has the 

highest F-scores for three of the five models, with 84.25% 

for the XLM-RLarge model. Sesotho (st) has the lowest F-

score of 53.77% for the bi-LSTM-aux emb model. Table V 

displays the F-score comparison. The XLM-R models 

produced the highest F-scores for six of the ten languages, 

with the highest average score belonging to the XLM-RBase 

model with 73.64%. 

 

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

af nr xh zu nso st tn ss ve ts

F-score

CRF bi-LSTM-aux bi-LSTM-aux emb XLM-R Base XLM-R Large

 
Fig.  3 The F-score % for the 10 low-resourced SA languages visual 

representation 

VII. DISCUSSION 

This section discusses the research findings concerning 

hypotheses testing. The first alternate hypothesis is accepted 

or rejected based on the XLM-R transformer model9s 
performance using the three-evaluation metrics. The second 

hypothesis is accepted or rejected based on the XLM-R 

transformer model9s performance compared to the CRF and 

bi-LSTM-aux models used in previous SA NER studies. 

H1 3 There is a performance improvement for NER on the 

low-resourced SA languages using fine-tuned XLM-R 

transformer models. 

The XLM-RLarge and XLM-RBase transformer models 

produced F-scores that ranged from 53.77% for the Sesotho 

(st) language to 84.25% for the Afrikaans (af) language. In 

addition, many of the models recall scores were greater than 

75% whereas, the precision scores were averaging at 70%. 

Remember, in this instance, the recall metric emphasizes the 

average per-named-entity effectiveness of the classifier to 

identify named entities, and the precision metric compares 

the alignment of the classifier9s average per-named-entities 

to the named entities in the data. All F-scores were above 

60% except the Sesotho (st) language, which for both XLM-

R models were below 60%.  

A previous study by [18] was only able to achieve F-

scores of 39% for the Sesotho (st) language and proposed 

that using different hyper-parameter tuning (fine-tuning) and 

dataset splits could produce higher F-scores. Further, [18] 

also suggested that further studies could implement the 

transformer models with discrete fine-tuning parameters per 

language to produce higher F-scores. The findings of this 

study show that transformer models with discrete fine-tuning 

parameters per language generate higher F-scores (see Table 

VI). The fine-tuned transformer models produced an average 

F-score 6% higher than the previous transformer models. 
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TABLE V. 

THE F-SCORE % COMPARISON BETWEEN TRANSFORMER MODELS AND PREVIOUS SA LANGUAGE NER STUDIES 

F-score 

 CRF* bi-LSTM-aux** bi-LSTM-aux emb** XLM-RBase XLM-RLarge 

af 75.86% 75.85% 75.74% 83.47% 84.25% 

nr 75.10% 78.89% n/a*** 81.69% 76.44% 

xh 77.08% 71.52% 70.88% 68.85% 68.80% 

zu 69.93% 72.54% 73.87% 73.48% 73.17% 

nso 74.46% 77.74% 74.79% 79.82% 79.83% 

st 73.09% 54.40% 53.77% 58.78% 58.72% 

tn 78.06% 75.74% 74.07% 78.70% 79.54% 

ss 64.29% 70.72% 71.35% 74.91% 75.19% 

ve 73.43% 66.92% 65.41% 60.68% 61.99% 

ts 70.93% 71.88% 71.14% 76.03% 76.97% 

Average 73.22% 71.62% 70.11% 73.64% 73.49% 

* As reported by [10]. ** As reported by [1]. *** No embeddings were available for isiNdebele. 

 

TABLE III. 

THE PRECISION % COMPARISON BETWEEN TRANSFORMER MODELS AND PREVIOUS SA LANGUAGE NER STUDIES 

Precision 

 CRF* bi-LSTM-aux** bi-LSTM-aux emb** XLM-RBase XLM-RLarge 

af 78.59% 73.61% 73.41% 80.35% 81.74% 

nr 77.03% 78.58% n/a*** 80.74% 74.73% 

xh 78.60% 69.83% 69.08% 67.94% 68.46% 

zu 73.56% 72.43% 73.44% 71.26% 71.91% 

nso 76.12% 75.91% 72.14% 77.90% 77.75% 

st 76.17% 53.29% 50.31% 55.67% 55.62% 

tn 80.86% 74.14% 73.45% 76.58% 78.65% 

ss 69.03% 70.02% 69.93% 72.98% 72.84% 

ve 73.96% 67.97% 63.82% 58.85% 60.61% 

ts 72.48% 72.33% 71.03% 74.18% 75.15% 

Average 75.64% 70.81% 68.51% 71.64% 71.74% 

* As reported by [10]. ** As reported by [1]. *** No embeddings were available for isiNdebele.  

 

TABLE IV. 

THE RECALL % COMPARISON BETWEEN TRANSFORMER MODELS AND PREVIOUS SA LANGUAGE NER STUDIES 

Recall 

 CRF* bi-LSTM-aux** bi-LSTM-aux emb** XLM-RBase XLM-RLarge 

af 73.32% 78.23% 78.23% 86.89% 87.07% 

nr 73.26% 79.20% n/a*** 82.92% 78.27% 

xh 75.61% 73.30% 72.78% 71.05% 70.48% 

zu 66.64% 72.64% 74.32% 75.92% 74.58% 

nso 72.88% 79.66% 77.63% 81.85% 82.05% 

st 70.27% 55.56% 57.73% 65.04% 65.04% 

tn 75.47% 77.42% 74.71% 81.38% 80.74% 

ss 60.17% 71.44% 72.82% 77.20% 77.88% 

ve 72.92% 65.91% 67.09% 63.24% 64.22% 

ts 69.46% 71.44% 71.25% 77.99% 78.90% 

Average 71.00% 72.48% 71.84% 76.34% 75.92% 

* As reported by [10]. ** As reported by [1]. *** No embeddings were available for isiNdebele.  
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Therefore, the alternative hypothesis is accepted as there 

is a performance improvement on NER with the low-

resourced SA languages using fine-tuned XLM-R 

transformer models. It is important to note that the previous 

study by [18] was not included in the comparative analysis  

with previous SA NER studies because the experimental 

results were insignificant when compared to the average F-

scores of the [1] and [10] studies (see Table V).  

H2 3 Fine-tuned XLM-R transformer models outperform 

other neural network and machine learning models on NER 

with the low-resourced SA languages. 

The fine-tuned transformer models (see Table I) were also 

compared to the findings of previous studies. In particular, 

[10] used the CRF ML model to do NER sequence tagging 

on the ten resource-scarce SA languages. Furthermore, [1] 

implemented bi-LSTM-aux NN models both with and 

without embeddings on the same datasets. The comparative 

analysis reveals the performance improvement of 

implementing DL transformer architecture for NLP sequence 

tagging tasks such as NER. For example, when analyzing the 

F-scores, the XLM-R models have the highest F-scores for 

six of the ten languages, and the CRF model has three of the 

highest F-scores (see Table V). Meanwhile, the bi-LSTM-

aux models had only one of the highest F-scores (see Table 

V).  

This study's result is an improvement for NER research in 

the SA context because the previous studies by [1] and [18] 

could not outperform the CRF ML model implemented by 

[10] until now. Albeit, not all the SA languages are good 

candidates for DL architectures. For example, the isiXhosa 

(xh) and Tshivenda (ve) languages consistently 

underperform compared to the CRF ML model. 

Additionally, the comparative analysis identified the Sesotho 

(st) language as the lowest-performing language across the 

NN models, with an average F-score of 56%, making it an 

outlier and an unviable language for current DL architectures 

for NER. 

Therefore, the alternative hypothesis is accepted as fine-

tuned XLM-R transformer models outperform other neural 

network and machine learning models on NER with the low-

resourced SA languages (see Table V and Table VI). 

This study reveals that the fine-tuned XLM-R transformer 

models perform relatively well on low-resourced SA 

languages with NER sequence tagging. Noticeably, there is 

no distinct performance difference between disjunctive and 

conjunctive languages. In addition, Afrikaans (af) 

outperform the other languages using the transformer 

models. As mentioned earlier, the outlier is the Sesotho (st) 

language, with the CRF baseline model F-score being 14% 

more than the XLM-R models and 18% more than the bi-

LSTM-aux models. In confirmation with [18], including a 

language, such as isiXhosa (xh) during the transformer 

model pre-training does not guarantee good performance 

during evaluation.  

Further, [10] suggested excluding the MISC phrase type to 

determine whether recall can be improved upon, however, 

this study revealed that even with the inclusion of the MISC 

type, the transformer models increased the recall scores 

considerably. Nonetheless, this is not to say that re-

evaluation using an updated list of named entities will not 

produce higher metric scores. 

VIII. CONCLUSION 

This research reports on the implementation of Neural 

Network (NN) and Machine Learning (ML) models to 

evaluate Named-Entity Recognition (NER) sequence tagging 

on the ten low-resourced languages of South Africa (SA). 

The models were trained, validated, and tested using SA 

government domain corpora. Given the findings, the XLM-R 

transformer models performed better than the CRF and bi-

LSTM models on recall and F-score. The transformer 

models produced higher F-scores for six of the ten SA 

languages, while the CRF model had only three of the 

highest F-scores. The CRF remained dominant on precision, 

averaging around 75%.  

In addition, both the hypotheses were accepted (see 

Section VII). Firstly, using fine-tuned XLM-R transformer 

models improves performance on NER for low-resourced SA 

languages substantially. Secondly, fine-tuned XLM-R 

transformer models outperform other neural network and 

machine learning models on NER for the low-resourced SA 

languages. Therefore, NN transformer models are feasible 

for sequence tagging tasks, such as NER. 

The implications of this study for research and practice of 

NER using NN transformer models are that such models are 

not only viable for low-resourced languages but advisable 

given they require less effort and resource costs. 

Furthermore, this approach to NER tasks benefits other 

downstream NLP tasks and applications. These tasks and 

TABLE VI. 

THE F-SCORE % COMPARISON BETWEEN TRANSFORMER MODELS 

AND FINE-TUNED TRANSFORMER MODELS 

F-score 

 XLM-

RBase* 

XLM-

RLarge* 

XLM-

RBase 

XLM-

RLarge 

af 82.47% 84.25% 83.47% 84.25% 

nr 76.17% 75.60% 81.69% 76.44% 

xh 63.58% 64.68% 68.85% 68.80% 

zu 72.54% 73.17% 73.48% 73.17% 

nso 78.86% n/a** 79.82% 79.83% 

st 38.94% 39.48% 58.78% 58.72% 

tn 69.78% 71.91% 78.70% 79.54% 

ss 67.57% 68.34% 74.91% 75.19% 

ve 60.68% 61.99% 60.68% 61.99% 

ts 65.57% 66.12% 76.03% 76.97% 

Average 67.61% 67.28% 73.64% 73.49% 

* As reported by [18]. ** The model was unable to produce scores for 

Sepedi. 
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applications  include  question  answering,  machine  transla-

tion, and machine reading comprehension.

A limitation of this research is not evaluating the more re-

cent XLM-RXL and XLM-RXXL models on the NER se-

quence tagging task. Furthermore, the datasets could be re-

evaluated using an updated list of named entities.

Additional research could evaluate transformer models on

other NLP applications and tasks.  Further,  NLP tasks and

applications could be tested using a linear-complexity recur-

rent transformer variant and a frozen pre-trained transformer

model.
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