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Abstract—A relationship between the classical multiplicative
pairwise comparisons that are based on aijaji = 1, the additive

model based on b
i
j+b

j
i = 1, and qualitative pairwise comparisons

that uses the relations j, ¯, ¢, < and z, is discussed in detail. A
special attention is paid to the concept of consistency and weights
calculations. An on-line tool is also discussed.

Index Terms—pairwise comparisons, consistency, weights cal-
culation, qualitative judgements

I. INTRODUCTION

T
HE pairwise comparisons method is based on the ob-

servation that it is much easier to rank the importance of

two objects than it is to rank the importance of several objects.

This very old idea goes back to Ramon Llull in the end of XIII

century. Its modern version is due to 1785 influential paper

by Marquis de Condorcet and was later developed by Fechner

(1860) and Thurstone (1927) [9], [18]. The modern version

is usually associated with Saaty’s AHP (Analytical Hierarchy

Process) [17].

Classical pairwise comparisons can be called multiplicative

[6] as a coefficient aij is interpreted as an entity Ei is

aij times preferred than an entity Ej . Alternatively we may

define additive pairwise comparisons where a coefficient bij is

interpreted as bij measures the importance of Ei in comparison

with Ej assuming that their total importance is 1.0 (or 100%)

[3], [6].

When mostly subjective judgment is involved, providing

immediately reasonable quantitative relationship between two

entities is usually difficult if not almost impossible. We usually

start with some qualitative (relational) judgment like ‘Ei is

only slightly better than Ej’, etc., so we need some good

qualitative (relational) model as well [5], [9], [8]. In many

cases the use of combined pairwise comparisons, that involve

simultaneous use of multiplicative, additive and qualitative

versions is the best and recommended solution [6], [7], [16].

In this paper we will provide a detailed comparison of

multiplicative and additive pairwise comparisons, including

the concept of consistency and optimal weights assignment.

Since in reality, practically every pairwise comparisons pro-

cess starts with some qualitative estimations, the qualitative

pairwise comparisons [5], [9], [8] and their relationship to

multiplicative and additive models is also discussed in detail.

We will also provide an easy to use on-line tool, called PiXR,

that makes use of the method presented in the paper, rather

easy.

II. MULTIPLICATIVE AND ADDITIVE PAIRWISE

COMPARISONS

Let E1, ..., En be a finite set of objects (entities) to be

judged and/or analyzed. The quantitative relationship between

entities Ei and Ej is represented by a positive number aij .

We assume aij > 0 and aij = 1
aji

, for i, j = 1, ..., n
(which implies aii = 1 for all i). If aij > 1 then Ei is

more important (preferred, better, etc.) than Ej and aij is a

measure of this relationship (the bigger aij , the bigger the

difference), if aij = 1 then Ei and Ej are indifferent. We call

this model multiplicative since aij is interpreted as Ej is aij
times preferred (more important, etc.) than Ej .

The matrix of such (multiplicative) relative comparison

coefficients, A = [aij ]n×n, is called a (multiplicative) pairwise

comparison matrix [17].

A pairwise comparison matrix A = [aij ]n×n is consistent [17]

if and only if

aijajk = aik, (1)

for i, j, k = 1, ..., n. Saaty’s Theorem [17] states that a

pairwise comparison matrix A is consistent if and only if

there exist positive numbers w1, ..., wn such that aij = wi/wj ,

i, j = 1, ..., n. The values wi are unique up to a multiplicative

constant. They are often called weights and interpreted as a

measure of importance. Weights may be scaled to w1 + .. +
wn = 1 (or 100%) and they obviously create ‘natural’ ranking

(Ei < Ej ñó wi < wj and Ei j Ej ñó wi = wj).

In practice, the values aij are very seldom consistent so

some measurements of inconsistency are needed. Saaty [17]

proposed an inconsistency index based on the value of the

largest eigenvalue of A. The basic problem is that it does not

give any clue where most inconsistent values of A are located

[2], [9], [10]. On the other hand, distance-based inconsistency

[10], for a given A = [aij ]n×n, defined as:

cmA = max
(i,j,k)

�
min

�����12
aij

aikakj

���� ,
����12

aikakj
aij

����
""

(2)

localizes the most inconsistent triad, so we can reduce incon-

sistency by some minor changes aij , aik, akj . Recently a fast

algorithm for inconsistency reduction has been proposed [11].
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To find suitable values of weights from an inconsistent, but

with acceptable level of inconsistency, matrix A, one can either

calculate the principal eigenvector of the matrix A [17], or use

the geometric means of columns (or equivalently, rows) of the

matrix A [1] (i.e. for i = 1, ..., n, wi = n

��n

j=1 aij). For

small values of the inconsistency index, both methods produce

very similar results [2].

When applying pairwise comparisons to various problems

we have noticed that, especially when the entities Ei and

Ej were not much different, experts felt often much more

comfortable and more confident when they were asked to

divide 100 quality points between entities Ei and Ej than

to provide multiplicative relationship [6], [7], [16], i.e. ratio

aij . Dividing of 100 between Ei and Ej means that we are

replacing the multiplicative relationship aijaji = 1, with the

additive relationship bij + bji = 1.

In this approach, we model the mutual relationship between

Ei and Ej by two numbers bij and bji , where: bij measures

the importance of Ei in comparison with Ej assuming that

their total importance is 1.0 (or 100%), and similarly for bji .

Formally we assume that, for all i, j = 1, . . . , n,

bij g 0, bji g 0 and bij + bji = 1 (3)

Clearly bii = 0.5 (or 50%) for all i = 1, . . . , n.

The matrix of such additive relative comparison coefficients,

B = [bij ]n×n, is called an additive pairwise comparison

matrix.

When bij is interpreted as the probability that judges would

prefer the entity Ei over Ej , the equation (3) is exactly the

same as in Bradley-Terry model [3].

To transform additive model into standard multiplicative

one, we need a mapping × : ï0, 1ð ³ ï0,>) such that

a+b = 1 implies ×(a)·×(b) = 1. When a and b are interpreted

as two parts of one whole (which equals 1.0, or 100%), then
a
b

represents ratio between a and b, and a
1−a represents ratio

between a and its complement.

Hence, the most natural mapping seems to be ×(a) = a
1−a .

This mapping has many different applications [13], and in

our case leads to the transformation of ‘additive’ model into

‘multiplicative’ model [6], [9], [8].

For all i, j = 1, . . . , n:

aij =
bij

12 bij
=

bij

bji
(4)

From equation (4) we immediately get that for all i, j =
1, . . . , n, we have:

bij =
aij

aij + 1
and aijaji = 1 ñó bij + bji = 1 (5)

We may now analyze and reduce inconsistency by using the

formulas for multiplicative case.

III. QUALITATIVE AND COMBINED PAIRWISE

COMPARISONS

Instead of numerical values aij or bij , the binary relations

j, ¯, ¢, <, z and °, £, >,{ over the set of entities Ent =

{E1, . . . , En} are used [5], [8]. The relations are interpreted

as

• a j b : a and b are indifferent,

• a ¯ b : slightly in favor of b,
• a ¢ b : in favour of b,
• a < b: b is strongly better,

• b is extremely better.

The tuple (Ent,j,¯,¢, <,z) is called qualitative pairwise

comparisons systems. The number of relations has been limited

to five because of the known restrictions of human mind when

it comes to subjective judgments [4], [15]. The above relations

are disjoint and cover all the cases and the relation j is

symmetric and includes identity.

In this case the consistency is defined by a set of 45 axioms

[8] that consider all relational compositions of the above

relations. The idea behind all these axioms is very simple and

natural:

composition of relations should be relatively continuous and

must not change preferences in a drastic way.

Consider the following composition of preferences: a j b'b ¯
c. What relationship between a and c is consistent? Intuitively,

a j c and a ¯ c are for sure consistent, a ¢ c is debatable,

while a < c and a z c are definitively inconsistent. This

reasoning leads to the Axiom 2.1 [9]:

2.1 (a j b ' b ¯ c) ( (a ¯ b ' b j c) =ó (a j c ( a ¯

c(a ¢ c). There are two algorithms that remove inconsistency

for qualitative pairwise comparisons [8].

Define the relations �z =z, �< =z * <, �¢ =z * < * ¢
and �̄ =z * < * ¢ * ¯. If the qualitative pairwise

comparison system is consistent [9], [8], then the relations
�z, �<, �¢ and �̄ are (sharp) partial orders.

In reality, almost always we start with some qualitative

relationship, then we try to assign some reasonable number

(aij or bij) to it, and after this we provide some consis-

tency analysis [6], [7], [16]. In some cases we go back to

qualitative relationship and eventually analyze the case again

from the beginning [6], [7], [16]. Finding proper numbers

corresponding to qualitative relations is usually tricky as a

trusted methodology still does not exists. Usually numbers

1, 2, . . . , 5 [10] or 1, 2, . . . , 10 [17] are proposed as initial

attempts, without much justification except limits of human

mind [4], [15]. More systematic approach involves the concept

of qualitative consistency [9], [8]. It was proven that if the bij’s

or aij’s are assigned to relations Rij as shown in Table I, then

the qualitative pairwise comparisons are consistent [9]. In fact,

having a result in opposite direction would be more desirable

but this is still an open problem. Nevertheless using Table I

proved useful as it usually results in decent inconsistency [6],

[7], [16].

The columns 1 and 3 contain intervals, to start the process

one needs to pick one point from appropriate interval, and

in general a choice is not obvious. To help users without

experience default values are proposed in columns 2, 4 and 5.

The column 2 contains just mean values of each interval, the

column 4 contains the values of aijs derived from appropriate

values of column 2 interpreted as bijs, and the column 5
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TABLE I

RELATIONSHIP BETWEEN arithmetic, geometric AND relational SCALES AS PROPOSED BY JANICKI AND ZHAI [9]. WE HAVE HERE aij =
bij

1−bi
j

.

arithmetic scale geometric scale rel. scale Definition of

range of bij range of aij relation importance

range default range default default Rij (Ei vs Ej )
value value 1 value 2

0.44-0.55 0.5 0.79-1.27 1.0 1.0 j indifferent

0.56-0.65 0.6 1.28-1.94 1.5 1.6 ° slightly in favour

0.66-0.75 0.7 1.95-3.17 2.3 2.6 £ in favour

0.76-0.85 0.8 3.18-6.14 4.0 4.7 > strongly better

0.86-1.00 0.9 6.15- 9.0 7.0 { extremely better

contains mean values of the intervals from column 3. When

transforming initial relations Rij , what value should we attach

to appropriate aij , the one from column 4 (default 1) or from

column 5 (default 2)? This problem will be discussed in detail

the next section, however the difference is not a big one. When

a choice is left to the users, usually default value 2 is used

[6], [16].

IV. CONSISTENCY FOR ADDITIVE PAIRWISE

COMPARISONS

In this section we will analyze an intuitively natural concept

of consistency for additive pairwise comparisons.

Let B = [bij ]n×n be an additive pairwise comparison matrix.

Consider bik, bkj and bij . We have bik + bki = bkj + bjk = bij +

bji = 1. How can we decide if bik, bkj and bij are consistent

or not? The values of bik and bkj alone do not seem to have

any reasonable relations to the value of bij . The value of bik
just indicates the part of one that is assigned to the entity Ei

when Ei is compared with Ek, so it can hardly be compared

to or associated with bij . However we may try to use ratios

bik
bk
i

,
bkj

b
j

k

and
bij

b
j

i

to define a relationship between the entities Ei,

Ek and Ej that could lead to a sound concept of consistency.

One might say that if the data represented by the matrix B =
[bij ]n×n are consistent then if the ratio of importance Ei to Ej
is ³ij , then for each triple i, j, k we should have ³ik³kj =
³ij , and this could be used as basis for a formal definition of

consistency.

We will say that an additive matrix B = [bij ]n×n is

consistent, if and only if, for all i, j, k = 1, . . . , n, we have

bik
bki

·
bkj

bjk
=

bij

bji
(6)

For any given multiplicative matrix A = [aij ]n×n, let

B(A) = [bij ]n×n be derived from A by bij =
aij

aij+1 , and for

any given additive matrix B = [bij ]n×n, let A(B) = [aij ]n×n

be derived from B by aij =
bij

1−bi
j

. Now we have
bik
bk
i

· bkj

b
j

k

=

bik
1−bi

k

· bkj

1−bk
j

= aikakj =
bij

1−bi
j

= aij .

Hence an additive matrix B = [bij ]n×n is consistent if

and only if the multiplicative matrix A(B) = [aij ]n×n is

consistent.

This provides an additional justification for the mappings

×, ×−1 that transform A into B and B into A respectively. It

also supports the combined pairwise comparisons process [6],

[7], [16] that uses consistency index of A(B) as a consistency

index of B without much explanation.

For both a multiplicative matrix A = [aij ]n×n and an

additive matrix B = [bij ]n×n the weights w1, . . . , wn are

measures of importance of entities E1, . . . , En. Consider the

entity Ei. All information about Ei is stored in the sequence

ai1, . . . , aik - in case of matrix A, or bi1, . . . , b
i
n - in case of

matrix B. For the matrix A, the weight corresponding to Ei

is defined as an eigenvalue ¼i of A [17], or a geometric mean

gi = n
:
ai1 · · · ain [1]. When A is consistent aij = ¼i

¼j
= gi

gj
,

which is one of the justifications of both methods [1], [17].

Now consider the sequence bi1, . . . , b
i
n. While the value of aij

can be interpreted as ‘absolute’, due to bij+bji = 1, the value of

bij is not ‘absolute’, it is ‘relative to sum equal one’. The value

of
bij

b
j

i

is ‘absolute’ so it can be used for weight calculation,

but
bij

b
j

i

= aij .

This means the weights generated by B, similarly as for

consistency, are the same as these generated but A(B).

This again provides some justification to the combined

pairwise comparisons procedure [6], [7], [16].

Additive and multiplicative pairwise comparisons can be

seen as orthogonal approaches to the same problem. This

argument is briefly illustrated in Table II. When the difference

between importance of Ei and Ej is small, Ei j Ej looks

as well justified, but still one of them seems to be slightly

better, using additive pairwise comparisons, i.e. bij , is superior

to multiplicative approach. Dividing one hundred into, say, 53

to Ei and 47 to Ej is trustworthy and usually can have some

justifications based on merits. On the other hand a statement

like ‘Ei is 1.13 times better than Ej’, which is equivalent to

‘53 to 47’ distribution of 100 points, can seldom be trusted or

have convincing justification (unless as a derivation from bij).

Hence, when the initial qualitative judgment is j or °, but

there is a reason to believe that we might be a little bit more

precise, then the use of bij to represent qualitative relationship

is superior to the use of aij . The situation seems to be opposite

for the relations > and succ. It is much easier to conclude

that Ei is about 5 times more important (better, etc.) than Ej

than to decide that the points distributions should be ‘83 to

17’ (unless as a derivation from aij). We claim that when the

initial qualitative judgment is > or {, but there is a reason

RYSZARD JANICKI, MAHMOUD MAHMOUD: ON MULTIPLICATIVE, ADDITIVE AND QUALITATIVE PAIRWISE COMPARISONS 249



TABLE II

SOME RELATIONSHIPS BETWEEN aij , bij AND Rij (aij =
bij

1−bi
j

AND bij =
aij

aij+1
).

b
j
i aij Rij bij aij Rij aij bki Rij aij bij Rij

0.5 1.0 j 0.51 0.104 j 2.0 0.67 £ 3.0 0.75 £
0.52 1.08 j 0.53 1.13 j 4.0 0.8 > 5.0 0.83 >

0.54 1.17 j 0.55 1.22 j 6.0 0.86 > 7.0 0.88 {
0.56 1.27 ° 0.57 1.33 ° 8.0 0.89 { 9.0 0.9 {
0.58 1.38 ° 0.59 1.44 ° 10.00 0.91 {
0.60 1.5 ° 0.63 1.7 °

0.66 1.94 £ 0.7 2.33 £

to believe that we might be a little bit more precise, then the

use of aij to represent qualitative relationship is superior to

the use of bij . The relationship £ is a gray area, no approach

seems to be superior to the other.

When the default values for multiplicative case are used, we

recommend the default values 1 for the j and ° relationship

and the default values 2 for > and { (gray cells in Table

I). The Table III illustrate the proposed combined approach

that involves multiplicative, additive and qualitative pairwise

comparisons.

V. DESCRIPTION OF PAIRWISE MATRIX INCONSISTENCY

REDUCTION (PIXR)

To help with determining weights for attributes and pa-

rameters, pairwise inconsistency reduction is needed. The

calculations and methods presented in this paper although

simple and computable, may consume a lot of time and effort.

Moreover, the number of calculations grows quadratically

based on the number of parameters.

PiXR is an online tool that was developed to help with

this computation and weight determination [14]. The tool

consists of 4 main sections that guide the user through creating

parameters, measurements, conversion between multiplicative

& additive matrices, and inconsistency reduction. The tool also

supports importing and exporting data as CSV files for ease

of use.

PiXR operates on the following abbreviated process of

inconsistency reduction and weight calculation [6]:

1) Pairwise matrix is provided to PiXR by Subject Matter

Expert (SME)

a) Matrix may be provided in as quantitative (additive

or multiplicative) or qualitative pairwise matrix

b) Consistency measure of the matrix is computed via

equation 7

c) Pairwise matrix is reduced using formulas 13 & 14

from [11]

d) Consistency measure is then calculated again via

equation 7, and SMEs can revise values and repeat

the process

e) Weights are calculated using the geometric mean

of the columns of the reduced matrix

wi = n

����
n�

j=1

aij (7)

PiXR has 4 main sections:

1) Parameters – used for configuring names and order of

parameters when populating matrices in later sections

2) Parameter relations (Qualitative) – used to configure

relations between parameters using qualitative relations

outlined in section III and Table I. Default values from

Table I will be used to feed the next section. The user

may also convert the qualitative matrix to multiplicative

or additive.

3) Quantitative Matrix – an editable version of the matrix

shown to the user and changes to it will be reflected in

the computed consistency measure cm index. A reduc-

tion threshold in the range of 0.00-1.00 (inclusive), may

be specified when reducing the matrix.

4) Reduced Matrix and Weights – displays the reduced

matrix and the percentages/importance of the parame-

ters. Reduced matrix and weights may be exported this

section as CSVs.

PiXR comes with 3 sample applications/matrices from [6]

which may be used to demonstrate the capabilities of the

tool. The import/export function may be used to revise the

matrices and repeat the matrix reduction process. SMEs may

be involved in this iterative process to generate new weights

and rankings.

PiXR is written in Typescript and Javascript XML (JSX).

Using this tech stack enables the tool to run in the browser,

thus saving users the time and effort needed to download

and install binaries. One may argue that Typescript and by

extension JavaScript to be slow for this kind of computation

style since the algorithm is at worst O(n3). However, in

most cases the number n is relatively small. The approach

is validated to converge quickly when using real world data

[11] and by the theoretical results of [12].

PiXR aims to be lazy in most of its evaluations. When com-

puting the triads to measure matrix consistency or computing

the localized reduction value, patterns such as generators and

streams are used where applicable. This lazy nature allows the

user to experiment with the tool and provide as many features

as they wish. The computation of the localized inconsistency

reduction is also done in a lazy fashion as to not block the

main thread and freeze the web-page.

Once the matrix is marked ready for reduction, it goes

through the following steps:

1) Compute the current consistency measure

250 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



TABLE III
A SIMPLE EXAMPLE OF MODIFIED COMBINED PAIRWISE COMPARISONS PROCESS. IN T2 AND T3 , GRAY CELLS CONTAIN bij ’S AND WHITE CELLS

CONTAIN aij ’S. IN T4 , GRAY CELLS INDICATE DIFFERENCES FROM T1 .

T1 E1 E2 E3 E4 T2 E1 E2 E3 E4

E1 j ° > { E1 1.0 0.58 4.0 6.5
E2 ¯ j £ £ =ó E2 0.42 1.0 2.0 3.0 =ó
E3 < ¢ j j E3 0.25 0.5 1.0 0.53
E4 z ¢ j j E4 0.154 0.333 0.47 1.0

inconsistency cm = 0.36 > 0.3

T3 E1 E2 E3 E4 T4 E1 E2 E3 E4

E1 1.0 0.6 4.1 6.0 E1 j ° > >

E2 0.4 1.0 2.27 3.31 =ó E2 ¯ j £ >

E3 0.244 0.44 1.0 0.548 E3 < ¢ j j
E4 0.167 0.3 0.452 1.0 E4 < < j j
wi 8.2% 13.5% 33.5% 44.7% where wi =

4
:
ai1 · · · ai4

inconsistency cm = 0.17 < 0.3

2) While the consistency measure is larger than threshold

÷, reduce the highest inconsistent triad i, j, k

The threshold ÷ has a default value of 0.3 because it is

an acceptable consistency measure with some mathematical

justification [10], however it is usually domain dependent.

The above algorithm in pseudo-code is Algorithm 1, where

consistencyMeasure() is computed using equation 7. Algo-

rithm 2 is the algorithm for reducing the most inconsistent

triad. It is based on the results of [11].

Algorithm 1 Inconsistency Index cm
cm← consistencyMeasure(matrix)
while cm ≥ ÷ do

reduceTriad(matrix)
cm← consistencyMeasure(matrix)

end while

Algorithm 2 Most Inconsistent Triad

ij ← matrix[i][j]
ik ← matrix[i][k]
kj ← matrix[k][j]
a← ik ∗ kj {Following equation 13 & 14 from [11]}

factor ← 1
if a > ij then

factor ← −1
end if

b← factor ∗ (ij + 2 ∗ a)
c← a− ij
∆c ← min(computeRoots(a, b, c)) {least positive root}

matrix[i][k]← ik + (factor ∗ ik ∗∆c)
matrix[k][j]← kj + (factor ∗ kj ∗∆c)
matrix[i][j]← ij − (factor ∗ ij ∗∆c)

VI. FINAL COMMENT

A relationships between multiplicative, additive and qualita-

tive pairwise comparisons have been discussed in detail. It was

shown that from purely mathematical point of view multiplica-

tive and additive pairwise comparisons are equivalent, but for

applications, dependently on the range of data and qualitative

relations, one approach can be superior to another. Altogether,

a combined approach is recommended. The on-line tool, PiXR,

is also provided. The fundamental problem with all methods

like the one presented here, is trust. We believe our approach

is more trustworthy than the standard AHP, mainly because

we better address the problem of assigning numerical values

to subjective qualitative judgements.
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