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Abstract—This paper introduces a new algorithm that
utilises images from the Fruits-360 dataset, superimposes
them of various backgrounds and creates associated an-
notation files with the coordinates of the bounding boxes
surrounding the fruits. The main challenge of this task
was accounting for the variations in lighting and occlusion
associated with outdoor locations. The utility and application
of such an algorithm is to reduce the need to collect real
world data for training, accelerating the speed at which new
models are developed. Using 3000 images generated by this
algorithm we train a single shot multibox detector (SSD) to
study the feasibility of using generated data during training.
We then test the trained model on 70 real world images of
apples (65 images of apples on trees and 5 images of apples
in bunches) and obtain a mean average precision of 0.750
and we compare our results with those obtained by other
state of the art models.

I. INTRODUCTION

THE most frequently mentioned challenge across
papers that study the application of artificial in-

telligence in agriculture [1], [2], [3] was data scarcity
[4], [5]. As such, authors have to collect images from
orchards/plantations or obtain images from the Inter-
net however, both methods have downsides. Collecting
images from an orchard/plantation requires visiting the
location during a certain time frame when the fruits are
ripe [6]. Data collection from the Internet via scraping
cannot guarantee image quality. Reference [7] suggests
that multiple visits to the same or to different orchards
during different periods of time are required for an ideal
dataset. Both methods also require manual annotations,
which is time consuming and is susceptible to human
error [8]. One way to address the data scarcity problem
is the creation of a data generating algorithm that can
produce images that simulate real world conditions. We
aimed to study the feasibility of using such generated
data for training an apple detector.

The Fruits-360 dataset [9], which provides 90483 im-
ages of 131 fruits and vegetables, was introduced in
2017. The images in this dataset contain one fruit or
vegetable per image with a white background. This
makes the set very good for training classifiers, however
it cannot be easily used to create detectors capable of
locating/counting the number of fruits in an image. In
order to extend the usability of the dataset for such tasks

as well, we have created an algorithm that generates
artificial training images by superimposing fruits taken
from the Fruits-360 dataset [10] on various backgrounds
containing tree leaves, branches and other fruit. Along-
side these artificial images, the software generates one
annotation file per image containing all the coordinates
of the bounding boxes that surround the fruits as well as
the fruit class. Using a training and validation dataset of
apple images generated with our algorithm we trained a
SSD [11] and tested it on 70 real world images, obtaining
an average precision of 0.750.

II. RELATED WORK

In paper [8], the authors proposed a novel approach
based on convolutional neural networks for tomato fruit
counting rather than area calculation. They used a mod-
ified version of the Inception-ResNet [12] network for
this task. The authors noted that in order to obtain
good performance with a deep learning algorithm, a
dataset that captures all the variance in the conditions
under which the model is expected to operate. Such
datasets with annotated images were not available and
the authors observe that they are difficult and time
consuming to build. One factor that contributes to this is
the limited time frame in which fruits are in the desired
development stage for image taking. Another factor is
human error, to which manual labelling is susceptible
to. Thus, the authors created their own synthetic images
by filling an image with green and brown circles to
simulate background and then red circles to simulate
tomatoes. Afterwards, a Gaussian blur filter was applied
on the images. Training the model on a dataset consisting
of exclusively synthetic images and then testing it on
100 real world images produced a 91% accuracy in
estimating the fruit count.

In [13] several models for fruit detection were re-
viewed, such as multilayered perceptrons, LedNet [4]
and InceptionV3 [14]. One issue that was present in
all analysed papers was data scarcity. The authors of
papers [5], [6] state that building an annotated dataset
is a costly process from the perspectives of both time
and material resources. For state of the art performance
such a dataset should contain images of fruits in multiple
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lighting and weather conditions, at different distances
and at different levels of occlusions, according to the
intended practical application of the model. Kang and
Chen, in [4], used a multi-scale pyramid and clustering
classifier to assist data labelling. Steven Chen et al. in
[15] utilised a custom crowd-sourcing platform for quick
data labelling to address this issue. As seen in [16], using
transfer learning and a MobileNetV2 [17] model the
authors achieved a good compromise between accuracy
and inference speed. Similarly, Raheelin Siddiqi shows
in paper [18] the effectiveness of transfer learning on
classification accuracy of fruit images.

To the extent of our knowledge, outside of [8], no
other projects have attempted to create a data generat-
ing algorithm that creates images of fruits on various
background as well as the associated annotations.

III. METHODOLOGY

A. Data Generation

The goal of this algorithm is to allow a user to create
the entirety or the majority of their training dataset with-
out the need of seeking an orchard, collecting images and
manually annotating them. This would reduce depen-
dence on obtaining access to an orchard/plantation and
on manual labelling. Furthermore, such an algorithm
would allow experiments to be executed even when
real world data cannot be collected. The idea behind
this algorithm was inspired by paper [8], in which the
authors created a dataset of synthetic images (green
background with red dots) in order to simulate images
of tomato plants. Using this dataset alone for training
and then testing on real world images of tomato plants,
the model trained by the authors achieved 91% accuracy.

The process relies on images from the Fruits-360
dataset [10] and on real images that will be used as
backgrounds for the generated images. The image out-
put size, class and maximum number of fruits contained
in each such image can be customised to fit the scope of
the project for which they are used.

The main steps of the algorithm that creates the
dataset are:

• Randomly select a background image:

– A folder of RGB background images
(JPEG/PNG) of any resolution must be
specified.

• Resize the selected background to the specified out-
put width and height. We will refer to this image as
a canvas.

– The output width and height can be customized
according to the purpose of the trained model.
Similarly, random stretch can be applied to the
image. This is done by specifying two intervals
of floating point numbers (one for width, the
other for height). From these intervals, a ran-
dom float is selected and the respective dimen-

sion is multiplied by it. This simulates images
taken using cameras with different aspect ratios
(4:3, 16:9, etc.)

• Select fruit image from given labels.

– Once the canvas is selected and resized, the
algorithm randomly chooses a fruit image from
the Fruits-360 dataset from one of the classes
specified by the user.

– The fruit image is resized to a randomly gener-
ated size within a given interval.

• Create mask and crop image to be centered on the
fruit.

– The images from the Fruits-360 dataset have a
simple white background however, some fruits
with a shiny texture, such as red apples, re-
flected the ambient light and contain white
spots.

– To ensure that, when isolating the fruit pixels,
we do not remove the aforementioned white
spots we apply the following operations:

1) Firstly we create a mask by converting the
fruit image to grayscale, then applying a
threshold function such that the white pixels
are transformed to black and the non-white
pixels become white.

2) Secondly, the mask is copied and a flood
fill algorithm is applied starting from the
corners.

3) The flood filled mask copy is then inverted
and a bitwise or is applied between it and
the initial mask.

4) Finally, the mask is eroded with a 3×3 kernel
to eliminate border pixels between the fruit
and the white background (Fig. 1).

• Augment fruit image.

– The operations used to augment the fruit image
are 90, 180, 270 degree rotations, brightness and
contrast alteration and partial cropping.

– Partial cropping simulates fruit occlusion by
removing rows or columns of fruit pixels from
the image. Both the probability of applying this

(a) Bright spot (b) After flood fill
and inversion

(c) After bitwise or
with the inverted
mask

Fig. 1: Example of the bright spot issue caused by a
granny smith apple and the solution to the problem.
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TABLE I: PARAMETERS USED FOR GENERATING THE TRAINING AND VALIDATION DATA.

Max fruits per image Min fruit size (px) Max fruit size (px) Training images Validation images
50 30× 30 250× 250 500 100

30 150× 150 400× 400 1000 200

10 250× 250 300× 300 1000 200

25 50× 50 500× 500 500 100

(a) Original fruit image (b) The resulted mask

Fig. 2: An example of the mask-creating algorithm that
selects only the fruit pixels while dropping the white
background

operation and the maximum amount of pixel
rows or columns that can be removed can be
customized.

• Attempt to add the fruit image to the canvas.

– The algorithm keeps a set of coordinates for
each fruit added onto the canvas.

– When a new fruit image can be added to the
canvas, its coordinates are randomly generated.
This is done to allow a more uniform distribu-
tion of fruits on a canvas, as well as to speed
up the adding phase.

– If a set of generated coordinates allows the
image to be placed with an acceptable level
of overlap, then the image is added onto the
canvas. This is done by copying the fruit pixels
from the fruit image with the help of the gen-
erated mask.

– If, after a number of attempts, the image was not
added, then the algorithm retries by resizing the
image to 80% of its initial size, but not smaller
than the user defined minimum size.

– If the image is not successfully added even after
resizing, then it is discarded and a new fruit
image is selected.

• Once the fruits have been added, the canvas is saved
in the PNG format with an index number as a name.
The bounding boxes associated with the fruits in the
image are stored in a separate file, either an xml or
csv.

• The process is repeated until the requested number
of images have been generated.

For the experiments done in this paper we generated
a dataset of 3000 training images and 600 validation

images of size 768×1024 using all the apple classes from
the Fruits-360 dataset and 30 background images. The
background images were scraped from the Internet and
contained foliage and trees. The images were generated
according to the parameters presented in Table I. This
distribution was chosen to simulate both a scenario
in which fruits are close to the camera, which would
produce an image with a few large fruits as well as the
scenario in which a photo is taken from further away, in
which case there would be numerous small fruits in the
image.

B. Model Evaluation

In order to evaluate the feasibility of using a synthetic
dataset to train a model that can then be used in real
world scenarios, we selected the SSD512 model [11] as
it has shown promising results in the area of intelligent
agriculture, such as fruit detection [5] and leaf disease
detection [19]. The SSD network was implemented in
Keras [20] and was adapted for images of size 768×1024.
Training was done on the 3000 training images using
an Adam optimizer with a learning rate of 0.0001 for
the first 5 epochs and with a learning rate of 0.00005

for 5 more epochs. At the end of each epoch the model
was evaluated on the 600 validation images and it was
saved if it improved from the previous evaluation. The
experiment was repeated 3 times, each time with a new
set of generated images. The machine on which the
training was done was equipped with an nVidia 2070
RTX GPU, 16 GB RAM and an Intel i7-8750H CPU. The
implementation was done using TensorFlow 2.4 [21] and
Python 3.7.7.

IV. RESULTS

For testing the model, a set of 70 real world images
was created by scraping freely reusable images from
the Internet and by taking photos of apples on trees
or in bunches. The images contain multiple species of
apples at medium to close distance, with some fruits
being partially occluded by foliage or by other apples.
The quality and resolution of the test images was varied,
containing even some blurred apples, further increasing
the difficulty of detecting them. The images were man-
ually annotated using the labelme tool [22]. In order for
an apple to be included in the annotations, at least half
of it had to be visible in the image and had to be larger
than 30× 30 if the image is resized to 768× 1024.

Following, we will present the results of the trained
SSD model on the 70 test images and compare them to
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Fig. 3: Precision-Recall curve at 50% IoU.

existing fruit detectors. Table II shows the results of the
three experiments conducted.

In Fig. 3 the precision-recall curve is presented for
model number 2. It can be noted that the high precision
value of this model means that the network produces
very few false positives. However, the recall value does
not exceed 80% for any of the three models. This indi-
cates that the model fails to detect all apples from the
test images, producing false negatives.

After visually inspecting the predictions on the test
images, we identified several reasons behind the false
negatives. Fig. 4 captures several examples:

• a large difference in lighting between a fruit and the
others; as an example, Fig. 4d shows an apple that
is underneath a cluster of leaves such that it does
not receive the same amount of light as the other
fruits in the image

• blurry images can impact the detection of fruits,
as seen in Fig. 4a where a fruit located in the
background is blurred compared to the apples in
the foreground

• fruits that have a similar or identical colour with
the background (green apples in this case) paired
with partial occlusion produces situations where the
fruits are not detected, shown in Fig. 4b and Fig. 4c

Table III presents the results of the models studied in
paper [4], in which the authors tested two augmentation
pipelines aiming to improve apple detection. The models
from [4] were trained on real world images exclusively
while our proposed model was trained on 3000 gener-

TABLE II: THE RESULTS OF THE THREE TRAINED MOD-
ELS.

Model AP50 F1 Score Recall Precision
SSD#1 0.748 0.770 0.740 0.802
SSD#2 0.750 0.816 0.769 0.869
SSD#3 0.751 0.778 0.795 0.761

ated images. It can be noted that the performance of our
proposed model is in the same vicinity, indicating the
viability of training a model on generated data.

In paper [5] a Faster R-CNN and an SSD model were
used for counting fruits from five classes: apple, orange,
mandarin, lemon and tomato. Compared to our SSD
model, the one proposed in [5] performs slightly better
on fruit counting on the apple subset, achieving 81%
accuracy, while ours achieved 76%. As mentioned pre-
viously, the model produces false negatives, explained
by partially occluded fruits of the same color as the
background or by blurred fruits, which can explain the
difference between the predicted count and the actual
count.

V. CONCLUSION AND FUTURE WORK

In this paper we have studied the feasibility of using a
dataset of generated images as training data for an object
detector and then applying it on real world images. We
introduced an algorithm that uses the fruit images from
the Fruits-360 dataset and custom background images to
create new images alongside annotation files. We trained
a SSD on an apple dataset of 3000 images generated with
this algorithm and tested it using 70 real world apple
images. Then we compared our results with other state
of the art works and concluded that using generated im-
ages for training produces a model capable of handling
real world data.

In the future, we plan to study if using generated
data for training and using real world images for fine
tuning leads to improved detection performance. An-
other development direction is the addition of more
augmentation operations to the data generating algo-
rithm to account for more data variance. A better way
to simulate fruit occlusion, for example overlapping
images of potential obstructions (eg. leaves, branches)
over the fruit image could improve a model’s capacity
of detecting such fruits.

Overall, the presented study shows potential in using
generated images instead of images collected from or-
chards or plantations as the principal source of training
data for a fruit detector. We think that this paper serves
as a starting point for other, more complex approaches.
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