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Abstract—The recent advancements in medical science have
caused a considerable acceleration in the rate at which new
information is being published. The MEDLINE database is
growing at 500,000 new citations each year. As a result of this
exponential increase, it is not easy to manually keep up with
this increasing swell of information. Thus, there is a need for
automatic information extraction systems to retrieve and organize
information in the biomedical domain. Biomedical Named Entity
Recognition is one such fundamental information extraction
task, leading to significant information management goals in the
biomedical domain. Due to the complex vocabulary (e.g., mRNA)
and free nomenclature (e.g., IL2), identifying named entities
in the biomedical domain is more challenging than any other
domain, hence requires special attention. In this paper, we deploy
two novel bi-directional encoder-based systems, viz., BioBERT
and RoBERTa to identify named entities in the biomedical
text. Due to the domain-specific training of BioBERT, it gives
reasonably good performance for the NER task in the biomedical
domain. However, the structure of RoBERTa makes it more
suitable for the task. We obtain a significant improvement in
F-score by RoBERTa over BioBERT. In addition, we present a
comparative study on training loss attained with ADAM and
LAMB optimizers.

I. INTRODUCTION

I
NFORMATION extraction in the biomedical domain in-
volves the identification of the independent pieces of infor-

mation, for example, cause-effect arguments, causal triggers,
adverse drug reaction, etc. Automated extraction of informa-
tion from the biomedical text is an essential facilitator of
clinical research and informed diagnosis [1], [2]. The presence
of many domain-specific terminologies in biomedical literature
makes information extraction a challenging task.

An entity is a word or a sequence of words in the text
with a physical existence with different properties. Named
entity recognition (NER) is a sub-task of information ex-
traction that seeks to identify and classify named entities as
predefined categories in unstructured text. NER always serves
as the foundation for many natural language applications
such as question answering, text summarization, and machine

translation. Biomedical Named Entity Recognition (BioNER)
is a task of identifying biomedical named entities such as
gene, disease, drug, species, etc., in the raw text. Because
of the complexity of biomedical nomenclature, BioNER is a
more challenging task than NER in general. A gene name
often contains a mix of alphabet, digits, hyphens, and other
characters, for example, HIV-1. The domain frequently uses

abbreviations (“IL2” for “Interleukin 2”). In addition, the same
biomedical named entities can be expressed in various forms.
For example, gene names often contain alphabets, digits,
hyphens, and other characters, thus having many variants (e.g.,
“HIV-1 enhancer” versus “HIV 1 enhancer”). Moreover, many
abbreviations (e.g., “IL2” for “Interleukin 2”) have been used
for biomedical named entities. Sometimes, the same entity can
have very different aliases (e.g., “PTEN” and “MMAC1” refer
to the same gene) [1]. Another challenge of BioNER is the
ambiguity problem. The same word or phrase can refer to
more than one type of entities or does not refer to an entity
depending on the context (e.g., “TNF alpha” can refer to a
protein or DNA).

Table I shows a few example sentences from the biomedical
domain with the named entities and their types. Named Entity
Recognition in the biomedical domain has been tried using
various available methodologies and continues to be an active
research topic due to the complexity and utility of the problem.
BioBERT [3] is a language model trained on biomedical data
to produce distributed representation of words. This paper
presents a deep neural system for named entity recognition
in the biomedical domain using BioBERT. Specifically, in
this paper, we deploy two novel bi-directional encoder-based
systems, viz., BioBERT and RoBERTa to identify named
entities in the biomedical text. Due to the domain-specific
training of BioBERT, it gives reasonably good performance
for the NER task in the biomedical domain. However, the
supportive structure of RoBERTa makes it more suitable for
the BioNER task than BioBERT.

II. RELATED WORK

Named Entity Recognition in the biomedical domain is a
fundamental text mining task. It has attracted a lot of attention
from researchers across different languages. Methodologies
applied to this problem range from the traditional rule-based
approaches to the most recent deep learning models. Due to
the non-standard use of abbreviations, synonyms, synchro-
nizations, ambiguities, and the frequent use of phrases to
describe the entities, NER in the biomedical domain is still
a challenging task [4].

Rule-based methods rely on hand-crafted rules to identify
and classify named entities in text. An exhaustive lexicon
almost always boosts the performance of these models. NER
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TABLE I
EXAMPLES OF SENTENCES WITH THE NAMED ENTITY ANNOTATIONS

S.No. Sentences with Annotations

1 Identification of APC2, a homologue of the {adenomatous polyposis coli tumour}_gene suppre-
sor.

2 {Methanoregula formicica}_species sp.nov., a methane-producing archaeon isolated from
methanogenic sludge.

3 {IL-2}_gene gene expression and {NF-kappa B}_protein activation through {CD2B}_antibody

requires reactive oxygen production by {5-lipoxygenase}_protein.
4 Assymetrical cell division was observed in rod-shaped cells.

tools in the Biomedical domain rely on specific features to
capture the characteristics of the different entity classes until
recently. For instance, the suffix -ase is more frequent in
protein names than in diseases; species names often consist of
two tokens and have Latin suffixes; chemicals often contain
specific syllabi like methyl or carboxyl [5]. However, hand-
crafted semantic and syntactic rules often make these models
data specific. Any change in the source of data will drop the
performance of the system [5], [6]. As a result, rule-based
approaches lead to a high precision but low recall.

Advancements in supervised machine learning were also
applied to generic NER. NER can be considered like a multi-
class classification or sequence labeling task. The correct
selection and engineering of features are vital to the model’s
performance based on them. Many machine learning models
have been tried and researched based on these features. These
include Hidden Markov Models (HMMs) [7], decision trees
[8], SVMs [9] and Conditional Random Fields(CRFs). A
major requirement for supervised machine learning models to
perform well is the presence of sufficient labeled/structured
data. However, the presence of labeled data is limited, leading
to the rise of unsupervised learning approaches. These models
tend to focus more on corpus statistics (e.g. IDF), terminolo-
gies, and syntactic knowledge KALM [10].

More recently, deep learning methods that can automatically
develop and extract features from the raw text are used end-
to-end for generic NER. These models generally use character
or word-level embeddings such as Word2Vec and GloVe as
their basic input. Various models based on CNNs and RNNs
have been researched. However, the BiLSTM-CRF model [11]
has been most commonly used. Transformer-based models
[12] have proven to be superior in quality and also take
less time to train. Based on transformers, several pre-trained
language models have been released, which on fine-tuning
give state-of-the-art performance on various end tasks. These
include Generative Pre-trained Transformer (GPT) [13] (left
to right architecture) and Bidirectional Encoder Representa-
tions from Transformers (BERT) [14] (takes both left and
right context). Bio-BERT shows that pre-training BERT on
biomedical data significantly improves its performance on end
tasks in the biomedical domain. This paper uses BioBERT for
named entity recognition in the biomedical domain. However,
BioBERT takes a significant amount of time to train; we
reduce the training time of BioBERT. We also modify the
pre-training settings of BioBERT, which enables us to achieve

TABLE II
STATISTICS OF BIOMEDICAL NER DATASETS

Dataset Entity Type No. of annotations

NCBI-Disease [16] Disease 6881
BC5CDR [17] Drug/Chem 15411
BC2GM [18] Gene/Protein 20703

Species-800 [19] Species 3708

better performance on the end task, that is, Named Entity
Recognition in the biomedical text.

III. DATASET

We preprocess the four datasets in the biomedical domain,
viz., NCBI-Disease, BC5CDR (drug/chem, disease), BC2GM,
and Species-800. The preprocessing of the NCBI-Disease
dataset results in fewer annotations than the original dataset
because duplicate articles are removed from its training set.
The Species-800 dataset was preprocessed and split as per
Pyysalo et al., [15]. The statistics of the biomedical NER
dataset are listed in Table II.

IV. METHODOLOGY

This paper presents a deep architecture for the named entity
recognition in the biomedical domain. Our system deploys the
representations of the words by a domain-specific language
model, that is, BioBERT. We further optimize the system for
the task using the LAMB optimizer. Furthermore, RoBERTa
model is built on top of the BERT model. The architecture
similarity with the BERT model makes RoBERTa model
suitable for the named entity recognition task. This section
describes the algorithm and its components.

A. BioBERT

Text documents in the biomedical domain contain a con-
siderable amount of domain-specific proper nouns, (e.g.,

BRACA1), which requires expertise in the domain to under-
stand named entities. The general-purpose language repre-
sentation models such as GloVe and Word2Vec give a poor
performance for biomedical texts [20], [21]. The distribution
of the words shifts from general domain corpora to biomedical
corpora; hence direct application of generic word embeddings
results in unsatisfactory performance [5], [15], [22]. BioBERT
(Bidirectional Encoder Representations from Transformers for
Biomedical Text Mining) is trained on the biomedical corpus.
First, BioBERT is initialized with weights from BERT; BERT
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was pre-trained on general domain corpus to overcome the data
sparsity problem and bring more coverage. The main advan-
tage of BERT over previous language model approaches like
combinations of LSTMs and CRF is that BERT has relatively
a simple architecture based on bidirectional transformers.
Based on its last layer representations, BERT computes only
token level probabilities in the BIO2 format (Begin, Inside,
Others). Then BioBERT is trained on biomedical corpora from
PubMed. BioBERT is the first domain-specific BERT model
which has been trained for biomedical-specific tasks [22].

B. RoBERTa

RoBERTa stands for Robustly Optimized BERT Pre-training
Approach. Most of the training procedure of BERT and
RoBERTa is common. However, there are a few fundamental
structural differences. This section presents the differences
between the two models.

1) Static Masking vs. Dynamic Masking: BERT relies on
randomly masking and predicting tokens. In the original BERT
model, each sequence was masked in only ten different ways
over 40 epochs. RoBERTa uses dynamic masking in which
different mask is generated every time a sequence is fed to
the model.

2) Model Input Format and Next Sentence Prediction:

The BERT model is also trained for the Next Sentence
Prediction (NSP) objective along with the masked language
modeling objective. The objective of auxiliary Next Sentence
Prediction loss is to determine whether the segments belong
to the same or different documents. It is equiprobable for
document segments to be sampled continuously from the
same or distinct documents. RoBERTa, on the other hand,
takes a different approach by ignoring the NSP loss. The
input representation can be seen as packed with full sentences
sampled contiguously from one or more than one documents.
The maximum input length is set to 512 tokens.

3) Training with Large Batches: The same computational
cost models can be made by increasing the batch size and
decreasing the number of steps. The original BERT was trained
with 256 sequence batch size for 1 million steps via gradient
accumulation. This computational cost can approximate the
training model for 125k steps with a batch size of 2k or 31k
steps for 8k. It can be inferred from previous works done
on neural networks that training the model with large mini-
batches improves end-to-end performance. RoBERTa uses a
batch size of 8k.

4) Text Encoding: The difference between the BPE vo-
cabulary of original BERT and RoBERTa lies in the sub-
word size, preprocessing of input, and tokenization rule.
BERT uses 30k, whereas RoBERTa uses a more extensive
vocabulary of 50k subwords. BERT does preprocess of input
while RoBERTa expands vocabulary size without additional
preprocessing. Roberta raises vocabulary size without other
tokenization rules.

C. LAMB Optimizer

This paper also shows the efficacy of the Large Batch
Optimization (LAMB) algorithm with BioBERT for NER in

TABLE III
BIOBERT TOKEN LEVEL EVALUATION WITH ADAM OPTIMIZER

Dataset Precision Recall F-score Loss

NCBI Disease 88.8 91.8 90.2 33.71

BC5CDR 89.2 90.5 89.9 37.56

BC2GM 88.7 89.4 89.0 37.56

Species-800 79.1 83.2 81.1 32.89

TABLE IV
BIOBERT TOKEN LEVEL EVALUATION WITH LAMB OPTIMIZER

Dataset Precision Recall F-score Loss

NCBI Disease 86.9 91.8 90.2 11.26

BC5CDR 89.2 90.5 89.9 10.74

BC2GM 88.7 89.4 88.88 17.17

Species-800 79.1 83.2 80.28 12.52

the biomedical domain. LAMB helps to reduce the training
time, and boost performance for text processing task [23].
Large batch training is the key to reducing deep neural
networks’ training time in a large distributed system. LAMB is
a layer-wise adaptive large batch optimization technique. The
generalization gap becomes a problem in the case of training
large batches models. If direct optimization is performed,
it may cause performance degradation. Devlin et al., [24]
implemented BERT with a variant of ADAM optimizer, which
uses ADAMs optimizer along with weight decay for training.
LARS is another successful adaptive optimizer that has been
used for large batch convolutional neural networks, but they
are not effective for text processing tasks [23]. LAMB has
shown superior performance across BERT and ResNet-50
training tasks with minimal hyperparameter tuning. Hence,
we train BioBERT with the LAMB optimizer to optimize
the training time. In addition, we show the superiority of the
LAMB optimizer over the ADAM optimizer for the BioNER
task (Section VI).

TABLE V
BIOBERT ENTITY LEVEL EVALUATION

Dataset Precision Recall F-score

NCBI
Disease

86.92 89.27 88.08

BC5CDR 92.74 92.79 92.77

BC2GM 83.59 83.39 83.74

Species-800 71.39 76.79 73.99

TABLE VI
ROBERTA ENTITY LEVEL EVALUATION

Dataset Precision Recall F-score

NCBI Disease 87.32 88.84 88.07

BC5CDR 93.59 92.95 93.27

BC2GM 93.41 92.16 92.78

Species-800 76.01 84.00 79.81
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V. EXPERIMENTAL SETUP

The overall process can be divided into pre-training
and fine-tuning BioBERT. The pre-training weights are
taken from Cohen and Hunter [2]. The fine-tuning step
is problem-specific. For example, the model needs to be
fine-tuned for named entity recognition, relation extraction,
question-answering, and tasks independently. We fine-tune the
BioBERT model for our dataset’s named entity recognition
task. A batch size of 8 was chosen for fine-tuning. The learning
rate was set to 1e−5, and the model was trained for 10 epochs.
F-score is computed at the token level, word level, and entity
level, that is, phrase level.

VI. RESULTS

Results are focused on two aspects: the optimizer’s per-
formance during training and the F-score for the task. We
compare the training Loss by ADAM optimizer and LAMB
optimizer. ADAM optimizer is a frequently used optimizer
for the classification task. Table III and Table IV present the
F-Score obtained with BioBERT at token level with ADAM
and LAMB respectively. The last column of Table III and
Table IV shows the Loss attained during training with ADAM
and LAMB, respectively. We observed a significant difference
in the training Loss value with the LAMB optimizer; hence
LAMB made the model converge in a significantly shorter time
than ADAM. However, there is no significant difference in the
F-score obtained with ADAM and LAMB. Table V and Table
VI show the comparison between BioBERT and RoBERTa for
NER across the four datasets from biomedical domain. We
fine-tune both the models on our dataset for the named-entity
recognition task. RoBERTa significantly improved the F-score
for the named-entity recognition in the biomedical domain.

VII. CONCLUSION

Named entity recognition in the biomedical domain is a
challenging task considering the unconstrained nomenclature
of the biomedical vocabulary. This paper presents a named-
entity recognition system for the biomedical domain. We
deploy two pre-trained language models for the task, viz.,
BioBERT and RoBERTa. Due to the domain-specific training
of BioBERT, it gives reasonably good performance for the
NER task in the biomedical domain. However, the structure
of RoBERTa makes it more suitable for the task. Simple
fine-tuning of RoBERTa on the dataset for BioNER boosts
the results significantly. Additionally, we show a comparison
between the training loss attained with ADAM and LAMB
optimizers.
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