
An Integer Programming Approach Reinforced by a
Message-passing Procedure for Detecting Dense

Attributed Subgraphs
Arman Ferdowsi

Vienna University of Technology-ECS Group
K. N. Toosi University of Technology-Department of Mathematics

Email: aferdowsi@ecs.tuwien.ac.at
armanferdowsi@email.kntu.ac.ir

Abstract—One of the recent challenging but vital tasks in
graph theory and network analysis, especially when dealing with
graphs equipped with a set of nodal attributes, is to discover
subgraphs consisting of highly interacting nodes with respect to
the number of edges and the attributes’ similarities. This paper
proposes an approach based on integer programming modeling
and the graph neural network message-passing manner for
efficiently extracting these subgraphs. The experiments illustrate
the proposed method’s privilege over some alternative algorithms
known so far, utilizing several well-known instances.

Index Terms—Graph partitioning, Network analysis, Integer
programming, Message passing, Local search.

I. INTRODUCTION

W
HEN studying graphs/networks, we usually face collec-
tions consisting of nodes with common topological and

nodal attribute characteristics. More specifically, sets of highly
interactive vertices are likely to yield and share common
relationships and properties. In this sense, in all scientific fields
where graphs are somehow implicated, one of the challenging
tasks would be to efficiently partition the given graph into a
number of dense subgraphs consisting of massively connected
vertices that share similar properties. These subgraphs are well
known as communities, and naturally, the process of identify-
ing them is referred to as the community detection problem.
Detecting communities has become one of the fundamental
subjects in the field of network analysis and graph theory and
has numerous applications in a wide range of areas, including
the analysis of Social/Biological/Cosmological networks [1],
[2], [3], [4] and WEB [5]. It also plays a crucial role in the
domain of Network Design problems [6], Signal Processing
[7], Image Segmentation [8], Pattern Recognition [9], and Data
Mining [10].

Crucial in this domain is a more formal representation of
a graph: A pair G = (V,E) with the set of vertices V

and edges E. Subsequently, from the perspective of graph
topological structure, a community can be contemplated as a
subset C ¦ V with a high density of edges between nodes
inside C and a low density of edges connecting C to the other
subsets. Accordingly, one can define the community detection
problem as partitioning V into a set of disjoint communities
C = {C1, C2, . . . , Ck}.

In fact, mining high-quality communities usually coincides
with finding a measure that estimates the goodness of com-
munities. In the literature, a large number of such quality
measures have been proposed for evaluating the superiority
of partitioning from the viewpoint of topological structures.
Among them, one of the most widely used and well-known
is Modularity, introduced by Newman [11]. Intuitively, for a
community C, Modularity is the number of edges inside C

subtracted by the expected number of such edges, whereat the
expected number of edges can be derived by corresponding to
G, a randomized graph (called the Null model) with exactly
the same vertices and the same degree of G, in which edges
are placed randomly. More specifically if di and m are,
respectively, the degree of node i and the number of edges
in G, the probability of existing an edge between nodes i and
j in such a graph is didj

2m . This is because, first, each node is
assigned the number of stub links exactly equal to its edges
(Fig. 1a, 1b). Afterward, each of the two stub edges will be
joined at random (Fig. 1c). Consequently, the Modularity value
for a community C can be defined as the number of edges
within C in G minus the number of edges within C in a Null
model of G. Thus, Modularity for partitioning C can then be
expressed as

Q(C) =
1

2m

�

i,j*V

[ai,j 2
didj

2m
]ξ(i, j), (1)

where A = (ai,j) be the adjacency matrix of G, where ai,j is
one when there is an edge between node i and node j, and
zero otherwise; n is the number of vertices in G. In addition,
ξ(i, j) is one if i and j are in the same community and zero
otherwise.

As a result, high-quality communities can be determined
as the ones with a high value of Modularity. However,
despite Modularity’s advancements in finding high-quality
communities in a wide range of graphs, it is known to suffer
from limitations (see [12], [13], for example). In particular,
as pointed out in [14], since Modularity only considers the
existing edges of the network, it qualifies the goodness of
the discovered communities by only measuring how good the
partitioning fits the existing edges. This is indeed a drawback
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(a) Graph G (b) Nodes with stub links equiv-
alent to their degree

(c) A null model of G

Fig. 1: A Null model associated with a given Graph G.

because the disconnected nodes (absent links) that lie in the
same community are not taken into account.

On the other hand, Max-Min Modularity [14], as one of the
successful extensions of Modularity, is able to significantly
improves the accuracy of the measure by compensating for
the Modularity quantity when disconnected nodes are in the
same community. More precisely, it is assumed in [14] that (in
addition to the graph G) a zero-one relation matrix U = (ui,j)
is given that defines whether every pair of disconnected nodes
of the network is related or not: ui,j is one when disconnected
nodes i and j are related, and zero otherwise. Max-Min
Modularity, in fact, tries to take into account the importance
of the indirect connections between disconnected nodes by
penalizing the Modularity measure when unrelated nodes are
in the same community: Consider a complemented graph
G2 = (V,E2), where E2 contains an edge between every pair
of disconnected nodes of G that is unrelated; i.e., there is
an edge between i and j in G2 if there is not such an edge
in G and also ui,j is zero. Max-Min Modularity, then, aims
at maximizing the Modularity in G as well as minimizing
Modularity in G2 simultaneously. Mathematically speaking, if
A2 = (a2i,j) is the adjacency matrix of G2, d

2

i is the degree of
node i in G2, and m2 is the number of the edges in G2, then
Max-Min Modularity QMM of a given partition C of V is
defined as follows:

QMM (C) =
�

i,j*V

[
1

2m
(ai,j −

didj

2m
)−

1

2m2
(a

2

i,j −

d
2

id
2

j

2m2
)]ξ(i, j). (2)

We refer to the problem of finding a partition of the network
that maximizes Max-Min Modularity as the Max-Min Modu-

larity Maximization problem.
As a crucial remark, we can note that not only is the

Max-Min Modularity Maximization problem categorized in
the class of NP-hard problems [15], making it hard to find
an efficient optimization algorithm, but it also suffers from
a major drawback: Max-Min Modularity strongly depends on
the accuracy of the given relation matrix, meaning that the
quantity of the measure might be heavily affected by the node
relationships defined by the user/oracle in the first place. De-

spite Ferdowsi and Khanteymoori [16] succeeded in proposing
a systematic approach for unveiling the relation between non-
adjacent vertices, from a more critical point of view, one
could argue that both Modularity and Max-Min Modularity,
like many other community discovery methods, only utilize
topological information of nodes, naively overlooking a rich
set of nodal attributes (e.g., user profiles of an online social
network or textual contents of a citation network), which is
abundant in all real-life networks [17].

In this regard, recently, an emerging domain of deep
learning for graphs has ensured the design of more accurate
and scalable algorithms. However, despite these approaches
achieving outstanding results in graph-related tasks like link
prediction and node classification [18], fairly little concentra-
tion has been committed to their application on unsupervised
learning that encompasses the community detection problem.
This is primarily because graph embedding methods can
ideally align with (semi-)supervised learning approaches; how-
ever, they cannot be naturally generalized to the unsupervised
learning manners since it is not very simple to find a proper
loss function to govern the back-propagation updating proce-
dure. Despite that, several deep learning-based unsupervised
graph algorithms have been proposed [19], [20], [21], but they
all suffer from a not accurate choice of a loss function that can
authoritatively extend the model to unsupervised vision. The
diverse results obtained by these approaches over the same
input instances can prove this claim.

Main contribution: In this work, we introduce a refined
model for the Max-Min Modularity that empowers us to
find high-quality communities with simultaneously taking the
graph’s topological structure and the nodal attributes into
account. In the sequel, we involve the Modularity metric
to mine the communities consisting of densely connected
vertices. In addition, we provide a technical introduction to
Graph Neural Network (GNN) formalism, a dominant and
fast-growing paradigm for deep learning with graph data,
whose ability is to use nodes’ features and local structure to
generate embeddings. Utilizing the general concept of GNN
feed-forward message passing, we devise an efficient mech-
anism for extracting the information induced by propagating
nodes’ properties throughout the network, leading to a perfect
systematic characterization of the relation matrix. Everything
combined, we introduce the advanced Max-Min Modularity
scheme and express it with a standard integer programming
formulation. Ultimately, by solving the model using a robust
approach consisting of a row/column generation technique for
solving the model’s linear relaxation version and a local search
manner for obtaining integer solutions, we identify the final
communities.

The paper is organized as follows: the rest of this section
focuses on providing a brief literature review. In Section II, we
first restate the Modularity Maximization problem in terms of
an integer programming model. We then devise a method for
providing a refined relation matrix. Afterward, gathering all
things together, we extend the primary Max-Min Modularity
model and present an integer programming formulation for
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it. Next, in Section III, we introduce the employed solution
approach that leads to discovering high-quality communities.
Section IV eventually focuses on various experiments, con-
firming the proposed method’s high performance.

A. Related Works

Several approaches have been proposed in the literature
to detect communities in networks; see, for example, the
survey conducted by Souravlas et al. [22]. However, despite a
large number of these techniques, relatively little work solves
the problem using mathematical programming techniques.
Especially in the case of Modularity maximization, few results
have been established [23], [24], [25], [26]. On the other side,
Chen et al. [14] illustrated that maximizing the Modularity
alone does not usually lead to superior communities. Based on
their findings, one of the significant drawbacks of Modularity
is its sheer dependence on the (existing) links, meaning that,
Modularity only focuses on discovering communities in which
the number of interactive edges (links) is as many as possible.
At the same time, it does not pay any attention to the missing
links. This is while just as existing links can play an essential
role in analyzing networks, so do the absent links. Therefore,
new extensions of Modularity emerged subsequently, one of
the most successful of which is the already mentioned: Max-
Min Modularity [14]. Nevertheless, as discussed, Max-Min
Modularity itself suffers from a critical issue: the nonexistence
of a systematic way for proposing the so-called relation matrix,
which is required to express the relationship between non-
adjacent nodes. In this respect, Ferdowsi and Khanteymoori
[16] succeeded in offering an analytical procedure to address
this deficiency, generalize the conventional Max-Min Modu-
larity, and provide an efficient local search-based algorithm
to discover high-quality communities by considering both
existing and missing links.

On the other side, in the past few years, most research
has surged toward deep learning methods due to their power
to achieve unprecedented results. These techniques aim at
embedding nodes into a low-dimensional, dense vector space
[27], [28]. However, unfortunately, a vast number of these
methods lack the strength of encountering attributed graphs
in which nodes are equipped with a set of features, and this is
while we are now most surrounded by attributed networks ev-
erywhere [19]. It is worth mentioning that a few deep-learning
methods have been recently proposed that consider attributed
network embedding [29], [30], though most of them employ
a matrix factorization manner, which endures some critical
boundaries. More precisely, the representation capability of
a matrix factorization-based approach is found to be more
inadequate than a neural network-based method [31]. Besides,
one could also argue that the majority of these proposals only
rely on supervised graph algorithms, and therefore, usually
fail to perform the community detection task, which can be
categorized as an unsupervised assignment in graph problems
[32], [33]. And the rests, which are designed for unsupervised
learnings, still cannot find a promising loss function that can

lead to fine communities for various given graph instances
[34], [19].

II. MODEL SKETCHING

In this section, we first recite the so-called Modularity
Maximization problem in terms of an integer programming
formulation, enabling us to discover communities with respect
to the topological aspects of a given graph. Afterward, we
explain the Graph Neural Network message passing method
that facilitates us to devise a procedure for determining an
accurate relation matrix for the Max-Min Modularity problem.
This achievement then hopefully leads to a proper integer
formulation for our advanced Max-Min Modularity problem
that can be used to efficiently capture communities with
respect to simultaneously taking both topological and attributes
aspects into consideration.

A. Topology extraction

Let the binary variable xij indicate if nodes i and j belong
to the same community or not; the value of xij is zero if nodes
i and j belong to the same community, and one otherwise.
Let Iall = {(i, j) * V 2 | i < j}; and qij = ai,j 2 didj

2m ,
for each (i, j) * Iall. As described in [25], the Modularity
Maximization problem can be formulated in terms of the
following integer linear program:

max
1

m

�

(i,j)*Iall

qij(12 xij) (IP-M)

xij + xjk 2 xik g 0 "i < j < k (3)

xij 2 xjk + xik g 0 "i < j < k (4)

2 xij + xjk + xik g 0 "i < j < k (5)

xij * {0, 1} "(i, j) * Iall (6)

Constraints (3)-(5) guarantee that if i and j are in the same
community and j and k are in the same community, then so
are i and k. We refer to the relaxation of (IP-M), obtained
by replacing the constraints xij * {0, 1} by xij * [0, 1], as
(LP-M).

As discussed in [23] and [35], solving IP-M can soundly
provide us with communities consisting of highly interactive
edges. It is, however, incontrovertible that maximizing Mod-
ularity cannot help us tackle the attributed graphs. Conse-
quently, to address this deficiency, our goal is to design an
advanced model for the Max-Min Modularity problem so that
nodal attributes are also effectively involved in the community
mining process. In order to do that, we first provide a way to
exploit the information diffused via nodes’ features.

B. Attribute extraction

In this section, which establishes the core part of this re-
search, we utilize the Graph Neural Network (GNN) message-

passing framework to provide a systematic and accurate way
of defining a relation matrix that perfectly depicts the similar-
ity between nodes by analyzing the information spread by the
attributes. More precisely, we aim to feed the nodal attributes
to a GNN message passing to create single representation
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Fig. 2: A scheme of the encoder approach. The encoder maps
the node u to a low-dimensional embedding zu.

vectors, each of which captures a node’s structure as well as
the feature information.

To motivate our discussion, we initially raise the notion
of node embedding, which seeks to encode nodes as low-
dimensional vectors that summarize their structural graph
position and the information of their local graph neighborhood.
In other words, node embedding aims to project vertices into
a latent space, where geometric relations in this latent space
correspond to relationships (e.g., edge existence or similarity)
in the original graph or network. In this fashion, an encoder
can be referred to as a function that maps each node u * V

to vector embedding zu * Rd (i.e., zu corresponds to the
embedding for node u * V ) (See Fig. 2).

We now turn our attention toward one of the substantial
encoder models: Graph Neural Network (GNN), a broad
framework for defining deep neural networks on graph data.
The elucidative characteristic of a GNN is that it adopts a
form of neural message passing in which vector messages are
exchanged between nodes and updated using neural networks
[36]. In each message-passing iteration of a GNN, a hidden
embedding h

(k)
u corresponding to each node u * V is updated

according to information aggregated from u’s graph neighbor-
hood N (u). Informally speaking, to each node u * V one can
correspond a so-called computational graph that accumulates
the information propagated from u’s neighbors, and in turn,
the messages coming from these neighbors are based on
information aggregated from their respective neighborhoods,
and so on. Fig. 3 exemplifies a two layers computational graph.
From the mathematical perspective, GNN message-passing
procedure can be expressed as follows. Suppose that each node
u is associated with a d-dimensional attribute vector that we
represent with Xu * Rd. Then, the k2th embedding layer
h
(k)
u , corresponding to node u * V , can be obtained by the

following recursive formula:

h(k)
u = σ

�

W (k)
�

v*N (u)

h(k21)
v + b(k)

�

, (7)

where h
(0)
u = Xu and Wd×d is a trainable matrix, which

weights the nodes’ attributes. Moreover, let σ denotes an
elementwise non-linearity (e.g., a tanh or Relu). Furthermore,
b(k) * Rd is the bias term, which can be often omitted for
the sake of simplicity, but including it could be important to
obtain high-quality performance. As can be inferred from (7),
first, the messages incoming from the neighbors are summed;

Fig. 3: Two layers computational graph corresponding to node
A. The model aggregates messages from A’s local graph
neighbors, and in turn, the messages coming from these
neighbors are based on information aggregated from their
respective neighborhoods.

then, the neighborhood information with the node’s previous
embedding is combined using a linear combination; finally, an
elementwise non-linearity is applied.

Now, in order to transform the node-level equation (7)
into something we can implement, we can come up with the
following graph-level definition of the model:

H(k) = σ
�

AH(k21)W (k)
�

, (8)

where H(k) * R|V |×d is the matrix of node representations at
layer k in the GNN, with each node corresponding to a row
in the matrix.

However, despite the straightforward intuition behind the
update procedure (8), considerably notable is its two limita-
tions. The first one is the non-consideration of the attributes of
each node itself. This is crucial since the effectiveness of GNN
becomes severely limited, as the information coming from the
node’s neighbors cannot be differentiated from the information
from the node itself. This restriction originates form the fact
that self-loops are not taken into account in the adjacency
matrix A. The problem, however, can be easily resolved by
substituting A with A + I , where I * Rn×n is the identity
matrix that lets the self-loops also be involved. Another issue
that may raise concern regarding (8) is the non-normality
of features, which can indeed lead to numerical instabilities.
However, fortunately, to also prevent this shortcoming, it
seems convincing to apply the symmetric normalization as it
has turned out to drive powerful dynamics [37]. For doing this,
it is sufficient to replace A + I with the normalization term
D

21
2 (A + I)D

1
2 , where D * Rn×n is the degree matrix. As

a result, in the case of a basic GNN, we can end up with the
following graph level definition of the model:

H(k) = σ
�

D
21
2 (A+ I)D

1
2H(k21)W (k)

�

(9)

It is worth pointing out that since our goal is to employ
the feed-forward message passing exclusively and not to
implement the back-propagation procedure, training the weight
matrix W is not specifically part of our requirements. Instead,
the only thing that matters to us is finding a final vector repre-
sentation for each node by which we can sufficiently reflect the
similarities among nodes with respect to the information that
originates/propagates from attributes. For this reason, we can
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safely omit W from (9) and obtain the following embedding
matrix H .

H(k) = σ
�

D
21
2 (A+ I)D

1
2H(k21)

�

(10)

One important insight that could be gained by (10) is that
GNN feed-forward message passing is capable of effectively
encoding neighborhood information in such a way that after
performing the updating procedure for a number of layers,
similar nodes in the graph will tend to have analogous final
embedding representation [38]. This is primarily due to the
fact that each node inherits the information (attributes) from
its neighborhood.

Accordingly, any techniques for computing the distance be-
tween each pair of final vectors representation could naturally
lead to obtaining the similarities between the corresponding
vertices with respect to their attributes. In this work, we
employ the well-known z-Normalized Euclidean Distance to
measure the similarities between nodes. In this fashion, the
distance between two vectors is defined as the Euclidean
distance between the normal form of the two vectors, where
the normalized form associated with each sequence is obtained
by transforming the vector so it has a mean distribution µ = 0
and standard deviation σ = 1. More explicitly, given two nodes
i and j, with the corresponding vector embeddings H(k)

i * Rd

and H
(k)
j * Rd, at layer k, we define x7

ij =
||"H(k)

i
2"
H

(k)
j

||2
2
:
d

to
be their z-score normalized Euclidean distance, where || · ||2

is the Euclidean norm,
�
H

(k)
i =

H
(k)
i

2µ
H

(k)
i

σ
H

(k)
i

, µ
H

(k)
i

is the

distribution mean, and σ
H

(k)
i

is the standard deviation of the

vector H
(k)
i . It is not difficult to check that for any given

i, j * V , we have x7
ij * [0, 1] [39] and that x7 preserves

the triangle inequality. Subsequently, x7 forms a metric space,
which we denote by Embedding Distance (ED), on graph G.
Clearly, the larger the obtained ED between two nodes, the
less similarity between them.

C. Advanced Max-Min Modularity Model

As already mentioned, the larger x7
ij is, the less likely it is

that i and j are similar, that is, the less correlated they are,
and therefore, the more likely they are to be in distinct com-
munities. This intuition and also the fact that the Modularity
Maximization problem can be nicely expressed for weighted
graphs [40] persuade us to propose an advanced Max-Min
Modularity model by recharacterizing the relation matrix and
so the complemented weighted graph G2 = (V,E2) using ED.
Accordingly, we define the relation matrix A2 = (a2i,j) and G2

((a2i,j) represents the weight of the edge between nodes i and
j in G2) as follows:

a2i,j =

�

x7
ij if ai,j = 0 and i ;= j

0 otherwise
(11)

Given a relation matrix A2 = (a2i,j), and noticing that
in the induced metric ED, Constraints (3)-(5) guarantee the

triangle inequality, for any i, j, k * V , the advanced Max-
Min Modularity Maximization problem can be formulated as
the following IP:

max
�

(i,j)*Iall

(
qij

m
2

q2ij
m2 )(12xij) (IP-MM)

(3), (4), (5)

xij * {0, 1} "(i, j) * Iall,

where q2ij = a2i,j2
d2

id
2

j

2m2 , for each (i, j) * Iall; d
2

i =
�n

j=1 a
2
i,j ,

and m2 =
�

(i,j)*Iall
a2i,j . We refer to the relaxation of

IP-MM, obtained by replacing the constraints xij * {0, 1}
by xij * [0, 1], as (LP-MM).

Considerably important is the fact that maximizing IP-MM
coincides with simultaneously maximizing the modularity over
the original given graph G and minimizing the modularity
over the complemented graph G2, determined by the pro-
posed message-passing approach. Whereas the first component
makes sure to return communities, each consisting of densely
connected nodes, the latter attempts to extract the communities
containing vertices with the most similar attributes possible.

III. SOLUTION APPROACH

Efficiently solving (IP-MM) consists of two main parts: 1)
optimally solving (LP-MM) and 2) accurately rounding the
obtained fractional solutions to the integer ones.

For the first task, we use the row/column generation al-
gorithm proposed in [16] that perfectly works for (LP-MM)
as well since the two models are identical apart from using
different relation matrices. A summary of the applied row/-
column generation technique is as follows. First, consider the
following sub-problem (LPs-MM(I)) of (LP-MM) consisting
of all pairs in I = {(i, j) * Iall | cij > 0} and some pairs in
I 2 = {(i, j) * Iall | cij f 0}:

max
�

(i,j)*I

cij(1 2 xij) +
�

(i,j)*I¢I2

cij(1 2 xij) (LPs-MM(I))

xij + xjk 2 xik g 0 "(i, j), (j, k), (i, k) * I * I, cij g 0 ( cjk g 0 (12)

xij 2 xjk + xik g 0 "(i, j), (j, k), (i, k) * I * I, cij g 0 ( cik g 0 (13)

2 xij + xjk + xik g 0 "(i, j), (j, k), (i, k) * I * I, cjk g 0 ( cik g 0 (14)

xij * [0, 1] " i < j, (i, j), (j, k), (i, k) * I * I (15)

Be advised that (LPs-MM(')) generates the smallest formu-
lation while (LPs-MM(I 2)) is equivalent to (LP-MM) itself.
Moreover, point out that (LPs-MM(I)) delivers an upper
bound of the optimal value of (LP-MM) that never gets worse
by adding variables [16]. Above all, however, as Theorem 3.1
in [16] depicts, if an optimal solution x̄7 = (x̄7

ij)(i,j)*I*I
to (LPs-MM(I)) satisfies the following condition (7), then
(x7

ij)(i,j)*Iall
is an optimal solution to (LP-MM), where

x7
ij =

�

x̄7
ij ; (i, j) * I * I
1 ; otherwise

(16)

and

(7)

ù

ü

ü

ü

ú

ü

ü

ü

û

x̄7
ij

+ ¯x7
jk

g 1; (i, j), (j, k) * I * I, cij g 0 ( cjk g 0, (i, k) * I
2
2 I

x̄7
ij

+ ¯x7
ik

g 1; (i, j), (i, k) * I * I, cij g 0 ( cik g 0, (j, k) * I
2
2 I

¯x7
jk

+ ¯x7
ik

g 1; (j, k), (i, k) * I * I, cjk g 0 ( cik g 0, (i, j) * I
2
2 I
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This fact leads to the following efficient row/column gen-
eration procedure for optimally solving (LP-MM):

" Start solving (LPs-MM(I)) with I = ' and adding
those x̄7 * I 2 2 I that violate inequalities in (7) in
each iteration, until an optimal solution to (LPs-MM(I))
satisfies (7).

" In each repeat, employ a row generation technique for
solving (LPs-MM(I)):

1) Obtain an optimal solution x̄7 by solving (LPs-
MM(I)) with no constraints.

2) verify whether all constraints of (LPs-MM(I)) are
satisfied by x̄7. If not, add the violated ones and
solve (LPs-MM(I)).

3) Update x̄7 and repeat step (2).

" By having the optimal solution x̄7 to (LPs-MM(I)),
determine the optimal solution x7 to (LP-MM) by Equa-
tion (16).

To accomplish the second task, we can again apply the
rounding algorithm proposed in [16], which can be shortly
expressed as follows. Point out that the fractional optimal
solution to (LP-MM) provides us with a metric space, where
the distance between every pair of nodes is at most one.
Let us call this metric LP distance. It is apparent that in an
integral solution, the distance between each pair of nodes is
either zero (implying that these two nodes belong to the same
community) or one (inferring that these two nodes belong to
separate communities). The rounding task is to push (some
of) the nodes so as to determine a final valid configuration of
the points in which the distance between every pair of nodes
is either zero or one. Obviously, such a valid configuration
correlates with a feasible integral solution x̂ to (IP-MM):
x̂ij = 0, for points i and j which are co-located; and x̂ij = 1,
for those with the distance one from each other. The main
idea of the local search-based rounding procedure is to explore
such promising configurations (using the LP information) and
find a configuration leading to a solution (partitioning) whose
max-min modularity value (2) is (locally) optimal.

Assume that x̄ is the optimal fractional solution to
(LP-MM), obtained by the mentioned row/column generation
technique. As explained above, to compute an integral solution
to (IP-MM), we need to determine a set of final locations at
distance one from each other (we refer to these final locations
as community centers) and move the nodes to these centers
so as to obtain a valid configuration. In fact, to compute an
integral solution, we only need to determine a set of distinct
centers, since we can then simply move each point to the
closest center (with respect to the LP distance) and obtain a
corresponding integral solution: for each pair i and j, x̂ij = 0
if i and j are co-located; and 1 otherwise. Therefore, the only
task of the utilized local search algorithm is to determine a
good set of final centers.

More precisely, the local search algorithm works as follows:
Randomly pick a subset of V as initial centers. As discussed
above, move other vertices to these centers to form a solution
(partitioning) and then compute the max-min modularity value

TABLE I: Networks under study

ID Network
1 CiteSeer [41]
2 Arnetminer [42]
3 Caltech36 [43]
4 Reed98 [43]
5 Facebook348 [38]

of the resulting partitioning; see (2). The local search tech-
nique tries to improve the max-min modularity value by adding
and/or deleting a center to/from the set of centers at a time.
The local search movement that yields the most significant
improvement in the max-min modularity value is selected at
each iteration. The algorithm terminates when no improving
local search move exists.

IV. COMPUTATIONAL RESULTS

This section presents a comprehensive performance eval-
uation for the proposed method using five well-known real-
world networks listed in Table I. Ground truth (i.e., the optimal
community structures) is available and known for each of
these networks, and therefore, one can facilely measure the
quality of a community detection algorithm by estimating
the similarities between the communities obtained by the
algorithm and the ground truth. For doing this, we use the
well-known performance metrics Adjusted Rand Index and
Normalized Mutual Information, explained in the following
subsection.

A. Performance metrics

Suppose that for a given graph G, C(A) = {C1, . . . , Ck}
and C2 = {C 2

1, . . . , C
2
k2} be respectively a set of communities

obtained by an algorithm A and the ground truth.
Although NMI [44] is a well-known clustering comparison

metric, it can perfectly evaluate the similarity between the
optimal communities and those discovered by an algorithm.
The NMI value corresponding to the algorithm A can be
written as

NMI =

22

|C|
�

x=1

|C2|
�

y=1

|Cx + C 2
y|

n
log(

n|Cx + C 2
y|)

|Cx||C 2
y|

|C|
�

x=1

Cx

n
log(

Cx

n
) +

|C2|
�

y=1

C 2
y

n
log(

C 2
y

n
)

(17)

In the case where the detected communities are identical to
the ground truth, the NMI takes its maximum value one, while
in the case where the two sets totally disagree, the NMI score
is zero. Generally, the more the NMI, the better community
structures have been found.

Adjusted rand index (ARI) [45], associated with algorithm
A, measures the similarity between C(A) and C2 as follows

ARI =
2(a× d2 b× c)

(a+ b)× (b+ d)× (a+ c)× (c+ d)
(18)

where a, b, c and d are respectively the number of vertex pairs
that are in the same community in both C(A) and C2, in the

574 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Our
ap

pr
oa

ch

Nod
e2

Vec

Neu
ral

-B
ran

e

Dee
pw

alk Line

TA
DW

0.2

0.3

0.4

N
M

I/
A

R
I

NMI ARI

Fig. 4: Average normalized ARI and NMI performance rank
of different algorithms applying to the real-world networks,
presented in Table I. The average NMI and ARI values ob-
tained by our method are respectively equal to 0.39 and 0.46.

same community in C(A) but not in C2, in the same community
in C2 but not in C(A), and in different communities in both
C(A) and C2. Like the NMI measure, the value of ARI varies
between 0 and 1, and the higher its value is, the more similarity
is between the communities obtained by algorithm A and the
grand truth of G.

B. Experiments

In what follows, we provide a process for comparing the
performance of our proposed algorithm against five powerful
rival algorithms: Node2Vec [28], Neural-Brane [19], DeepWalk

[27], Line [46], and Text-Associated DeepWalk (TADW) [30].
These are all state-of-the-arts for integrating both network
topology and nodal attributes for graph representation learning.

All algorithms are implemented with C++, and CPLEX
optimizer 12.9 is used for solving linear programming.

Fig. 4 provides a comprehensive comparison by evaluating
communities in terms of the average ARI and NMI ranks
over all datasets. It is apparent that the proposed method
significantly outperforms other algorithms in the sense that
the communities it discovered are much more similar to the
ground truths than those obtained by the other methods.

Although the results obtained in Fig. 4 perfectly illustrate
the proposed method’s superiority and reliability against some
other state-of-the-art algorithms, it could still be worth inves-
tigating the role of the applied GNN feed-forwards message
passing procedure in improving the communities. For doing
this, we compute the value of NMI associated with each of
the networks’ obtained final communities in terms of different
hidden layer numbers k. In this regard, k = 0 refers to
the case when the embedding layer is not applied, and only
Modularity is employed to identify communities with respect
to the graph’s topological structure. Fig. 5 shows the results.
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Fig. 5: The computed NMI corresponding to the final com-
munities of each of the networks, provided in Table I, with
respect to different values of k.

It is apparent from the results that, first of all, maximizing
the Modularity alone (i.e., only relying on topological aspects
and ignoring the nodal attributes) cannot lead to promising re-
sults. Furthermore, considerably notable is the approving effect
of increasing the number of hidden layers. The more the value
of k, the more accurate the embedding vector representation
becomes due to the more information diffused through the
neighboring vertices. However, interestingly enough, from a
certain point on, increasing k does not influence the quality
of communities, and this is primarily due to the fact that after
a certain number of updates, each of the embedding vectors
starts to converge.

V. CONCLUSION

In this work, we built a community discovery method on
the basis of the mathematical programming formalism and the
graph neural network feed-forward message passing manner.
We managed to propose a systematic way to generate an
authentic relation matrix for the Max-Min Modularity problem
centered on an efficient node embedding technique, which
enabled us to model the standard integer formulation for the
Max-Min Modularity Maximization problem. A successful
row/column generation technique and a local search-based
rounding algorithm facilitated us in solving the model accu-
rately and capturing the communities of a given attributed net-
work. Furthermore, the proposed computational experiments
showed that our results highly resemble the optimal solutions
and that our algorithm outperforms the previous well-known
algorithms.
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