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Abstract—Hearing loss is one of the most significant sensory
disabilities. It can have various negative effects on a person’s
quality of life, ranging from impeded school and academic
performance to total social isolation in severe cases. It is there-
fore vital that early symptoms of hearing loss are diagnosed
quickly and accurately. Audiology tests are commonly performed
with the use of tonal audiometry, which measures a patient’s
hearing threshold both in air and bone conduction at different
frequencies. The graphic result of this test is represented on
an audiogram, which is a diagram depicting the values of the
patient’s measured hearing thresholds. In the course of the
presented work several different artificial neural network models,
including MLP, CNN and RNN, have been developed and tested
for classification of audiograms into two classes - normal and
pathological represented hearing loss. The networks have been
trained on a set of 2400 audiograms analysed and classified by
professional audiologists. The best classification performance was
achieved by the RNN architecture (represented by simple RNN,
GRU and LSTM), with the highest out-of-training accuracy being
98% for LSTM. In clinical application, the developed classifier
can significantly reduce the workload of audiology specialists
by enabling the transfer of tasks related to analysis of hearing
test results towards general practitioners. The proposed solution
should also noticeably reduce the patient’s average wait time
between taking the hearing test and receiving a diagnosis. Further
work will concentrate on automating the process of audiogram
interpretation for the purpose of diagnosing different types of
hearing loss.

I. INTRODUCTION

H
EARING IS one of the most important senses and is

crucial for a human to maintain full connectivity to

the world. Early on in life, hearing helps one to establish

language skills which lays the groundwork for quick devel-

opment during school years. In daily tasks, hearing is used in

communicating with other people as well as for listening to

music, television and radio, and going to the cinema or theatre.

According to World Health Organization (WHO), currently,

around 430 million people globally require rehabilitation ser-

vices for their hearing loss [1]. Estimations show that by 2050

nearly 2.5 billion people will be living with some degree

of hearing loss, at least 700 million of whom will require

rehabilitation services [1]. Overall, hearing impairment has

devastating consequences for interpersonal communication,

psychosocial well-being, quality of life and economic inde-

pendence [2]. The consequences of hearing loss are frequently

underestimated and ignoring the initial symptoms usually leads

to further degradation. Once diagnosed, early intervention is

the key to successful treatment. Medical and surgical treatment

can cure most ear diseases, potentially reversing the associated

hearing loss. Research has shown that, particularly in children,

almost 60% of hearing loss is due to causes that can be

prevented [1], [6], [7].

The standard hearing test is carried out using pure tone au-

diometry, which determines the hearing thresholds at different

frequencies. As a rule, a frequency range of the hearing test

varies within 125 – 8000 Hz. The sound level of pure tones

is given in dBHL, and the subject is tested in both air and

bone conduction. The test results in two data series contain-

ing discrete hearing thresholds in the function of frequency,

separately for both conductions. This data series is usually

presented in the form of an inverted graph called audiogram.

An audiogram helps to determine the degree of hearing loss,

but also the type of pathology: sensorineural, conductive or

mixed [3], [4].

According to projections, the demand for professional au-

diologists will burgeon in near future [1]. Nowadays, around

78% of low-income countries have less than one otorhino-

laryngologist per million inhabitants and about 93% have

less than one audiologist per million inhabitants [1], [5]. In

this context, introduction of expert systems based on artificial

intelligence for preliminary audiogram interpretation could

significantly reduce the workload of specialists, while at the

same time shortening the patient’s wait for a diagnosis.

Over the last decade, a comparison of several approaches

to hearing loss determination, including Decision Tree, Naive

Bayes and Neural Network Multilayer Perceptron (NN) model,

has been prepared by Elbaşı & Obali [10]. The tests have

been carried out using a set of numerical values representing

Decibels corresponding to fixed frequency levels (750Hz,

1kHz, 1,5kHz, 2kHz, 3kHz, 4kHz, 6kHz, 8kHz). The achieved

accuracy was 95.5% in Decision Tree, 86.5 % in Naive Bayes

and 93.5 % in NN.

A different approach was presented by Noma & Ghani [11],

who developed a classification system based on the relation-

ship between pure-tone audiometry thresholds and inner ear
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disorders symptoms such as Tinnitus, Vertigo, Giddiness etc.

The classifier, based on the multivariate Bernoulli model with

feature transformation, has shown to provide 98% accuracy of

predicting hearing loss symptoms based on audiometry results.

Recently, Charih et al. [12] presented their Data-Driven

Annotation Engine, a decision tree based audiogram clas-

sifier which considers the configuration, severity, and sym-

metry of participant’s hearing losses and compared it to

AMCLASS [13], which fulfils the same purpose using a set of

general rules. Both classifiers have achieved similar accuracy

of around 90% across 270 different audiometric configurations

by three licensed audiologists.

More recently, Crowson et al. [14] adopted the ResNet-101

model to classify audiogram images into three types of hearing

loss (sensorineural, conductive or mixed) as well as normal

hearing using a set of training and testing images consisting

of 1007 audiograms. This approach resulted in 97.5% classi-

fication accuracy, however it is limited to processing images.

In summary, the combination of neural networks and in-

creased computing resources of new hardware architectures

has the potential to deliver faster overall tests results and

more detailed assessments[15]. This being said, however, the

currently proposed solutions deliver classification accuracy in

the 90-95% range, which, although very high, still leaves

considerable room for error. Clinical standards suggest that the

margin of error should be kept under 5%[16] and optimally

should be close to 3% [17]. These requirements are met only

by two of the discussed classifiers. The method proposed by

Noma & Ghani achieves 98% accuracy, however it has been

designed to predict significant symptoms of inner ear disorder,

and thus it cannot be used for general purposes such as early

detection of hearing degradation. The best audiogram classifier

to date has been presented by Crowson et al., who used transfer

learning to adapt an established image classifier network to

analysis of audiogram images. While this approach resulted in

a 97% classification accuracy, it exhibits serious limitations.

Because it is an image classifier, it cannot be used with the

original data series produced by tonal audiometry. This means

that the data series first need to be converted into audiogram

images, which may result in data loss. Moreover, although

the structure of audiograms generally is similar, there can still

be significant differences between audiograms generated by

different hardware and software configurations. Aside from

differences such as background and line colours, audiograms

can also differ in the amount of presented information (eg.

they may contain data for a single ear or both). A sample

comparison of significant differences between audiograms

obtained from different sources is presented in Figures 1 and

2. In consequence, a universal solution for classifying results

of tonal audiometry cannot be based on an image classifier.

This study presents the development of a neural network

for classification of discrete tonal audiometry data series.

In the course of this study, several different neural network

architectures have been trained and tested with the use of 2400

audiogram data series analysed and classified by professional

audiologists. The goal of the presented study was to achieve a

Fig. 1. A pure tone audiogram showing air and bone conduction thresholds for
both left and right ear [8]. The “X” and "]" symbols are used to mark left-
sided air and bone conduction, respectively. The "O" indicate air conduction,
whereas the "<" denote bone conduction, both in the right ear.

Fig. 2. A pure tone audiogram showing air and bone conduction thresholds
only for the right ear. The "O" and "<" indicate left-sided air and bone
conduction, respectively.

high enough classification accuracy for the developed network

to be applicable for use in a clinical environment.

II. MATERIALS & METHODS

A. Data

The study has been conducted with the use of 2400 data se-

ries containing results of pure tone audiometry tests performed

from 2020 to 2021 by clinicians working at the Otolaryn-

gology Clinic of the University Clinical Centre in Gdansk,

Poland. The data contains 650 examples of normal hearing

and 1750 examples of pathological hearing loss. The tests had

been performed in a soundproof booth, according to ISO 8253

and ISO 8253 standards. Air conduction tests employed TDH-

39P headphones, while bone conduction testing involved a

Radioear B-71 bone-conduction vibrator. The data series have

been analysed and labelled by expert audiologists from the
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Medical University of Gdansk Department of Otolaryngology

according to established methodology [9]. In consequence, the

dataset has been classified into two subsets: hearing pathology

and normal hearing.

B. Preprocessing

The input data series contained numerical information about

tonal points, defined as loudness (dB) for a given frequency

(Hz), in XML format. The dataset included the following range

of frequencies:

125Hz, 250Hz, 375Hz, 500Hz, 750Hz, 1000Hz, 1500Hz,

2000Hz, 3000Hz, 4000Hz, 6000Hz, 8000Hz.

Every tested frequency has been assigned a loudness level

in the range from -10dB to 120dB. If certain frequencies had

not been registered during the hearing test, they have not been

included in the corresponding data series.

C. Testing methodology

Using the prepared dataset, three different neural network

architectures have been trained to interpret tonal audiome-

try data and in order to differentiate normal hearing (N)

from pathological hearing loss (P). The tested architectures

included Multilayer Perceptron (MLP), Convolutional (CNN)

and Recurrent (RNN) neural networks, all of which have

been previously applied to data classification problems [18],

[19], [20]. The general workflow of the presented study is

shown in Fig. 3. Each model has been assessed using k-fold

cross-validation, which consists of dividing the data into k

subsets and training the model k-times with k-1 subsets, with

a different subset being used for testing in every iteration. The

presented research used k = 5, which resulted in train to test

dataset proportions of 80% to 20%, respectively.

Fig. 3. Workflow of processes leading to model evaluation.

After revealing the best performing architecture, further

tests and optimizations would be carried out in order to

improve classification accuracy.

III. RESULTS

The purpose of the initial tests was to reveal the best

neural network architecture model for classification of pure

tone audiometry data. The tested neural network architectures

included MLP, CNN and RNN. The results of those tests are

presented in Table I.

TABLE I
COMPARISON OF PERFORMANCE RESULTS OF PRELIMINARY MODELS.

Parameters MLP CNN RNN

Accuracy 0.9458 0.9563 0.9604

Loss 0.6429 0.1185 0.1346

Precision 0.8255 0.8984 0.9062

Recall 1.0 0.9349 0.9430

F1 0.9044 0.9163 0.9243

As it can be seen, initial research revealed that the best

classification performance has been produced by the RNN

architecture model. Once the most promising neural network

architecture has been identified, three of its variants have been

trained and optimized in terms of hyper parameters, including

number of nodes and hidden layers, dropout layers, learning

and decay rate. The first model consisted of a simple RNN,

second one was based on Gated Recurrent Units (GRU) [22]

and the last one used Long Short-Term Memory (LSTM) [21].

The results of these tests are shown in Table II.

Receiver Operating Characteristics (ROC) curves with cor-

responding Area Under the Curve (AUC) parameters for these

models are presented in Fig. 4.

TABLE II
COMPARISON OF PERFORMANCE RESULTS OF RNN MODELS.

Parameters Simple
RNN

GRU LSTM

Accuracy 0.9646 0.9771 0.9812

Loss 0.0836 0.0530 0.0540

Precision 0.9030 0.9453 0.9394

Recall 0.9680 0.9680 0.9920

F1 0.9344 0.9565 0.9650

The cross validation scores for k = 5 with LSTM classifier

are given in Table III. The average accuracy was 98.08% (+/-

0.17%).

TABLE III
K-FOLD VALIDATION SCORE OF LSTM MODEL (k = 5).

Iteration 1 2 3 4 5

Accuracy 97.96 98.33 97.96 97.91 98.22

A detailed analysis of classification performance achieved

by the tested RNN models can be made using a confusion

matrix, which visualizes the number of True Positives (TP
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Fig. 4. ROC curve with AUC parameter of RNN models.

- patients who have been properly classified with hearing

loss), True Negatives (TN - patients who have been properly

classified with good hearing), False Positives (FP - patients

who have been improperly classified as hearing loss) and False

Negatives (FN - patients who have been improperly classified

with good hearing). The confusion matrix for the tested RNN

models is presented in Figures 5, 6 and 7.

Fig. 5. Confusion matrix of simple RNN.

Fig. 6. Confusion matrix of GRU.

Fig. 7. Confusion matrix of LSTM.

IV. DISCUSSION

Initial tests have shown that the simple RNN architecture

model delivers noticeably better pure tone audiometry clas-

sification results in comparison to MLP and CNN models,

achieving accuracy of 96.04% versus 94.58% and 95.63%

respectively (Tab. I). The chosen network architecture appears

to have the largest impact on classification accuracy, as fur-

ther tests and optimizations resulted in minor improvements.

Optimization of parameters such as the number of nodes and

hidden layers, dropout layers as well as learning and decay

rate improved the accuracy of simple RNN from 96.04%

to 96.46%. In comparison, applying the same optimization

process to MLP and CNN models did not result in markedly

improved evaluation parameters. A possible explanation for

this could be the fact that RNN have been designed to process

time series data, and structurally pure tone audiometry results

could be interpreted as a special case of time series. This

could be further explored by testing the effectiveness of more

advanced RNN models such as GRU and LSTM. As it can be

seen in Tab. II, both of these models obtained more than 97%

accuracy, with the highest out-of-training set accuracy being

achieved by LSTM at 98.12%. While these results, which

have been cross-validated using the 5-fold method, would

seem to indicate a general prevalence of the RNN architecture

in processing audiometry data, establishing an effectiveness

hierarchy of RNN models is a more complex matter. Although

LSTM has shown the best classification accuracy, when anal-

ysed in terms of confusion matrix, the lowest number of False

Positives (FP) was obtained by GRU (Figures 6 and 7), with

LSTM taking second place. In comparison, the simple RNN

produced over 62% more False Positives than LSTM and 85%

more than GRU.

Overall, simple RNN and GRU performed equally well in

terms of False Negatives (FN), producing them only in 0.8%

of cases, whereas LSTM significantly outperformed the other

models with only one case of error occurring. It can be argued

that when classifying results of pure tone audiometry tests,

the FN number is more important than FP because it shows

that a patient does not have hearing loss when they actually

do. In this case the patient may not receive treatment and
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get worse because their disease was undetected. On the other

hand, a false positive would only result in the patient being

unnecessarily referred to an audiologist, who would properly

interpret the test results and inform the patient that their level

of hearing is normal.

Summing up, it can be said that the 98.12% classification

accuracy achieved by LSTM fulfills the established margin

of error criteria and is significantly better than the 97.5%

classification accuracy offered by the best existing algorithm

for audiogram data classification, proposed by Crowson et

al. [14]. While some of the difference could be attributed

to the rival method providing a larger set of classes, the

presented method provides an additional advantage in the type

of processed data: it works with original tonal audiometry

data series instead of audiogram images and therefore is more

universal. The only rival method also designed for processing

tonal audiometry data series, presented by Elbaşı & Obali [10],

provides an even lower 95.5% classification accuracy.

In terms of classifying pure tone audiometry data, the only

existing solution with a similar classification accuracy level

(98%, proposed by Noma & Ghani [11]), has been designed

to predict significant symptoms of inner ear disorder and thus

cannot be used for general classification of tonal audiometry

test results.

V. CONCLUSIONS

The presented work aimed to develop a neural network

for classification of discrete tonal audiometry data series with

accuracy high enough for medical application. In the course

of this study, several different neural network architectures,

including MLP, CNN and RNN, have been trained and tested

with the use of 2400 audiogram data series analysed and

classified by professional audiologists. The highest classifi-

cation accuracy was achieved with an optimized LSTM RNN

at 98.12%. The high accuracy of the obtained neural network,

particularly the low number of False Negatives (0.2%), al-

lows for its application at the Otolaryngology Clinic of the

University Clinical Centre in Gdansk, Poland. Results of pure

tone audiometry tests, which thus far needed to be examined

by professional audiologists, can now be classified with the

developed neural network under the supervision of general

practitioners. This change may result in a significant reduction

of the workload of audiology specialists, as they will no longer

need to deal with patients whose symptoms are not caused by

hearing loss (which may amount to over 10% of all patients

subjected to pure tone audiometry tests) [23], [24]. After it has

been further tested in practice, the developed solution could

be introduced directly in the audiometry laboratory, ensuring

that the patient receives a first interpretation of the performed

tests as soon as they have been completed. Further work will

concentrate on expanding the classifier for the purpose of

diagnosing different types of hearing loss.
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