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Abstract—The increasing rates of deadly brain tumors in
humans correspondingly increase the need for highly experienced
medical personnel for diagnosis and treatment. Therefore, to
reduce the workload and the time from suspicion of disease
to diagnosis, then plan for suitable treatment, there is a need
to automate the initial part of the process by implementing
a Computer-Aided-Disease-Diagnosis (CADD) system for brain
tumor classification. The aim of this research is to develop and
deploy all the needed components to design and implement a
working Computer-Aided-Disease-Diagnosis (CADD) system for
brain tumor classification. First, by understanding the brain
tumors themselves and the convention of their classification.
Second, the convolution neural network (CNN) structure and
functionality and how to manipulate it. Third, find different CNN
architectures with promising results in similar tasks. Fourth,
find and evaluate the applicability of available data sources.
Fifth, implement the most promising solutions and explore the
applicability of using transfer learning for the given task to take
advantage of previously gained knowledge. Finally, evaluate the
results of the experiments, where we show that the DenseNet121
architecture, either fully trained or using transfer learning, likely
is the most appropriate candidate for the CADD system in
development.

Index Terms—Brain Tumor Classification, Medical Imaging,
CADD, Convolutional Neural Networks, Machine Learning, Deep
learning.

I. INTRODUCTION

THE CELL of origin and features found when examining

the cells tissue define central nervous system tumors

and predict their behavior [1]. After meningiomas, the most

common primary brain tumor in adults is gliomas, with a rate

of 5 to 6 persons per 100,000 annually [2].

The World Health Organization (WHO) tissue classification

system categorizes gliomas, with grade 1 as the lowest and

grade 4 as the highest. Thus, low-grade gliomas (LGG) consist

of grade I and II tumors [3], while high-grade gliomas (HGG)

consist of grade III and IV [2]. Grade I are the least malignant

or benign tumors. Grade II is relatively slow-growing but may

recur as a higher grade. Grade III is malignant and tends to

recur as higher grades. Finally, grade IV is the most malignant,

aggressive, necrosis and recurrence prone [1].

Histopathologic examination to study tissue morphology,

diagnose, and grade brain tumors is the gold standard [3].

However, surgical resection for diagnosing a brain tumor

is invasive and risky. Nevertheless, non-invasive diagnostic

methods exist, like neuroimaging with Magnetic Resonance

Imaging (MRI) [4].

Conventional MRI is the current imaging procedure of

choice and identifies tumor size and associated Peritumoral

Edema (PTE), one of the main features of malignant glioma

[5]. To diagnose the brain tumor without surgical intervention,

researchers have developed more advanced imaging methods

such as texture analysis, mechanic modeling, and machine

learning (ML) that form a predictive multi-parametric image-

based model. The application of ML models is an emerging

field in radiogenomics and represents a data-driven approach

to identifying meaningful patterns and correlations from often

complex data sources. ML models train by feeding the ML

algorithm a substantial amount of pre-classified image data as

input, such as MRI images, to learn which patterns belong to

the different classes.

The convolutional neural network (CNN) is a concept

introduced by [6] as the Neocognitron, as a model of the

brain’s visual cortex; an improvement of [7] previous model

for visual pattern recognition. Furthermore, [8] significantly

improved the Neocognitron to one of the most successful

pattern recognition models, dramatically influencing the field

of computer vision and pattern detection in images.

In 2021 a fully automatic hybrid solution for brain tumor

classification comprised of several steps was proposed [9].

First, pre-process the brain MRI images by cropping, resizing,

and augmenting. Second, use pre-trained CNN models for

feature extraction with better generalization. Third, select the

top three performing features using fined-tuned ML classifiers

and concatenate these features. Finally, use the concatenated

feature as input for the ML classifiers to predict the final output

for the brain tumor MRI. The proposed scheme uses a novel

feature evaluation and selection mechanism, an ensemble of 13

pre-trained CNNs, to extract robust and discriminative features

from brain MRI images without human supervision. The CNN

ensemble, is comprised of ResNet-50, ResNet-101, DenseNet-

121, DenseNet-169, VGG-16, VGG-19, AlexNet, Inception

V3, ResNext-50, ResNext-101, ShuffleNet, MobileNet, and

MnasNet. Since the researchers use fairly small datasets for

training, they take a transfer learning-based approach by using

the fixed weights on the bottleneck layers of each CNN model

pre-trained on the ImageNet dataset.

II. DATA GATHERING & PRE-PROCESSING

The data-gathering part of the research starts with outlining

some criteria. The data should contain non-tumorous, LGG,
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and HGG samples and be well balanced between the labels.

The latter is essential since too much data augmentation on

medical images often does not generalize well. A well-suited

candidate was found at The Cancer Imaging Archive (TCIA).

The REMBRANDT (REpository for Molecular BRAin Neo-

plasia DaTa) Dataset [10] seemed to have all this research’s

characteristics. The dataset is one of the most trusted publicly

available datasets, comprised of MRI scans from 130 subjects

of three classes, non-tumorous, LGG, and HGG. Furthermore,

the LGG and HGG classes have subclasses that opened the

opportunity to make the classification outcome more extensive.

The dataset is a combination of metadata from various text

and spreadsheet files and the 110,020 images in the DICOM

format, which also includes a vast quantity of metadata. After

preprocessing, the dataset comprises 123 patients and 105,265

slides, distributed as shown in Table I. At this point, it was

discovered that one key bit of information was missing; how

to separate the MRI slides that contained the tumorous cells

from the ones that did not contain them. All the source

data were reexamined, but the answer was not found. While

searching online for how to find the needed key, one paper

stood out [11]. The paper used that same dataset for a similar

application. While being reduced to 4069 slides, it seemed that

the authors of this paper had found a way to filter the data

further. A meeting with the paper’s main author was arranged

to understand how to reproduce the dataset. His research team

had employed help from neurologists to go through each

slide manually and label them correctly. Fortunately, the main

author offered to share a smaller dataset version. After further

processing, the dataset has 735 samples distributed, as shown

in Table II, and is now ready for training CNN models.

TABLE I
DATASET SAMPLE DISTRIBUTION

Disease Grade Label Unique Samples Count

Astrocytoma II LGG 30 25286
Astrocytoma III HGG 17 16038

GBM IV HGG 43 32837
Non-Tumorous n/a n/a 15 17041

Oligodendroglioma II LGG 11 9335
Oligodendroglioma III HGG 7 4728

Total 123 105265

TABLE II
MANUALLY LABELED DATASET SAMPLE DISTRIBUTION

Label Sample Count

Normal 168
LGG 287
HGG 280

Total 735

III. METHODOLOGY

Finding the CNN architecture with or without transfer

learning that yields the best results for the classification task is

the primary goal of the current research. Therefore designing a

pipeline where the CNN architecture can easily be substituted

is essential. Doing so required finding the generally most

suitable division of the Test, Validation, and Test subsets, the

most suitable baseline hyperparameter settings, and whether

image augmentation was to be used. For this task, VGG16

[12] was selected, as it had been used for the same applica-

tion with promising results [13] [14]. After training a large

number of VGG16 models, a baseline for training other CNN

architectures was established. A total of 60 images, 20 from

the three classes, were randomly picked for the Test set. The

remaining images are divided into 30% and 70% for the

Validation and Training sets. The Training set is also aug-

mented with rotation, width and height shift, shearing, zoom

and brightness adjustment, and horizontal flipping. Filters with

minimal adjustments to the original gave better results than

fewer with more extensive adjustments. The Normal label has

a little over half of the samples as LGG and HGG, and is

therefore producing a higher number of augmented images.

The Normal label in the Train set is increased from 103 to

309, LGG from 186 to 372, and HGG from 182 to 364. With

a batch size of 24, the baseline uses 10 epochs for training

with a learning rate of 0.001, Adam for optimization with

categorical cross-entropy as the loss function. In addition to the

VGG16 architecture, five other CNN architectures were used

to train models, including AlexNet, MobileNet [15], ResNext

[16], DenseNet121 [17], and a custom-designed architecture.

The custom CNN architecture is designed to accept N amount

of 224x224 image matrices with 3 color channels; it consists of

three convolutional layers of 32, 64, and 64 filters, of filter size

3x3, with zero-padding, and ReLU as the activation function.

The first convolutional layer is followed by a max-pooling

layer of pool size 4x4, and the last two convolutional layers

have a pool size of 2x2, each followed by a dropout layer

with a dropout rate of 0.15. Next, a flattening layer is added

to transform matrix output to vector inputs to be accepted

by the first dense layer, which is comprised of 512 ReLU

activated neurons, followed by a dropout layer with a 0.5

dropout rate. The last hidden layer is a dense layer of 256

ReLU activated neurons. The model’s final layer, its output,

is a 3 neuron softmax activated dense layer for classification.

The general architecture of this model is shown in Fig. 1, and

the folowchart is provided in Fig. 2.

IV. RESULTS

All the CNN architectures implemented to this point show

outstanding results, as shown in Table III. While multiple

runs were made on each architecture to obtain the given

results, and there is an indication that the Test set in particular

needs expansion, the results indicate that DenseNet121 is the

best candidate for the given classification task. Surprisingly

enough, with the custom architecture as the runner-up.

V. RESEARCH CONTRIBUTIONS

The research conducted has been a good start for further

developing a usable CADD system. A pipeline for data prepro-

cessing that makes preparing new data samples both easy and
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Fig. 1. Custom CNN Architecture.

Fig. 2. Flowchart of the custom framework.

TABLE III
CNN ARCHITECTURE RESULTS

Architecture Epochs Initial learning rate Loss Accuracy & F1

VGG16 10 0.001 0.3218 0.933
ResNext 12 0.001 0.1244 0.933

MobileNet 28 0.001 0.1141 0.950
Custom 22 0.000316 0.0989 1.00

AlexNet 28 0.001 0.0582 0.983
DenseNet121 12 0.001 0.0254 1.00

fast has been developed. Similarly, a pipeline for augmenting

the training data and a pipeline for defining CNNs, training

them, and providing a classification model as the output

has been developed successfully. Also, to demonstrate the

potential of the research, a user interface has been developed

and deployed to a web server where the general public can

accessed at tumorclass.info. All the source code used in this

project can be found in the GitHub repository.

VI. DEPLOYMENT

A service called ngrok was selected for the deployment.

Ngrok is a free service that allows the exposure of localhost to

the internet in a secure manner. With ngrok installed, the only

steps needed were to run the FastAPI in uvicorn on the local

machine and then run ngrok in a separate terminal to expose

the local host to the internet. To make it a little more elegant,

a domain name was purchased, and the DNS was set to give

access to ngrok. A monthly subscription on ngrok was also

purchased to connect the autogenerated ngrok domain name

to the custom domain name. In figures Fig. 3, Fig. 4, Fig. 5,

and Fig. 6 the implemented user interface is shown.

Fig. 3. Interface of our platform.

VII. CONCLUSION & FUTURE WORK

The next step after our CADD system is to expand the

data set. The amount of suitable data available is limited.

However, the REMBRANDT dataset has a vast number of

images suitable for manual labeling performed by radiologists.

Expanding the data set will make it more transparent, which

architectures generalize well. As such, these architectures can

be the focus of further development. These days, MRI scans

provide 3D images, so further development to facilitate 3D

classification is also a viable option.
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