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Abstract—In simultaneous machine translation (SMT), an
output sequence should be produced as soon as possible, without
reading the whole input sequence. This requirement creates a
trade-off between translation delay and quality because less
context may be known during translation. In most SMT methods,
this trade-off is controlled with parameters whose values need
to be tuned. In this paper, we introduce an SMT system that
learns with reinforcement and is able to find the optimal delay in
training. We conduct experiments on Tatoeba and IWSLT2014
datasets against state-of-the-art translation architectures. Our
method achieves comparable results on the former dataset, with
better results on long sentences and worse but comparable results
on the latter dataset.

I. INTRODUCTION

S
IMULTANEOUS machine translation (SMT) can be de-

fined as producing output sequence tokens while reading

input sequence tokens in an on-line fashion. These tokens may

represent words in given languages, chunks of audio streams,

or any other sequential data. The main difference between

SMT and more general neural machine translation (NMT) is

how the input and output sequences are processed. Most NMT

methods read all input tokens and then generate the output

sequence. Because of this, even though efficient state-of-the-art

NMT methods exist, they cannot be used in SMT applications.

Also, SMT methods need to consider the trade-off between

delay and quality, as faster translation implies less context from

the input. In most cases, this trade-off has to be optimized by

checking various parameter settings, which is resource- and

time-consuming.

SMT can be decomposed into a sequence of readings of the

input tokens and writings of the output tokens. Reinforcement

learning (RL) [1] is often applied to train SMT systems that

sequentially choose between these actions and/or choose the

written token. In this paper, we present an RL-based method

with self-learning delay. Unlike in other approaches, we apply

bootstrapping in training, which means that the sequences

translated can be in principle infinite. We conduct experiments

on Tatoeba and IWSLT2014 datasets against state-of-the-art

translation architectures. Our method achieves comparable

results on the former dataset, with better results on long

sentences and worse but comparable results on the latter dataset.

The paper is organized as follows. Section II overviews

literature related to neural machine translation, reinforcement

learning, and simultaneous machine translation. Section III

formally defines the problem considered in this paper. Sec-

tion IV presents our method. Section V describes simulations

evaluating the presented architecture. Section VI discusses

the experimental results and limitations of our approach.

Section VII concludes the paper.

II. RELATED WORK

a) Neural machine translation (NMT): A basic architec-

ture for neural machine translation includes an encoder that

is fed with the input sequence; its final state becomes the

initial state of a decoder that produces the output sequence [2].

In order to produce the right output, attention must be paid

to significant input tokens. Attention was introduced to the

encoder-decoder architecture in [3] and [4]. An architecture

for NMT that is based solely on attention is Transformer [5].

Recurrent neural networks (RNN) were applied to capture

short-term dependencies in input sequences and combined with

multilayer attention in R-Transformer [6]. However, all these

architectures only produce output when given the whole input

sequence and hence are not applicable to on-line translation.

b) Reinforcement learning (RL): RL is a general frame-

work for adaptation in the context of sequential decision making

under uncertainty [1]. In this framework, an agent operates

in discrete time, at each instant observing the state of its

environment and taking action. Subsequently, the environment

state changes, and the agent receives a numeric reward. Both

the next state and the reward result from the previous state and

action. By repeatedly facing the sequential decision problem

in the same environment, the agent learns to designate actions

in current environment states to be able to expect the highest

future rewards.

In the context of this paper, especially interesting is the case

where the agent cannot observe its state but only the value

of a certain function of the state. This case is modeled as the

Partially Observable Markov Decision Process (POMDP) [7]. In

this model, the agent needs to collect subsequent observations

to be able to recognize its current situation at any specific time.

This can be done effectively with an RNN. Deep Recurrent

Q-Learning [8] is an RL method for POMDP, which applies

an RNN for that purpose.

RL has been applied to neural machine translation to

optimize a policy, which, given an input sentence, assigned

maximum probability to the corresponding output sentence.

RL was applied this way to optimize the translation quality

expressed in BLEU [9] which is not directly differentiable. RL

has also been applied to train a random generator of sentences in
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a generative adversarial architecture [10]. A similar architecture

has been applied for the sequential generation of graphs [11].

c) Simultaneous Machine Translation (SMT): A number

of SMT methods use reinforcement learning. One of the first

examples of using RL for SMT was presented in [12]. It uses

imitation learning from the optimal sequence of actions to

learn a policy for the system. In [13], a two-action framework

was introduced, where the agent can read an input token,

named READ, or write a new output token, named WRITE.

This framework serves as a baseline for many new SMT

methods, with authors extending and modifying it to achieve

better results. The proposed reward function is based on the

achieved BLEU score [14] and the translation delay metrics

proposed by the authors, with the trade-off between delay and

translation quality controlled by setting appropriate parameter

values. In [15], a third action was added, named PREDICT,

which works similarly to READ, but instead of reading an

input token, it predicts this token. The reward function was also

changed to include predictions’ quality, with delay-quality trade-

off still controlled by parameters. In [16], a commonly used

NMT encoder-decoder structure was modified to work with

SMT by making encoder, and attention dynamically change

after every READ and adding an incremental decoder, which

outputs a token from them after every WRITE. In [17], a

method was proposed for extracting action sequences from

NMT architectures, which were later used with sentence pairs

in imitation learning to learn an optimal policy. Recently,

reinforcement learning was used in multimodal translation

[18], utilizing text and visual data to improve the quality of

translations.

Not every SMT method uses reinforcement learning. In [19],

the ”wait-k” strategy was proposed, which produces a new

output token with a fixed delay equal to k. It can be easily

implemented in commonly used NMT architectures, shown

by modifying the original Transformer. In [20], the ”wait-k”

strategy was used in speech-to-text task, showing it is efficient

in applications other than machine translation.

III. PROBLEM DEFINITION

We consider input sequences, x = (xi)
|x|21
i=0 , that contain

tokens, xi ∈ R
d, d ∈ N. The input sequences correspond

to target sequences, y = (yj)
|y|21
j=0 , yj ∈ R

d2

, d2 ∈ N. The

sequences are of variable lengths presented by the | · | function.

An interpreter agent is fed with subsequent tokens from x and

produces tokens of an output sequence, (zj)
|z|21
j=0 , zj ∈ R

d2

on

the basis of x.

Three special tokens playing various roles exist in both the

input and the output space. They are:

" NULL — a missing element,

" EOS — denotes the last element of each sequence,

" PAD — an element concatenated to sequences after EOS

for technical reasons.

For brevity, we will assume xi=PAD, yj=PAD, zj=PAD for,

respectively, i ≥ |x|, j ≥ |y|, j ≥ |z|.

Given x, the agent should produce z that minimizes the qual-

ity index in the form

J(y, z) =
K21
�

j=0

L(yj , zj). (1)

The loss L penalizes mistranslation; L(PAD, PAD) = 0; K is

a number larger than any |y|. The sequence z that minimizes

(1) is of length |y|, contains tokens equal to those in y, and

ends with EOS.

We also require the interpreter agent to be of limited capacity

but handle sequences of arbitrarily large lengths. In other words,

we require the agent to operate on-line, i.e., it is fed with

subsequent tokens of the input sequence and simultaneously

produces subsequent tokens of the output sequence.

IV. METHOD

A. Reinforcement learning to transform sequences

We formalize the transformation of one sequence into another

as an iterative decision process. At each of its instants, an agent

reads a subsequent token from the input sequence or writes

a subsequent token of the output sequence, similarly to [13].

That is, at each instant, the agent executes one of two actions:

" READ — another input token is read. This action is

useful when it is (still) unclear what output token should

be produced.

" WRITE — a subsequent output token is produced. This

action is useful when a certain comprehensive portion of

input tokens have been read, and a subsequent part of its

interpretation can be presented.

A policy is a method of selecting actions and producing output

tokens based on tokens read and those produced so far.

After execution of some of the actions, the agent receives

numerical rewards. Let the rewards received during the process

be denoted by r = (rk)
|r|21
k=0 . A reward, rk, is emitted at the

following times:

" An output token, zj , has just been written. Then rk is the

negative cost of mistranslation, i.e.

rk = −L(yj , zj). (2)

" A whole input sequence has been read, and the READ

action is taken. This action does not make sense at this

time. Therefore, for a certain constant M > 0, we have

rk = −M. (3)

Let n(t) be the number of rewards emitted before the t-th
action. The quality criterion for the policy is maximization of

future discounted rewards. That is, at each time t the expected

value of the return

Rt =

|r|21
�

k=n(t)

γk2n(t)rk (4)

should be maximized, where γ ∈ (0, 1) is a discount factor.

In one episode of its operation, the agent transforms a single
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Fig. 1: Proposed architecture for on-line sequence transfor-

mation. The black squares represent passing/delaying xi and

outputting/skipping Np
t depending on the action at.

sequence. It stops producing additional output tokens when it

has outputted EOS.

In training, the agent, not having learned how to finish

sequences, must be prevented from producing them infinitely

long. Here we assume that an episode of training is terminated

when the agent has produced as many tokens as in the target

sequence y. The last target token is EOS, which is enough for

the agent to learn to finish the output sequences.

Usually, in reinforcement learning [1] a reward comes after

each action. However, here we want the agent to be rewarded

only for the tokens it produces, bearing in mind that it does

not produce them with READ actions. Rewards equal to

zero for such actions do not make sense here because they

could encourage the agent to maximize the sum of discounted

rewards by postponing the production of output. Therefore,

here we admit actions that are not immediately followed by

rewards. Those emitted rewards have their own indices and are

discounted according to them.

At each instant of its operation, a state of the agent’s

environment consists of the tokens the agent has read so far

and the tokens it has written so far. However, before taking

another action, it is only fed with the next input token and

with the last written token. Therefore, the agent’s environment

is partially observable.

B. Architecture

We propose an architecture that learns to make the actions

discussed above. The policy has the form of a recurrent neural

network. Its input size is d+ d2. In an instant of its operation

it is fed with a subsequent input token concatenated with

a preceding output token. Specifically, the first input to the

network is the pair (x0,NULL). Let us assume that the agent

has already read i input tokens and produced j output tokens.

Thus, after the READ action, the network input is (xi,NULL).
After the WRITE action, the network input is (NULL, zj21).

In training teacher forcing can also be applied: The agent is

fed not with the tokens it has already outputted but with target

tokens.

Output of the network is of size d2+2. The network produces

a d2-dimensional potential output token and 2 scalar return

estimates that approximate returns (4) expected if actions

WRITE and READ, respectively, were taken.

Let Nt be the d2 + 2-dimensional output of the network at

t-th instant. It is composed as

Nt = [Np
t , N

W
t , NR

t ],

where Np
t ∈ R

d2

is the potential output token, and NW
t , NR

t ∈
R are the return estimates for the WRITE and READ actions,

respectively. The architecture is depicted in Fig. 1.

The network output that estimates the return corresponding to

the just taken action at is trained to approximate the conditional

expected value

Qt(at) = E(Rt|Ct), (5)

where the condition Ct includes the following:

1) The action just taken is at.
2) Subsequently, those actions are selected, which corre-

spond to the network return estimates with maximum

values.

3) Input tokens read so far, and output tokens produced so

far. At the time t, the rest of the tokens are unknown,

thereby remaining random vectors.

The actions actually taken are usually selected as those

maximizing the return estimates given by the network. However,

with a small probability, the agent chooses the other action since

it needs to explore different actions to learn their consequences.

Therefore, we will not estimate Qt(at) based on the actual

return, but on a recursion instead. Specifically, let us denote by

j the number of output tokens produced before the analyzed

action is taken. A simple analysis reveals that Qt(at) (5)

satisfies the following recursive equation:

Qt(at) = E

ù

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

ü

ü

ü

ü
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−M + γmaxb Qt+1(b)
if at = READ, fin(x)

maxb Qt+1(b)
if at = READ,¬fin(x)
−L(yj , zj) + γmaxb Qt+1(b)

if at = WRITE, j < |y| − 1
−L(yj , zj)
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þ

(6)

where fin(x) means that all x tokens have been read. The

condition for the above expectation is that the action actually

taken is at.
Target values for the network will be based on the

above recursive equation and the fact that Qt+1(READ) and

Qt+1(WRITE) are estimated by NR
t+1 and NW

t+1, respectively.

Therefore, the network outputs at time t are trained as follows.1

After the READ action, when x is not finished yet, NR
t is

adjusted:

NR
t ← max{NR

t+1, N
W
t+1}. (7)

1We apply the notation:

[predicate] =

�

1 if predicate is true
0 otherwise.
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After the READ action, when x is already finished:

NR
t ← −M + γmax{NR

t+1, N
W
t+1}. (8)

After a WRITE action, the return estimate for the WRITE

action is adjusted as

NW
t ← −L(N

p, zj)+ [j < |y| − 1]γmax{NR
t+1, N

W
t+1}, (9)

Also, the potential output is adjusted

Np
t ← yj . (10)

C. Weighting losses due to mistranslation and return estimation

The network produces outputs of two qualitatively different

kinds: the potential output tokens and the return estimates. The

network training requires minimization of an aggregated loss

that combines a loss due to mistranslation and a loss due to

return estimation. We propose to normalize these losses with

their averages defined below.

Let n = 1, 2, . . . be a training minibatch index. We average

original mistranslation losses, LM
n , and original estimation

losses, LE
n , according to

L̄M
n = wnL̄

M
n21 + (1− wn)L

M
n , (11)

L̄E
n = wnL̄

E
n21 + (1− wn)L

E
n (12)

where L̄M
0 = L̄E

0 = 0, and

wn = ρ(1− ρn21)/(1− ρn), (13)

where ρ ∈ (0, 1) is the decay factor, e.g. ρ = 0.99. The

terms (11,12) approximate arithmetic means for small n, and

exponential moving average for larger n.

Training the network aims at minimizing the aggregated loss

in the form

Ln = LM
n /L̄M

n + η(n, n0)L
E
n /L̄

E
n . (14)

The term η(n, n0) is a relative weight of the estimation loss

for the current minibatch/epoch index n and the (expected)

total number n0 of minibatches/epochs in the whole training.

For small n this weight should be small: η(n, n0) ≈ ηmin,

since high accuracy of future rewards is pointless when quality

of outputted tokens is poor. η(n, n0) is gradually growing

with n to a certain asymptote, ηmax. ηmin and ηmax are

hyperparameters of the training process, e.g. 1/50 and 1/5,

respectively. The η function may have the form

η(n, n0) = ηmax − (ηmax − ηmin) exp(−3n/n0). (15)

V. EXPERIMENTAL STUDY

In this section, we demonstrate the effectiveness of our

proposed architecture, henceforth called RLST (Reinforcement

Learning for on-line Sequence Transformation). We perform

experiments with seven machine translation tasks. They are

based on datasets taken from Tatoeba [21] and dataset taken

from IWSLT2014 [22].

In our machine translation tasks, the input sequence consists

of tokens representing words of a sentence in a source

language. The aim is to generate a sequence of tokens with

the same sentence meaning as the source sequence. We

conduct experiments on datasets presented in Table I which

contains basic statistics on the source and target languages

datasets, sizes of source and target dictionaries, and numbers

of sentences in each data split. For Tatoeba datasets, we also

separate long test splits, where source sentences have more

than 22 tokens. The long test split allows us to compare how

models deal with longer input sentences. For all datasets, we

compare our proposed RLST architecture with state-of-the-art

machine translation architectures, namely encoder-decoder with

attention [3] and Transformer [5]. For both encoder-decoder and

Transformer, the minimized loss is cross-entropy. For RLST,

we quantify LM
n and LE

n in (14) as cross-entropy and mean

square error, respectively.

In our experiments, we employed the following procedure

to optimize hyperparameters of the compared architectures.

For Tatoeba datasets, we optimized the hyperparameters

manually for all three architectures to obtain their best BLEU

score [14] on the En-Es language pair and applied these

values to all language pairs. For IWSLT2014 datasets, we

optimized the hyperparameters of RLST manually and took

the hyperparameters for the Transformer from [5] and for the

encoder-decoder with attention from [23].

Our simulation experiments have been performed on a PC

equipped with AMD Ryzen™Threadripper™1920X, 64GB

RAM, 4×NVIDIA™GeForce™RTX 2070 Super™.

A. Tatoeba

Tatoeba datasets [21] contain various, mostly unrelated,

sentences and their translations provided by the community.

We preprocess them using spaCy tokenizer [24] and replace

tokens that appear in training corpora less than three times

with a unique token representing an unknown word. We also

remove duplicated source sentences.

Experiments on Tatoeba for all architectures are run for 50

epochs, with a batch size of 128 and gradient clipping norm

set to 10.0. Encoder-decoder and RLST have weight decay

set to 1025, while Transformer has weight decay set to 1024.

Source and target tokens are converted to trainable vectors of

length 256 initialized with N (0, 1). There is a dropout applied

to them with a probability of 0.2. We use Adam optimizer

with default parameters and a constant learning rate equal

to 0.0003. The reference encoder-decoder is presented in [3].

Its encoder is a bidirectional GRU recurrent layer with 256

hidden neurons followed by a linear attention layer with 64

neurons. The decoder is a GRU recurrent layer with 256 hidden

neurons followed by a dropout with 0.5 probability and a linear

output layer with a number of neurons equal to the target’s

vocabulary size. The teacher forcing ratio for encoder-decoder

during training is set to 1.0. For the Transformer, we use

the following parameters: the number of expected features in

the encoder and decoder inputs is 256, the number of heads

in multiattention is 8, the number of encoder and decoder

layers is 6, the dimension of feedforward layers is 512, the

dropout probability is 0.25 and the teacher forcing ratio to

1.0. For RLST, we use the following approximator. Input and

136 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Dataset Abbr Src. Trg. Train Valid. Test Long
dict. dict. set set set test

Tatoeba Spanish-English Tat Es-En 13 288 8 960 124 179 41 393 41 394 2 387
Tatoeba French-English Tat Fr-En 13 792 10 056 161 283 53 761 53 762 2 613
Tatoeba English-Spanish Tat En-Es 8 690 12 698 115 026 38 342 38 342 2 325
Tatoeba English-Russian Tat En-Ru 10 009 21 820 241 785 80 595 80 595 1 756
Tatoeba English-German Tat En-De 10 504 15 276 170 347 56 782 56 783 3 805
IWSLT2014- IWSLT-
German-English De-En 8 848 6 632 160 239 7 283 6 750 —
IWSLT2014- IWSLT-
English-German En-De 6 632 8 848 160 239 7 283 6 750 —

TABLE I: Basic statistics of machine translation datasets.

previous output embeddings with a dimension of 256 are passed

to a dense layer with 512 neurons, Leaky ReLU activation

with negative slope set to 0.01 and dropout probability of 0.2.

Its output is processed by four GRU layers with the hidden

dimension of 512 and residual connections between them. The

output of the last recurrent layer is passed to a dense layer with

512 neurons, Leaky ReLU activation with a negative slope set

to 0.01, and a dropout probability of 0.5. The output of the last

dense layer is passed to the output linear layer with number of

neurons equal to the target’s vocabulary size and additional 2

neurons representing Q-values of actions. We also set γ = 0.9,

ε = 0.3, M = 3, N = 50000, ηmin = 0.02, ηmax = 0.2,

ρ = 0.99 and teacher forcing ratio to 1.0.

B. IWSLT2014

We conduct experiments on IWSLT2014 German-English

and English-German datasets using the fairseq framework

[22]. Data is preprocessed using the script provided by the

benchmark, which utilizes byte-pair encoding (BPE) [25]. For

every architecture, the training lasts for 100 epochs with varying

batch sizes to ensure that the maximum number of tokens

in a batch equals 4096 and the gradient clipping norm is

set to 10.0. The encoder-decoder and RLST architectures are

trained using Adam optimizer with default parameters and

constant learning rate scheduling with weight decay of 1025.

The Transformer is also trained using Adam optimizer, with

parameters and a learning rate scheduler described in [5].

For the encoder-decoder and the Transformer, we use the

lstm_wiseman_iwslt_de_en architecture (based on [23]) and

transformer_iwslt_de_en (based on [5] with some changes),

respectively. The encoder-decoder model has trainable source

and target embeddings dimensions of 256 without dropout.

Its encoder is an LSTM layer with 256 hidden neurons,

and its decoder was also an LSTM layer with 256 hidden

neurons followed by an output layer with the number of

neurons equal to the target’s vocabulary size. The decoder

uses the attention mechanism. The encoder and decoder

layers have a dropout probability of 0.1. The Transformer

has the following parameters: The trainable source and target

embeddings dimensions are 512 without dropout, the number

of neurons in feedforward layers is 1024, the number of

multiattention heads is 4, the number of encoder and decoder

layers is 6 and a dropout probability of 0.1. For RLST, we set

trainable source and target embedding dimensions to 256 with

a dropout of 0.2 probability. In the case of IWSLT-En-De, we

use the same approximator as in Tatoeba. For IWSLT-De-En,

we changed the dimensions of dense and GRU layers from 512

to 768. We also set γ = 0.9, ε = 0.30, M = 7, N = 100000,

ρ = 0.99, ηmin = 0.02, ηmax = 0.2 and teacher forcing ratio

to 1.0. For encoder-decoder and Transformer, we set beam

search width to 1 and teacher forcing ratio to 1.0.

C. Results

The results are presented in Table II. For each dataset and

architecture, we show BLEU values computed on a test split

from checkpoints for which the BLEU value on a validation

split was the highest. We also show the number of parameters

for each model. The highest values of BLEU for each dataset

are bolded. On the Tatoeba test confined to sentences of

length up to 22 words, all three architectures achieved similar

BLEU. However, in the test confined to longer sentences, RLST

outperforms the other architectures in 4 language pairs out of

5, usually by a large margin. The architecture to achieve the

best results on fairseq datasets is the Transformer. RLST and

the encoder-decoder with attention achieve similar BLEU on

this benchmark.

In order to gain an additional insight into the operation of

the RLST interpreter agent we present in Figure 2 the timing

of taking the READ and WRITE actions. As one may expect,

initially, the agent is mostly reading, then reading and writing

ratios are roughly equal, and finally, the agent is mostly writing.

It appears that the agent has read about five more words than

it has written for most of the time. That seems to correspond

to a common intuition: A human interpreter also needs to be

delayed a few words in producing an accurate translation of

a speech.

VI. DISCUSSION

Our proposed interpreter agent RLST is designed to trans-

form arbitrarily long sequences on-line. In each cycle of its

operation, it performs the same number of computations in

which it reads an input token or writes an output token. The

agent has only limited memory space to store information

about recently read tokens, a context of these tokens defined

by previous ones, and recently written tokens. Therefore, the

agent is not a method of choice for translating sentences of

moderate length without any context.

The RLST architecture outperformed others in the test on

long sentences (longer than 22 words) taken from Tatoeba. The

memory state of the interpreter agent preserved the context
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Architecture → Encoder-decoder Transformer RLST
Dataset ↓ BLEU Num. params BLEU Num. params BLEU Num. params

Tat Es-En 50.33 16 637 504 50.19 15 906 560 50.02 17 122 050
Tat Es-En (L) 16.52 16 637 504 13.42 15 906 560 20.57 17 122 050

Tat Fr-En 53.95 18 170 504 53.89 16 597 832 53.05 18 093 898
Tat Fr-En (L) 13.49 18 170 504 10.03 16 597 832 16.42 18 093 898

Tat En-Es 45.14 20 248 794 44.63 16 647 066 45.09 18 819 484
Tat En-Es (L) 16.1 20 248 794 12.39 16 647 066 21.07 18 819 484

Tat En-Ru 47.71 32 271 740 47.11 21 664 316 47.37 26 171 966
Tat En-Ru (L) 10.06 32 271 740 5.66 21 664 316 11.28 26 171 966

Tat En-De 41.98 24 015 596 41.63 18 433 964 40.62 21 266 350
Tat En-De (L) 10.95 24 015 596 9.5 18 433 964 10.2 21 266 350
IWSLT De-En 24.13 7 178 728 32.17 42 864 640 23.28 24 223 210
IWSLT En-De 19.01 7 748 240 26.13 43 999 232 18.32 15 331 986

TABLE II: BLEU scores on test splits and number of parameters for tested architectures. (L) on Tatoeba datasets denotes scores

from long test split.

Fig. 2: Processing of 1089 source sentences of length 15 from

the Tat En-Ru test dataset by the RLST interpreter agent. The

graph shows when the READ and WRITE actions are taken.

of the outputted words better than the attention mechanism

managed to do in the reference architectures. We hypothesize

that the sequential nature of human language makes it possible

to translate properly separate parts of a speech, but in order

to do that, the end of each part must be identified. It appears

that RLST manages to do it better in long sentences than the

reference architectures.

The goal of a large fraction of algorithms developed in

computer science is to transform input data into output data

whose size is unknown in advance. For some data types, it is

natural to process them sequentially. These types include natural

language, sound, video, and bioinformatic data, e.g., genetic.

The experiments in Section V confirm that our introduced

RLST architecture is very well adapted to such data.

VII. CONCLUSIONS

In this paper, we have presented the RLST architecture that

transforms on-line sequences of arbitrary length without the

need to define the trade-off between delay and quality. In the

transformation process, it makes sequential decisions about

whether to read an input token or write an output token. The

architecture learns to make these decisions with reinforcement.

The experimental study compared the architecture with state-of-

the-art machine translation methods, namely the Transformer

and the encoder-decoder with attention. Benchmark datasets

taken from Tatoeba and IWSLT with seven language pairs were

employed in the experiments. The RLST architecture solved

a more complex problem of on-line transformation than the

reference methods, which produced output tokens knowing the

entire source sequence. Even so, RLST produced translations of

comparable quality. It also outperformed reference architectures

in tests with long sentences (longer than 22 words) taken from

Tatoeba. That confirms that it is particularly well suited to

applications in which transformation of sequences of arbitrary

lengths and/or on-line is required.
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