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Abstract—In this paper we solve a variant of the multi-hop
influence maximization problem in social networks by means of
a hybrid algorithm that combines a biased random key genetic
algorithm with a graph neural network. Hereby, the predictions
of the graph neural network are used with the biased random key
genetic algorithm for a more accurate translation of individuals
into valid solutions to the tackled problem. The obtained results
show that the hybrid algorithm is able to outperform both the
biased random key genetic algorithm and the graph neural
network when used as standalone techniques. In other words,
we were able to show that an integration of both techniques
leads to a better algorithm.

I. INTRODUCTION

Social networks form part of our daily lives. Whether a

person is an artist or an engineer, a student or an academic,

young or old, or a spartan troll, the person most likely is

embedded in one or more social networks. People use social

networks to communicate through audiovisual media or text

messages, to help others, or even to attack them. In other

words, people influence other people, either in a positive or

in a negative way. Note that the world’s leading technology

companies invest huge amounts of money in advertising in

social networks. For any social network it is essential to be

aware of the transmission of information and its impact.

The identification of a group of users who can influence

as many people as possible is a problem called influence

maximization (IM). This problem was defined by Kempe et

al. in 2003 [1]. By solving the IM problem, a set of adequate

people can be identified, for example, for spreading the news

about a certain product on a social network. In this way, the

dissemination of the product can be supported and eventually

maximized. The IM problem has been studied, for example,

in the context of dealing with emerging negative opinions [2],

social advertising [3], and influence maximization on Twitter

for marketing campaigns [4]. Also, different variations of the

IM problem have been studied. One example concerns the case

of social networks that have a diversity of communities, which

implies that there are different types of users who can influence

in different ways [5]. Another example is the one of trying to

maximize influence in time-evolving social networks [6].

A social network can be viewed as a (directed) graph

in which the users are the nodes and user interactions are

modeled by arcs. Furthermore, the propagation of influence is

often simulated by models such as the independent cascade

(IC) model and the linear threshold (LT) model, which might

be deterministic or probabilistic. In any case, both models

consider one-hop coverage, that is, if a person is covered

depends exclusively on its direct neighbors. Although it is

common to consider one-hop coverage models in IM prob-

lems, the interaction in social networks may also be of multi-

hop nature [7].

In this paper we tackle a variant of the IM problem which

can be seen as a variant of the classical minimum dominating

set problem (MDSP) in a directed graph G = (V,A). In

the MDSP, the task is to identify a set of nodes U ¦ V
of minimum cardinality such that for each node v * V
the following holds: either (1) v * U , or (2) it exists

at least one node v2 * U such that (v2, v) * A, where

(v2, v) is the directed arc from v2 to v. In other words, the

classical MDSP considers one-hop coverage. In contrast, in

the problem tackled in this paper—known as the multi-hop

influence maximization problem (k-dDSP)—d-hop coverage

is considered. More specifically, in the k-dDSP the task is

to find a set U ¦ V of cardinality k such that the set

CU ¦ V of nodes that are covered (or influenced) by U
is of maximal cardinality. Hereby, a node v forms part of

CU—that is, v is said to be covered (or influenced) by U—

if there exists a node v2 * U such that the shortest directed

path from v2 to v consists of at most d arcs. As an example,

consider Figure 1, where k = 2 and the two nodes with a

purple color form part of set U , that is, U = {v4, v5}. In

case d = 1 it holds that CU = {v4, v5, v3, v6, v7} because

v3, v6 and v7 are in 1-hop distance from a node in U . In

other words, the objective function value of U is 5. In case

d = 2, CU = {v4, v5, v3, v6, v7, v2, v8, v11} and the objective

function value of U would be 8. Finally, in case d = 3,

CU = V and the objective function value would be 11.

For a large-scale graph, such as a large social network, exact

solutions to the k-dDSP are costly to compute. Therefore,

researchers have focused on heuristic and on machine learning
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Fig. 1. Multi-hop influence process. Given is a directed graph with 11 nodes and 12 arcs (top). Let us assume the k-dDSP is solved with k = 2. The two
purple nodes (v4 and v5) form part of the example solution U . If d = 1 (bottom left) then nodes {v3, v7, v6} are 1-hop covered by U . If d = 2 (bottom
center) then nodes {v2, v3, v7, v8, v6, v11} are 2-hop covered by U . Finally, if d = 3 (bottom right), then all remaining nodes of the graph are 3-hop covered
by U .

techniques for solving this problem (see Section II). In this

paper, we present a novel hybrid algorithm to solve k-dDSP.

This algorithm is obtained through an integration of (1) a new

graph neural network (GNN) called graph inverse attention

network (GRAT) that incorporates the influence of the neigh-

bourhood into the feature embedding of each node [8], and (2)

a biased random key genetic algorithm (BRKGA) [9]. More

specifically, the information provided by the GNN is used in

the BRKGA as greedy information. Our algorithm is evaluated

on real-world networks with up to 500.000 nodes and 1 million

arcs. Experimental results prove that our hybrid method is at

least as good as the two individual techniques in most cases.

Therefore, our method is another example for the successful

integration of a GNN framework with a metaheuristic to boost

the metaheuristics’ performance.

The article is organized as follows. Section II introduces

prior and related work. In Section III, we provide a more

technical description of the k-dDSP. In Section IV, we present

our hybrid approach. In Section V, we compare and analyze

our hybrid algorithm on real-world data sets. Finally, Section

VI concludes the work with some discussions on the utilized

type of hybridization.

II. RELATED WORKS

As mentioned before, most of the works on influence maxi-

mization (IM) in social networks make use of the independent

cascade (IC) and the linear threshold (LT) diffusion models

for calculating the influence of solutions. Chen et al. [10], [11]

present a fined-tuned heuristic for generating scalable solutions

to the IM problem and an improved runtime in comparison to

previous approaches. Jung et al. [12] provide an even faster

heuristic for the application to large graphs. Goyal et al. [13]

added Monte Carlo simulation in order to obtain an improved

heuristic.

Multi-hop influence is a way of measuring the influence

of a group of people (set of nodes) in IM problems that has

been studied recently. Nguyen et al. [14] proposed a heuristic

which takes into account the probability of each node in the

network for contributing to a high influence spread. However,

the proposed algorithm is only evaluated on small graphs of

less than 30.000 nodes. With respect to large graphs, Nguyen

et al. [15] presented an alternative heuristic that consists

of three phases: pre-optimization to reduce the size of the

graph, a construction phase to build a k-dominating set, and

post-optimization by removing redundant nodes from the set.

This algorithm improves in speed over the one from [16].

However, by doing so it sacrifices performance for a reduction

of computation time.

Recently, machine learning techniques have entered the

scene to solve combinatorial problems [17]. An early example

is S2V-DQN, which is a general reinforcement learning (RL)

framework for combinatorial optimization problems in graphs

proposed by Khalil et al. [18]. It uses graph neural networks

(GNNs) for graph embedding with partial solutions and a

deep Q-network (DQN) for node selection. This framework is

more and more used by the community working with learning

techniques for combinatorial optimization.

In the same line, FASTCOVER is a very recent unsupervised
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learning framework for solving the k-dDSP by Ni et al. [8].

It uses a multi-layer GNN known as graph reversed attention

network (GRAT) for generating for each node of a given graph

a probability to belong to the optimal solution. The output of

FASTCOVER are the k nodes with the highest probability. The

authors of [8] show that FASTCOVER outperforms the existing

heuristics.

III. PROBLEM DEFINITION

Many optimization problem in social networks can be

formalized by modeling the social network as a directed graph

G = (V,A), where V is the set of nodes and A is the set of

directed arcs present in the graph. This is also the case for

the multi-hop influence maximization problem tackled in this

paper, denoted by k-dDSP.

The most important concept in this context is the one of the

influence Id(u) ¦ V of a node u * V , which depends on two

things:

1) Parameter d g 1, which is part of the problem input.

2) A distance measure dist(u, v) between nodes. In the

context of this paper, dist(u, v) is defined as the

length—in terms of the number or arcs—of the shortest

directed path from u to v in G.

With this we can provide the definition of Id(u) as follows:

Id(u) := {v | dist(u, v) f d} (1)

In other words, Id(u) is the set of all nodes of G that can be

reached from u by means of a directed path with at most d
arcs. We say that u influences (or covers) all nodes from Id(u).
This definition can naturally be extended to sets of nodes in

the following way:

Id(U) :=
�

u* U

Id(u) "U ¦ V (2)

That is, Id(U) is the set of all nodes of G that are influenced

by at least one node from U .

Valid solutions to the k-dDSP are all sets U ¦ V such that

|U | f k, that is, any valid solution may consists of at most

k nodes. The goal of the k-dDSP is to find a valid solution

U7 ¦ V such that |Id(U
7)| g |Id(U)| for all valid solutions

U to the problem. In other words, the objective function value

of a valid solution U is |Id(U)|. In technical terms,

max
U¦V

|Id(U)|

s.t. |U | f k
(3)

Finally, note that the k-dDSP was proven to be NP-hard in

[8], [19].

IV. METHODOLOGY

In this section, we present a novel hybrid algorithm that

emerges from the integration between a BRKGA and a GNN

framework for solving the k-dDSP in social networks. To

begin, we briefly introduce both methods individually. Then

we present the developed hybridization strategy.

Algorithm 1 The pseudo-code of BRKGA

Require: a directed graph G = (V,E)
Ensure: values for params. psize, pe, pm, probelite, seed

1: P ± GENERATEINITIALPOPULATION(psize, seed)
2: EVALUATE(P ) · dependent part (greedy)

3: while computation time limit not reached do

4: Pe ± ELITESOLUTIONS(P, pe)
5: Pm ± MUTANTS(P, pm)
6: Pc ± CROSSOVER(P, pe, probelite)
7: EVALUATE(Pm ∪ Pc) · dependent part (greedy)

8: P ± Pe * Pm * Pc

9: end while

10: return Best solution in P

A. Biased Random Key Genetic Algorithm

We implemented a Biased Random Key Genetic Algo-

rithm (BRKGA), which is a well-known GA variant for

combinatorial optimization. In general, a BRKGA is problem-

independent because it works with populations of individuals

that are vectors of real numbers (random keys). The problem-

dependent part of each BRKGA deals with the way in which

individuals are translated into solutions to the tackled problem.

The problem-independent pseudo-code of BRKGA is provided

in Algorithm 1.

In the following, we first describe the independent or

generic part of the algorithm. It starts by invoking function

GenerateInitialPopulation(psize, seed), which generates a

population P formed by psize individuals. In case seed = 0,

all psize individuals are randomly generated. Hereby, each

individual Ã * P is a vector of length |V |, where V is

the set of nodes from the input graph. For this purpose,

the value at position i of Ã, denoted by Ã(i), is chosen

uniformly at random from [0, 1], for all i = 1, . . . , |V |. In case

seed = 1, only psize 2 1 individuals are randomly generated.

The last individual is obtained by defining Ã(i) := 0.5 for

all i = 1, . . . , |V |. Next, the individuals from the initial

population are evaluated. This means, each individual Ã * P
is transformed into a valid solution Uπ to the k-dDSP, and

the value f(Ã) of Ã is defined as follows: f(Ã) := |Uπ|. The

transformation of individuals to valid solutions is discussed

below.

Then, at each iteration of the algorithm, the operations to be

performed are as follows. First, the best max{+pe · psize,, 1}
individuals are copied from P to Pe in function EliteS-

olutions(P, pe). Second, a set of max{+pm · psize,, 1} so-

called mutants are generated and stored in Pm. These mutants

are random individuals generated in the same way as the

random individuals from the initial population. Finally, a set

of psize 2 |Pe| 2 |Pm| individuals are generated by crossover

in function Crossover(P, pe, probelite) and stored in Pc.

Each such individual is generated as follows: (1) an elite

parent Ã1 is chosen uniformly at random from Pe, (2) a second

parent Ã2 is chosen uniformly at random from P \Pe, and (3)

an offspring individual Ãoff is generated on the basis of Ã1 and
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Ã2 and stored in Pc. In the context of the crossover operator,

value Ãoff (i) is set to Ã1(i) with probability probelite, and to

Ã2(i) otherwise. After generating all new offspring in Pm and

Pc, these new individuals are evaluated in function Evaluate();

see line 7. Note that the individuals in Pe are already evaluated.

Finally, the population of the next generation is determined to

be the union of Pe with Pm and Pc.

The evaluation of an individual (see lines 2 and 7 of

Algorithm 1) is the problem-dependent part of our BRKGA

algorithm. The function that evaluates an individual is often

called the decoder. In our case, we make use of a simple

greedy heuristic which is based on the intuition that nodes

with a higher degree (number of neighbors) are more likely to

have a high influence than nodes with a lower degree. Hereby,

the set of neighbors N(vi) of a node vi * V is defined as

follows: N(vi) := {vj * V | (vi, vj) * A}, that is, neighbors

of vi are only those nodes that can be reached via a directed

arc from vi. The greedy value ×(vi) of each vi * V is defined

as follows:

×(vi) := |N(vi)| · Ã(i) (4)

In other words, the greedy value of a node vi is obtained by

multiplying the degree of vi with the numerical value found

at position i of the individual to be translated into a solution.

Subsequently, solution Uπ is obtained by adding the k nodes

with the highest greedy values.

Note that, in Section IV-C, greedy function × will be

modified in order to obtain a hybrid algorithm.

B. Graph Neural Network Framework

The general objective of a graph neural network (GNN)

[20]–[22] is to automatically find patterns in data. In contrast

to more classical deep learning techniques, GNNs directly

work on graphs. Therefore, they can be used to make pre-

dictions about nodes, arcs, or subgraphs without the need for

unnecessary transformations of the graph. The crucial idea

of GNNs is to iteratively update so-called node representa-

tions by combining the representations of a nodes’ neighbors

with its own representation. Given a graph G = (V,A),
H l * R

|V |×C are node attribute matrices, one for each layer

l * {0, 1, . . . , L} of the GNN. Note that C is hereby the

number of chosen features. Each line in such a matrix is a

representation for the respective node. The final goal of a GNN

is to learn competent node representations in these matrices.

In order to adapt/train the representations to be useful for

a specific task, there are two actions that are successively

performed at each GNN layer: (1) Aggregate, which aggre-

gates all the information from the neighbors of each node,

and (2) Combine, which updates the node representations by

combining the aggregated information from the neighbors with

the current node representation. Based on this, the general

framework of a GNN can be specified as follows:

alv = AGGREGATE
l{H l21

u : u * N(v)}

H l
v = COMBINE

l{H l21

v , alv}

where N(v) is the set of neighbors of node v. HK is the node

representation matrix for each layer. Once the training process

finishes, the final representations can be used for making

predictions.

A GNN can be trained, for example, in order to make

predictions about the probability of each node to belong to

the optimal solution of the k-dDSP. In fact, as mentioned

already in the section on related work, such a GNN approach

was recently presented in [8]. This GNN—called FASTCOVER

(FC)—is an unsupervised GNN framework. FC can be charac-

terized as follows: (1) the features of all nodes are embedded

as vector spaces, and the direction of each arc is reversed, (2)

a multi-layer GNN known as graph reversed attention network

(GRAT) assigns each node to its value within [0, 1], and (3) the

representations of the GNN are optimized in the training stage

through a differentiable loss function over all nodes scores.

The GRAT layer is the heart of FC. In particular, in contrast

to a standard graph attention network (GAT) [23], the so-

called attention mechanism is integrated at the origin nodes

instead of the destination nodes. The central idea is that the

nodes with more influence are likely to receive a stronger

reward. This means a higher probability of getting a potential

score.

C. The Hybrid BRKGA Algorithm

Our hybrid algorithm—henceforth called BRKGA+FC—

starts with two offline steps. Given a network in which the k-

dDSP must be solved, first, all node probabilities are extracted

from the trained FC model; note that the prior training process

is described in the next section. This probability is denoted

by pi * (0, 1] for each v * V . Then, the original greedy

function ×() from Eq. 4 is replaced by the following one that

incorporates the node probabilities extracted from FC:

×FC(vi) := |N(vi)| · Ã(i) · pi "vi * V (5)

The hypothesis is that good/correct predictions will bias the

algorithm towards the area in the search space in which an

optimal solution is located, or, at least, solutions of very high

quality. Moreover, we expect the probabilities obtained from

FC to undo the bias introduced by the degree of a node, which

might sometimes be misleading. The integration process is also

shown in Figure 2.

V. EXPERIMENTAL EVALUATION

This section is divided into three parts. First, we will

describe the preparation of the data for training and evaluation,

and the parameter tuning procedure. Then, the experimental

setting and the numerical results of three algorithms will be

presented (FC, BRKGA, and BRKGA+FC). In this context

note that FC can, of course, be used as a standalone technique

by simply adding the k nodes with highest probabilities to the

solution. Finally, we will analyse the algorithms graphically

by means of so-called search trajectory networks.
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TABLE I
TUNING CONFIGURATION. FINAL PARAMETER SETTING FOR BRKGA

AND BRKGA+FC (FOR k ∈ {32, 64, 128})

BRKGA BRKGA+FC

k k

Parameters Tuning domain 32 64 128 32 64 128

Psize [50, 250] 113 162 132 183 198 137
Pe [0.1, 2.0] 0.17 0.24 0.25 0.19 0.22 0.2
Pm [0.3, 5.0] 0.27 0.22 0.14 0.3 0.21 0.21
probelite [0.01, 0.1] 0.6 0.59 0.58 0.57 0.67 0.67
seed {0, 1} 0 0 0 1 1 1

A. Data Preparation and Tuning Process

We decided to execute experiments for three different values

of k, that is, k * {32, 64, 128}. For this reason we trained

3 different FC models, one for each value of k. Figure 3

illustrates that each model uses the fixed-parameter d = 1.

In other words, the same FC model is used for applications

of FC and BRKGA+FC for all d * {1, 2, 3}. This was done

for reducing the computational burden. Nevertheless, in the

analysis of the final results we will see that this had some

influence on the quality of the node probabilities extracted

from the FC models, that is, these probabilities seem to loose

accuracy with a growing value of d.

The three FC models (for each value of k) were trained as

follows. First, we used 15 Erdős–Rényi graphs [24] with 4000

nodes each, similar to what is presented by the authors of [8].

After the training phase, the probabilities for all 19 social

networks used later for the final experimental evaluation are

extracted (for each value of d * {1, 2, 3}) and stored in text

files.

In order to ensure a fair experimental evaluation, both

BRKGA and BRKGA+FC were tuned for each value of k

using 10 test graphs. In particular, we used Erdős–Rényi

graphs1 with n = 25.000 nodes and an arc probability

of p = 10/n. The tuning was done using a well-known

tool called irace [25]. The considered parameter domains

together with their finally chosen values are provided in Table

I. Note that the number of nodes (25.000) of the test graphs

corresponds to approximately the average number of nodes

in the networks used for the final experimental evaluation

(presented in Section V-B). The size of the tuning graphs is

reasonable because the population size parameter in BRKGA

is highly dependent on the size of the graphs. In the case of

FC, we do not modify the parameters and the configuration as

described in [8].

Note that the training phase of FC and the parameter tuning

procedure for BRKGA and BRKGA+FC were performed with

random graphs to maintain generality.

B. Experimental Evaluation

In this subsection, we apply all three approaches—FC,

BRKGA and BRKGA+FC—to 19 real-world social networks

from the SNAP library [26]. Each of these networks is a

directed, unweighed graph. The sizes of these graphs are

provided in Table II (columns |V | and |A|).

We use three different values of k * {32, 64, 128}. Also for

d, the multi-hop influence parameter, we used three different

values: d * {1, 2, 3}. Note that k = 64 was used for the

experimental evaluation on social networks of FC [8]. In order

to provide a broader experimentation and analysis we also

considered two additional values of k: a smaller one (32) and

a larger one (128). The reason to not consider values of d
greater than 3 is that we were not able to observe substantial

differences to the case d = 3.

1Instances can be downloaded from the repository https://github.com/
camilochs/genetic-algorithm-with-gnn
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TABLE II
NUMERICAL RESULTS OBTAINED BY FC, THE BRKGA, AND OUR HYBRID ALGORITHM BRKGA+FC ON 19 WELL-KNOWN SOCIAL NETWORKS. FOR

EACH NETWORK THE ALGORITHMS WERE APPLIED FOR d ∈ {1, 2, 3} AND k ∈ {32, 64, 128}. FOR k = 32 BRKGA+FC WINS IN 73% OF THE CASES;
FOR k = 64 IN 71%; AND FOR k = 128 IN 66%.

k = 32 k = 64 k = 128

Instance |V | |E| Distance FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC FC BRKGA BRKGA+FC

advogato 6551 51332
1 2338 2464.13 2469.13 2865 2948.67 2948.90 3313 3340.17 3372.33

2 4069 4139.83 4132.30 4153 4206.83 4207.77 4220 4266.97 4251.13
3 4268 4279.67 4275.47 4275 4281.80 4280.00 4277 4301.07 4284.00

anybeat 12645 67053
1 8556 8566.80 8570.70 9045 8981.40 9002.83 9650 9537.60 9626.47
2 11104 11177.10 11205.63 11209 11300.53 11305.83 11384 11371.47 11400.77

3 11507 11527.17 11526.00 11515 11531.00 11530.33 11556 11542.27 11546.87

brightkite 56739 212945
1 1266 1714.33 1808.67 1954 2483.03 2640.27 3023 3448.00 3711.63

2 4018 4160.63 4671.50 5444 5088.90 5910.40 6795 6075.13 6891.07

3 6094 5699.57 6535.13 7530 6349.90 7614.10 8650 7178.47 8189.63

delicious 536108 1365961
1 8522 10860.00 10864.83 12431 15793.53 15792.90 19483 21044.43 21170.37

2 21119 22341.80 22481.57 26018 26909.07 26995.33 32248 32811.27 33414.13

3 32000 33041.13 33175.07 36112 36039.43 36328.03 40309 40418.77 41722.63

douban 154908 327162
1 1093 1503.83 1482.30 2117 2649.93 2637.90 3950 4557.10 4565.73

2 4147 6809.23 6743.50 6801 9516.80 9594.53 10583 12950.27 13093.53

3 11686 13988.10 14448.00 15938 17548.57 17866.60 20720 21277.43 22368.23

epinions 26588 100120
1 1532 1753.27 1774.70 2198 2333.10 2413.17 3019 3000.47 3170.93

2 3645 3711.43 3853.17 4271 4086.47 4416.07 4904 4549.13 4897.77
3 4500 4487.73 4634.20 4948 4661.37 5002.83 5430 4973.10 5334.60

gowalla 196591 950327
1 1998 3296.13 3384.73 3415 4869.60 5122.30 5553 6976.07 7403.00

2 7509 9723.47 10754.63 10734 12534.07 13628.10 15386 14888.50 17251.67

3 14247 14913.00 16657.80 18418 17386.73 18966.73 23692 19064.10 22800.10

gplus 23628 39242
1 17498 18077.00 17896.00 22138 22496.93 22167.90 23543 23628.00 23567.00
2 21277 23077.20 22726.63 23200 23562.93 23172.73 23628 23628.00 23628.00

3 21636 23271.37 22884.60 23271 23559.80 23169.00 23628 23628.00 23628.00

loc-brightkite 58228 214078
1 8778 9041.33 9047.27 11232 11719.57 11722.57 14749 15058.97 15128.27

2 37295 38212.10 38267.47 40161 41258.13 41190.97 42929 43777.03 43827.50

3 52335 52645.00 52744.00 53272 53600.17 53469.27 53783 54123.80 54134.60

sign-Slashdot081106 77350 516575
1 7162 8087.00 8087.00 11362 11999.33 12003.93 17046 17514.80 17524.33

2 37521 42221.13 42352.03 44291 47782.33 47827.97 47747 51839.47 51796.63
3 59456 60393.67 60367.30 60709 61148.47 61148.07 61333 61683.10 61701.40

sign-Slashdot090216 81867 545671
1 7232 8127.87 8128.00 11385 12094.27 12108.50 16949 17592.80 17613.43

2 39841 43723.57 43781.93 46021 49774.13 49832.23 49661 54244.47 54141.53
3 62964 63840.83 63817.00 64209 64710.97 64723.77 64912 65375.13 65399.37

sign-Slashdot090221 82140 549202
1 7182 8129.00 8129.00 11421 12129.03 12126.33 17010 17642.67 17641.80
2 39220 43869.37 43982.53 46410 49972.23 49968.17 49917 54408.47 54334.93
3 62958 64062.17 64036.97 64473 64935.37 64953.90 65145 65589.77 65598.23

sign-bitcoinotc 5881 35592
1 3455 3479.00 3479.00 4010 4038.17 4040.97 4615 4595.70 4617.97

2 5568 5631.97 5632.60 5645 5715.37 5715.20 5761 5761.83 5781.17

3 5814 5838.00 5838.03 5834 5839.00 5839.10 5844 5842.00 5844.00

sign-epinions 131828 841372
1 17765 18690.03 18693.50 22933 23569.77 23609.43 28969 29052.87 29284.87

2 56849 59372.80 59411.70 60208 62238.23 62288.90 63070 64153.33 64309.37

3 70410 70739.73 70721.93 70829 71021.30 71024.17 71188 71245.93 71309.97

slashdot 70068 358647
1 3419 3722.70 3791.37 4683 5020.93 5083.63 6304 6515.80 6683.03

2 7849 8302.53 8958.23 9534 9605.07 9771.83 11083 10802.73 11486.17

3 10537 10527.87 11223.53 11699 11166.57 11810.70 12648 11964.73 12660.03

slashdot-zoo 79120 515581
1 7229 8100.00 8100.00 11460 12021.30 12051.57 17068 17514.53 17515.70

2 37664 41741.40 41848.30 43850 47347.50 47346.50 47629 51361.57 51334.70
3 58974 59818.57 59805.10 60176 60600.87 60604.67 60797 61135.87 61140.97

themarker 69413 1644849
1 32088 32320.00 32320.00 35567 35891.10 35908.27 39245 39137.20 39258.97

2 51299 52117.30 52127.60 52100 52654.87 52665.13 52785 53016.10 53093.40

3 53506 53598.40 53593.03 53575 53665.10 53666.67 53729 53754.67 53758.90

twitter-follows 404719 713319
1 14063 14548.57 14549.53 26981 27755.17 27760.93 48870 51240.20 50531.97
2 52319 88442.93 88620.80 83380 117605.90 117692.57 85371 151365.57 135258.13
3 171902 207181.27 204973.27 203499 213702.93 214154.77 212524 219099.80 221819.07

wiki-elec 7118 107071
1 2146 2167.00 2176.70 2227 2265.63 2268.63 2306 2367.70 2366.47
2 2328 2354.73 2355.10 2341 2390.00 2388.03 2366 2454.50 2427.53
3 2331 2357.10 2357.27 2344 2389.53 2389.67 2366 2452.23 2426.47

As FC is a deterministic approach (at least for what concerns

the use of the model after training), it was applied exactly

once to each of the 19 networks, for each combination of k
and d. On the contrary, both BRKGA and BRKGA+FC were

applied 30 times to each network and combination of k and

d. As a computation time limit of BRKGA and BRKGA+FC

we used 900 CPU seconds for each run. All experiments were

performed on machines with an Intel(R) Xeon(R) Silver 4210

CPU @ 2.20GHz. The FC framework uses Python 3 and our

implementations of BRKGA and BRKGA+FC were coded in

C++.

In Table II we compare the results of FC with the aver-

age results of BRKGA and BRKGA+FC over 30 runs. The

following observations can be made:

" Generally, both BRKGA and BRKGA+FC outperform

FC which, in turn, was shown in [8] to outperform

the existing heuristics for solving the k-dDSP. The only

exceptions are 1 case with k = 64 and 9 cases with

k = 128. This suggests that the performance of FC (when

compared to the BRKGA versions) improves with an

increasing value of k.

" Even though BRKGA generally outperforms FC, the
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Fig. 3. Data preparation and pipeline. The pipeline starts by training three
FC models, one for each k ∈ {32, 64, 128}. Random graphs (Erdős–Rényi)
were used for this purpose. Next, the evaluation of the FC models is performed
for each of the 19 instances (social networks), for each value of parameter
d ∈ {1, 2, 3}. Finally, the obtained probabilities (FC output) are exported and
stored in text files.

hybrid algorithm BRKGA+FC generally benefits from

the use of the probability information extracted from

FC for the translation of individuals into solutions. This

advantage of BRKGA+FC over BRKGA is greatest for

the smallest value of d (that is, d = 1). In this case

BRKGA+FC outperforms BRKGA in 73% of all cases.

" The worst performance of BRKGA+FC is obtained for

k = 32 and d = 3 (47% of superiority). This may be due

to two possible reasons: (1) FC might find it difficult to

detect pattern for rather small values of k; (2) all our FC

models were trained for d = 1, which might suggest that

our results could be improved by specifically training FC

for each value of d.

Summarizing, we can say that making use of information

from the GNN framework FC within our BRKGA clearly

improves the algorithm.

C. Analysis

There are cases when our hybrid algorithm does not perform

as expected. This is the case when the results are similar

to the ones of BRKGA, or when they are even worse than

the ones of BRKGA. In an attempt to analyse such cases we

used the Search Trajectory Networks (STNs) tool from [27],

which allows to visualize the trajectories of algorithms in the

search space. Moreover, it lets us compare the behavior of

more than one metaheuristic. For this analysis we chose three

network corresponding to three different cases as outlined in

Figure 4. The obtained graphics allow to make the following

observations.

1) Figure 4 (a). This is a case in which the hybrid algorithm

BRKGA+FC does not perform well in comparison to

BRKGA. We can see in the graphic that both algorithms

are clearly focused on different areas of the search space.

In particular, BRKGA is attracted by a certain area of

the search space. Nevertheless, the best solution found

(red dot), even though it belongs to this part of the

search space, it is not close to the area of attraction (see

the two larger grey triangles). One hypothesis is that

the probabilities provided by the graph neural network

framework (FC) for this instance are rather misleading.

2) Figure 4 (b). In this case, the performance of both

algorithms is comparable. Again, the two algorithm

version are focused on different areas of the search

space. This time there is a minimal overlap between

two of the algorithm trajectories (see the light gray dot

in the middle of the graphic). Interestingly, even though

both algorithms find a best solution of the same quality,

these two solutions are clearly different to each other

(see the two red dots).

However, as mentioned before, in a majorty of cases

BRKGA+FC outperforms BRKGA. Such a case is visualized

in the graphic of Figure 4 (c). It can be observed that the

trajectory of BRKGA+FC is more bounded and, therefore, it

is not dispersed in the search space as it occurs for BRKGA.

Moreover, the best solution is found in the area of the search

space that attracts BRKGA+FC. This means that, in this case,

the information provided by the FC is very useful.

VI. CONCLUSION AND FUTURE WORK

In this work we have devised a hybrid algorithm com-

bining a biased random key genetic algorithm with a graph

neural network called FASTCOVER. This was done in the

context of an NP-hard combinatorial optimization problem

dealing with the maximization of influence spreading in social

networks. In particular, our hybrid algorithm makes use of

the recommendations provided by FASTCOVER (in the form

of probabilities) for translating individuals to valid solutions

to the tackled problem. The results have shown that, in a

majority of the cases, our hybrid algorithm outperforms both

its individual algorithmic components: the biased random

key genetic algorithm and FASTCOVER. The experimental

evaluation of our approaches was done in the context of 19

real-world social networks.

One opportunity to advance this type of hybridization is to

address other problems using a similar integration methodol-

ogy, especially taking the recent progress of graph represen-

tation learning into account.
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Fig. 4. Search trajectory analysis concerning BRKGA and BRKGA+FC. The three graphics show 10 executions (trajectories) of BRKGA (orange)
and BRKGA+FC (pink) for three instances (gplus, twitter-follows, and themarker). The value of z indicates the degree of search space partitioning used to
generate the graphics (see [27]). Yellow squares indicate the start of trajectories, while gray triangles indicate their ends. Also, light gray circles indicate that
both algorithms passed through this location of the search space, while red circles indicate the best solutions found. (a) A case in which BRKGA is able to
outperform BRKGA+FC (gplus). (b) A case in which BRKGA and BRKGA+FC achieve similar results (twitter-follows). (c) A case in which BRKGA+FC
outperforms BRKGA (thermarker). For each graphic we used the force-directed layout based on physical analogies, not relying on any assumptions about the
structure of the networks.
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