
Hierarchical data structures in rendering scenes

containing a massive number of light sources

Andrzej Lamecki, Krzysztof Kaczmarski, Joanna Porter-Sobieraj

Warsaw University of Technology, Faculty of Mathematics and Information Science

ul. Koszykowa 75, 00-662 Warszawa, Poland

Email: {andrzej.lamecki.stud, krzysztof.kaczmarski, joanna.porter}@pw.edu.pl

Abstract—In order to speed up the process of rendering scenes
containing many light sources, spatial data structures are used,
which allow the number of lights processed for each pixel to be
reduced during lighting computation. Examples of algorithms
using such data structures are clustered shading and hybrid
lighting. Alongside the rendering time, it is important to consider
memory consumption resulting from processing a large number
of lights. This paper presents a novel modification of the hybrid
lighting algorithm using an octree that allows for a significant
reduction in the amount of memory required to store the data
structure.

The proposed modification uses an octree to store the informa-
tion about the rendered space. Detailed analysis of the proposed
algorithm, and numerical results obtained for various 3D scenes,
as well as different input data, all prove that the proposed method
significantly reduces the memory required to store lists of lights
used by the algorithm.

I. INTRODUCTION

I
N RECENT years during the creation of virtual scenes, a

lot of emphasis has been put on rendering visually realistic

scenes. Rendering scenes containing multiple light sources

requires calculating for each pixel a list of lights that affect

its color. The most commonly used type of light is a point

light with a limited range. Such lights can be represented

as spheres in a rendered scene. The process of rendering a

scene containing multiple light sources is therefore equivalent

to determining for each rendered point which spheres contain

this point. Fig. 1 shows an example scene for this problem

containing 1 000 000 lights.

In the case of scenes with a large number of lights a naive

approach of checking the distance between each rendered point

and each light source requires a large number of operations.

Improving rendering performance can be achieved by paral-

lelization and by using spatial data structures to approximate

light distribution in the scene space. These data structures are

used during lighting computations to reduce the number of

lights that are processed for each rendered point, which results

in lower rendering times.

Another major concern in the rendering process, alongside

the number of performed operations, is the memory complex-

ity of the algorithm. Operating with a large amount of memory

can often create a bottleneck while processing and visualizing

complex scenes.

Research funded by the grant of Faculty of Mathematics and Information
Science no. 504/04628/1120, Warsaw University of Technology

Fig. 1. A fragment of the Rungholt scene [1] containing 1 000 000 lights. All
lights are point lights with limited range.

II. RELATED WORK

Research on the optimization of rendering has been con-

ducted for over 50 years. Most of the algorithms used to

efficiently render scenes with multiple lights use an additional

data structure, describing scene geometry as well as lights

placed in the scene, in order to decrease the time required for

the calculation of lighting for each pixel. In these algorithms

data structures allow a list of lights that potentially affect

rendered geometry to be determined. The final decision on

whether or not a light should affect a given pixel is made for

each pair (pixel and light), based on the position of the shaded

point and the position of the light source and, optionally, the

normal vector in this point. The usage of the aforementioned

data structures decreases the set of lights that are considered

for a given pixel, which results in shorter rendering times.

One of the methods of rendering scenes containing many

light sources is an algorithm using g-buffers [2], which are

separate buffers used to store partial data, such as world

position, normal vector or material properties, used in lighting

computations in the final stage of frame rendering in which

the final color displayed on the screen is calculated. Areas

affected by lights are represented by spheres and each of those

spheres is then rasterized onto the screen, and lighting data for

each pixel in the area taken up by the light is updated. This

solution is not efficient on modern GPUs [3] as rendering each

frame requires multiple reads and writes to g-buffers, which

significantly slows down the overall rendering process.

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 535–544

DOI: 10.15439/2022F92

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 535



One of the most popular algorithms used to render scenes

containing many light was the tiled shading algorithm [4],

in which the rendered frame is divided into rectangular tiles

(Fig. 2). Each tile is associated with a list of lights that affect

any part of the scene contained in that tile. This additional data

structure is used during final pixel color calculation. However,

for each shaded pixel not all lights assigned to a corresponding

list affect its color. Increasing the number of tiles can result

in fewer lights to process for each pixel but processing more

tiles requires additional operations and memory.

The part of the scene being rendered is divided only

vertically and horizontally during tile construction. If a tile

contains objects that are close to the camera and objects that

are far from the camera (an example of such situation is

presented in Fig. 3), lights affecting any of these objects will

be processed for all of them. This can lead to many operations

being performed unnecessarily as these lights are unlikely to

affect all of the geometry contained in the tile.

There has been developed a modification of the tiled shading

algorithm, a 2.5D culling [5], aiming to reduce the number

of lights assigned to each tile in the case of a discontinuous

geometry. For each tile, the geometry’s range of depth is

calculated and this range is divided equally into a fixed number

of cells which contain the actual lists of lights.

An extension of the method of dividing space in three

dimensions was proposed in the clustered shading algorithm

[6]. In this algorithm all of the pixels of the rendered image are

divided into groups (clusters) and a list of lights is assigned

to each such cluster, in a similar way to the tiled shading

algorithm. Clusters are created based on the three-dimensional

position of shaded pixels as well as, optionally, a normal

vector at that point. As described by Olsson et al. the depth of

the rendered scene can be divided uniformly in either screen

space or view space, or one can perform an exponential depth

division in which resulting cells’ dimensions are as equal as

possible. During each frame of the rendering process, the lights

are organized into a bounding volume hierarchy (BVH), a tree

structure that allows for fast queries for all the lights that

affect a given part of space. The tree is constructed in parallel,

using the bottom-up approach. Then the bounding box of each

cluster is used to determine a set of lights that possibly affect

pixel samples in the cluster, and the normal vectors of cluster

samples are used to discard lights that cannot affect any sample

in the cluster.

There were also optimization attempts using the graphics

pipeline to organize lights into lists assigned to different

parts of the scene. The hybrid lighting algorithm [7] uses

rectangular billboards to approximate the location of each light

and to assign lights to appropriate lists. As with the clustered

shading algorithm, the rendered space is divided into cells of

a three-dimensional array. The billboards are rendered in a

resolution corresponding to the vertical and horizontal array

dimensions, and analytical calculations (the intersection of a

sphere representing the area affected by the light and a ray

originating from the camera) are performed to determine the

range of cells in the depth affected by the light.

Complex spatial data structures can be implemented effi-

ciently using graphics cards, allowing for parallel construction

which results in lower building times. Tree structures are often

used to organize points in space, e.g. for dealing with the level

of detail [8] or multi-dimensional data clustering [9]. Trees

allow the space to be divided into either regular cells [8], [9]

or using hyper-planes which divide the space into two sub-

spaces, each containing a subset of points [10].

The graphics pipeline has also been used to build this type

of structure. Crassin et al. [11] describe a parallel algorithm

for constructing an octree by inserting leaves into the partially

constructed tree. To ensure that no two threads try to insert

children nodes into the same parent node at the same time, a

mutex for each node is used. The algorithm uses a separate

buffer to store all nodes that cannot be inserted at a given

moment and iterates until all of the nodes are inserted into the

tree.

Another approach to rendering scenes with many light

sources is taken in the tiled light trees algorithm [12]. Instead

of the discrete division of the rendered space in all three

dimensions, the lights are assigned to two-dimensional tiles,

in a similar way to the tiled shading algorithm. However, in

each tile a ”light tree” (a variant of an interval tree), organizing

lights in the depth of the scene, is constructed. During the final

shading process for a given pixel, a tree from the tile in which

the pixel is located is queried in the logarithmic time for the

set of lights that can affect the pixel’s color.

III. ALGORITHM DESCRIPTION

The developed algorithm is based on the hybrid lighting

algorithm [7]. The algorithm’s major novelty is its utilization

of an octree for lights’ spatial organization combined with

dynamic analysis of the scene: tree leaves are only created in

the presence of a scene’s geometry. In this way, the memory

needed for the tree’s representation is minimized. Another

optimization extends the basic tree properties: lights can be

stored not only in the leaves but also in the internal nodes.

This allows the information about a light to be stored in a

single node if it is assigned to the lists of all its children nodes.

The tree’s creation is therefore faster, since there is just one

insertion operation instead of many.

One of the improvements in the tree’s construction is the

adaptive space division during the tree’s creation, instead of

equal division in all directions. A bigger tree is created but

only a fragment of it is used while the rest, laying outside of

the divider region, is ignored. An example of this approach is

presented in Fig. 4. The number of tree cells in each direction

is equal to the lowest power of 2 equal or greater to the highest

array dimension. This solution does not add any significant

computation or memory cost due to the sparse structure of the

octree used in the implementation.

The octree is constructed in each frame, before the light

assignment operation. This operation is split into two steps:

determining a list of cells containing the scene’s geometry

present in the rendered frame and building an octree containing

these cells. In order to calculate a list of unique cells, first -

536 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Fig. 2. Division of a rendered frame into 32 tiles vertically and 32 tiles horizontally (Sponza scene [1]).

Fig. 3. Close-up of one of the tiles (outlined in red) of an image rendered
using the tiled shading algorithm (Sponza scene [1]) in which there are many
geometry discontinuities. Continuous parts of the geometry are highlighted in
the same color.

Fig. 4. Division of the space to 2× 3 cells, based on 4× 4 quadtree. Green
cells represent a space fragment, red cells are outside and are ignored.

for each pixel of a rendered scene - the cell which the pixel

belongs to is determined and its index is stored in a list. Then,

repetitive values are removed from the list.

Two methods of removing repetitive elements have been

proposed. The first method uses two functions commonly

used in parallel computing: sorting and removing consecutive

repeating elements on a list. One possible optimization of this

process entails also removing consecutive repeating elements

from the list before sorting. This optimization exploits the fact

that all cell indices are written to the list row by row and

many consecutive indices on the list are equal. This results in

a certain amount of the list’s elements being removed, which

reduces the time needed to sort the entire list.

The second method of removing repeating elements from

the list exploits a fact that all indices are from a small,

finite range, bounded by the array dimensions. This makes

it possible to use bitmasks to store the information about the

presence of a cell in a frame. Moreover, the cells’ indices are

correlated with the two-dimensional tile of the image the pixel

belongs to. This fact allows for easier parallel processing of

the cells: all pixels from a given tile are processed by threads

from the same warp, and the atomic operations (synchronized

between threads in a single warp) are used to mark the

presence of a given cell. The bitmasks are therefore stored

in a separate list, each 32-bit element of the list representing

32 consecutive cells within the same two-dimensional tile. In

the list containing the bitmasks, a parallel scan counting the

ANDRZEJ LAMECKI ET AL.: HIERARCHICAL DATA STRUCTURES IN RENDERING SCENES CONTAINING A MASSIVE NUMBER OF LIGHT SOURCES 537



Fig. 5. The process of checking if a light can be assigned to the inner node
of a quadtree. The node represents a group of 4 × 4 cells. The distance is
checked from the light source O to each cell corner marked in blue. The
light’s range is represented by the yellow circle. In the example shown in
the figure on the left, one of the points (marked in red) is farther from the
light source than the light’s range, therefore this light isn’t assigned to the
leaf marked in yellow so it cannot be assigned to the processed node. In the
example shown in the figure on the right, all marked points are within range
of the light, thus this light can be assigned to the processed node.

number of set bits is performed to determine the starting index

in the resulting list under which the cells’ indices should be

written. In the final step, the list of unique cells present in the

rendered frame is filled using the bitmask list.

The approach to building an octree described by Crassin et

al. [11] has been adapted to the CUDA framework. All of the

cells from the list computed in the previous step are inserted

into the tree. This tree is then used during the assignment of

lights to lists associated with each cell.

The process of assigning lights to lists is similar to the

original algorithm, in which the lights’ locations and ranges

are approximated by billboards. The main difference is that

after determining the cells which the light should be assigned

to, for each cell a path in the octree (from the root to the

leaf corresponding to the cell) is traced to check whether or

not the light can be assigned to one of the internal nodes.

For each node on this path, the distance from the light source

to the innermost corners of the outermost cells of a group is

compared to the light range. If all of the corners are within the

range of the light, a light is assigned to this inner node and the

rest of the path to the leaf is ignored. A 2D example of this

process is shown in Fig. 5. All the calculations are performed

in view-space because then the corner of each of the cells has

a constant position. Moreover, it is possible to calculate the

view-space position of each cell corner in advance and read it

from the additional buffer instead of calculating it every time

it is used.

During the final shading process the lights are read from

all the lists corresponding to nodes on a path from the octree

root to the leaf representing the cell the shaded pixel is in.

IV. RESULTS

The described algorithm was subjected to a series of tests

to determine its effectiveness in comparison to the clustered

shading and hybrid lighting algorithms. We concentrated on

comparing the memory required by algorithms, as minimizing

the memory requirements was the main purpose of the pro-

posed modification. All reported results were obtained on a PC

Fig. 6. Cornell Box test scene with 2 000 lights spaced uniformly in the scene
volume.

Fig. 7. Bars test scene with 50 000 lights spaced uniformly in the scene
volume.

with an Intel Core i7-9750H CPU 2.6 GHz and 16 GB RAM,

supplied with an NVIDIA GeForce RTX 2060 Mobile (1920

CUDA cores) 6 GB GDDR6 with CC 7.5. All algorithms

were implemented using C++17 with Direct3D 11 [13]

and CUDA [14] libraries and were implemented for the deferred

shading pipeline.

The algorithms were tested on 4 different scenes with 3

different distributions of light positions. Images were rendered

at a resolution of 1920× 1080 pixels. In each test the camera

moved along a predetermined path. To minimize the impact of

the operating system’s background work on rendering times,

each test was repeated 5 times, and the results were averaged

for each frame.

Three of the four test scenes, Cornell Box, Sponza [1] and

Rungholt [1], are commonly used as a benchmark for evalu-

ating rendering algorithms, and the other one, Bars, contains

many vertical bars, and was created to test the algorithms on

a scene containing many geometry discontinuities. All scenes,

along with the light distribution used in them, are shown in

Figs. 6, 7, 8 and 9.

The lights in all test scenes were distributed randomly, using

one of three distributions: uniform distribution in the scene’s

volume; uniform distribution on the scene’s geometry; groups

of lights distributed uniformly in the scene’s volume. The

538 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Fig. 8. Sponza [1] test scene with 50 000 lights spaced uniformly on the
scene’s geometry surface.

Fig. 9. Rungholt [1] test scene with 1 000 groups each containing 1 000 lights
spaced uniformly in the scene volume.

lights’ ranges were generated based on a uniform distribu-

tion between a minimum and maximum range, different for

each scene. For the uniform distribution around the scene’s

volume, each coordinate of the light’s position was generated

independently of another, based on the scene’s bounding box.

In the uniform distribution around the scene’s geometry, a

random triangle from a fixed number (1 000 in the case of

the performed tests) of the biggest triangles was selected at

random, with the probability of being chosen proportional to

the triangle’s area. Then, a random point on a chosen triangle

was generated and a light was placed in a position within the

predefined distance of the chosen point along the triangle’s

normal vector. To generate groups of lights, the positions of

the groups’ centers were generated around the scene’s volume.

Then, for each group, a fixed number of lights’ positions were

generated using the truncated normal distribution [15] with the

expected value equal to the generated group’s center.

A number of tests were performed to determine the impact

of each parameter on the average rendering time of each scene.

In each test case, parameter configurations differed by a single

parameter. As a base configuration we assumed:

• the division of the rendered image into 30× 17 tiles;

• exponential depth division in the view-space;

• the unique cell list determination method using bitmasks;

0 50 10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
55
0
60
0
65
0
70
0
75
0
80
0
85
0
90
0
95
0
10
00
10
50
11
00
11
50
12
00
12
50

Frame number

0

5

10

15

20

25

30

35

40

45

Re
nd

er
in
g 
tim

e 
[m

s]

30x17
32x32
60x34

Fig. 10. Rendering time for each frame of the Bars test scene with different
tile counts.

• precomputing the positions of cell corners.

Two different tile counts were compared with the base one:

32×32 and 60×34 tiles. In all test scenes, the lowest average

time was achieved in the configuration using 30×17 tiles. The

rendering times for each frame of the scene Bars are shown in

Fig. 10. Table I shows the average results for all test scenes.

Two configurations with uniform depth division in the

screen-space were tested: into 128 and into 256 cells. In the

case of the Cornell Box and Sponza scenes, notably higher

average rendering times were seen in the configuration with a

higher cell number, whereas in the other two scenes a higher

cell count resulted in lower average rendering times. Uniform

depth division into 128 and 256 cells in the view-space was

also tested. As with the screen-space division, whose cell

count resulted in lower average rendering times, the rendering

times differed between scenes. Notably, for the Rungholt scene

the differences between the average rendering times were

negligible. Table II shows the averaged results for all of the

four described depth division methods for all test scenes.

Figs. 11, 12, 13 and 14 show the rendering times of each

frame for the three tested methods of depth division. For

the uniform divisions, a division resolution resulting in the

lowest average rendering times was chosen. For the Bars,

Sponza and Rungholt scenes, screen-space division resulted

in significantly higher rendering times than the exponential

division in the view-space. Uniform division in the view-space

resulted in similar rendering times to exponential division for

the Cornell Box and Rungholt scenes, but the rendering times

for uniform division were higher than the exponential one for

the Bars and Sponza scenes. In the case of the Rungholt scene

ANDRZEJ LAMECKI ET AL.: HIERARCHICAL DATA STRUCTURES IN RENDERING SCENES CONTAINING A MASSIVE NUMBER OF LIGHT SOURCES 539



TABLE I
AVERAGE TIME [MS] FOR FRAME RENDERING USING THE DESCRIBED ALGORITHM FOR DIFFERENT IMAGE TILE COUNTS.

Test scene

Tile count
30×17 32× 32 60× 34

Cornell Box 11.07 15.61 +40.9% 18.71 +69.0%

Bars 22.37 32.59 +45.7% 38.96 +74.1%

Sponza 78.02 143.42 +83.8% 197.19 +152.8%

Rungholt 63.32 84.10 +32.8% 108.58 +71.5%

TABLE II
AVERAGE TIME [MS] OF FRAME RENDERING USING THE DESCRIBED ALGORITHM FOR FOUR DIFFERENT DEPTH DIVISIONS.

Test scene

Cell count in depth
128

(screen-space)
256

(screen-space)
256

(view-space)
256

(view-space)

Cornell Box 12.02 14.39 12.46 11.43

Bars 40.97 39.78 20.03 26.23

Sponza 99.44 106.25 60.14 73.66

Rungholt 149.20 136.82 61.16 61.19

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

Frame number

0

2

4

6

8

10

12

14

16

Re
nd

er
in
g 
tim

e 
[m

s]

uniform; 128 cells in screen-space
uniform; 256 cells in view-space
exponential

Fig. 11. Rendering time of each frame for the Cornell Box test scene for the
three depth division methods.

(Fig. 14), there were three parts of the test (at the beginning,

in the middle and at the end), in which screen-space division

resulted in significantly higher rendering times compared with

the other methods. In these parts of the test, the camera was

far from the scene geometry and a large area of the scene was

visible.

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

12
00

12
50

Frame number

0

10

20

30

40

50

60

70

Re
nd

er
in

g 
tim

e 
[m

s]

uniform; 256 cells in screen-space
uniform; 128 cells in view-space
exponential

Fig. 12. Rendering time of each frame for the Bars test scene for the three
depth division methods.

Three methods of obtaining the list of cells filled with

geometry were compared: using bitmasks, sorting and remov-

ing consecutive repeating elements, and removing consecutive

repeating elements before sorting. These configurations were

tested on the Bars, Sponza and Rungholt scenes. Fig. 15 shows

the obtained results for the Rungholt scene. Table III shows

540 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

Frame number

0

20

40

60

80

100

120

140

160

Re
nd

er
in
g 
tim

e 
[m

s]

uniform; 128 cells in screen-space
uniform; 128 cells in view-space
exponential

Fig. 13. Rendering time of each frame for the Sponza test scene for the three
depth division methods.

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

Frame number

0

50

100

150

200

250

Re
nd
er
in
g 
tim

e 
[m
s]

uniform; 256 cells in screen-space
uniform; 128 cells in view-space
exponential

Fig. 14. Rendering time of each frame for the Rungholt test scene for the
three depth division methods.

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

Frame number

0

50

100

150

Re
nd

er
in
g 
tim

e 
[m

s]

bitmasks
sorting-based
sorting-based with removing repeating elements before sorting

Fig. 15. Rendering time of each frame for the Rungholt test scene for the
three methods of obtaining the list of unique cells.

the averaged results for all the test scenes. In all cases the

lowest average time was achieved using the bitmasks and the

highest time was seen using the sorting-based method without

removing the repeating elements beforehand.

A version of the algorithm in which the cells’ corner posi-

tions were precomputed was also compared with a version in

which the positions were calculated each time they were used.

These configurations were also tested on the Bars, Sponza and

Rungholt scenes. For all of these scenes, precomputing the

cells’ corner positions resulted in significantly lower average

rendering times than calculating them every time. Fig. 16

shows the results for the Sponza scene. Results for all of the

tested scenes are shown in Table IV.

The proposed algorithm was compared in terms of rendering

time and memory occupancy with the clustered shading and

the original hybrid lighting algorithms. The algorithms were

compared using the Sponza and Rungholt scenes with a vari-

able number of lights, with lights being placed on the scene’s

geometry in the Sponza scene, and with groups of lights in the

Rungholt scene. Two configurations of the hybrid algorithm

and the octree-based modification were tested, differing in the

number of tiles used to divide the rendered image: 30×17 and

60× 34. This resulted in tiles of 32× 32 and 64× 64 pixels

respectively. In the case of the clustered shading algorithm,

tile sizes of 16 × 16 and 32 × 32 pixels were used. Depth

was divided using the exponential division method, and a

configuration of the clustered shading algorithm without using

normal vectors during cluster creation was chosen.

Figs. 17 and 18 show the average rendering times for

each tested algorithm variant. The octree-based algorithm

ANDRZEJ LAMECKI ET AL.: HIERARCHICAL DATA STRUCTURES IN RENDERING SCENES CONTAINING A MASSIVE NUMBER OF LIGHT SOURCES 541



TABLE III
AVERAGE TIME [MS] OF FRAME RENDERING USING THE DESCRIBED ALGORITHM FOR THE THREE METHODS OF OBTAINING THE LIST OF UNIQUE CELLS.

Test scene

List obtaining method
bitmasks sorting-based

sorting-based
with the removal

of repeating
elements

before sorting

Bars 22.37 29.13 +30.2% 24.07 +7.6%

Sponza 78.02 84.29 +8.0% 78.78 +1.0%

Rungholt 63.32 70.66 +11.6% 64.55 +1.9%

TABLE IV
AVERAGE TIME [MS] OF FRAME RENDERING USING THE DESCRIBED ALGORITHM FOR TWO METHODS USED TO CALCULATE CELLS’ CORNER POSITIONS.

Test scene

Cells’ corner position calculation method
precomputing calculating

each time

Bars 22.37 26.56 +18.8%

Sponza 78.02 95.66 +22.6%

Rungholt 63.32 69.05 +9.1%

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

Frame number

0

20

40

60

80

100

120

140

160

Re
nd

er
in
g 
tim

e 
[m

s]

precomputing
calculating each time

Fig. 16. Rendering time of each frame for the Sponza test scene depending
on the method used to calculate the cells’ corner positions.

wasn’t tested for the Sponza scene for the light count above

30 000 because of a rapidly rising rendering time for the

increasing number of lights. In both test scenes the octree-

based algorithm with a tile size of 32 × 32 saw significantly

higher (by 11% – 392%) rendering times than the rest of the

algorithms. The configuration with tiles of size 64×64 pixels,

for up to 5 000 lights for the Sponza scene and up to 90 000 for

the Rungholt scene, achieved lower (by 16% – 17%) rendering

times than both configurations of the clustered shading algo-

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Number of lights in a scene ×103

0

20

40

60

80

100

120

140

160

Av
er

ag
e 

fra
m

e 
re

nd
er

in
g 

tim
e 

[m
s]

clustered shading (16x16)
clustered shading (32x32)
hybrid lighting (64x64)
hybrid lighting (32x32)
octree-based modification (64x64)
octree-based modification (32x32)

Fig. 17. Average rendering time of the Sponza scene depending on the total
number of lights in the scene, for each tested algorithm. The tile size, in
pixels, is written in parentheses.

rithm. For higher numbers of lights, the octree-based algorithm

was slower than the clustered shading algorithm by up to 131%

for the Sponza scene and up to 75% for the Rungholt scene.

Figs. 19 and 20 show the average sum of lights on the lists

of lights depending on the total number of lights in a scene.

As each light can be assigned to more than one list, the sum

of light list elements may be bigger than the number of lights

in a scene.

542 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Number of lights in a scene ×106

0

20

40

60

80

100

120

140

160

Av
er
ag

e 
fra

m
e 
re
nd

er
in
g 
tim

e 
[m

s]

clustered shading (16x16)
clustered shading (32x32)
hybrid lighting (64x64)
hybrid lighting (32x32)
octree-based modification (64x64)
octree-based modification (32x32)

Fig. 18. Average rendering time of the Rungholt scene depending on the
total number of lights in the scene, for each tested algorithm. The tile size,
in pixels, is written in parentheses.

On average, the lowest total number of light list elements

was achieved in the case of the octree-based algorithm with

a tile size of 64 × 64 pixels. For the Sponza scene, there

were at least 65% fewer elements compared with the other

two algorithms, and for the Rungholt scene – at least 23%

fewer. In the case of the Sponza scene, the proposed method

with tiles measuring 32 × 32 pixels resulted in a lower total

number of list elements (by 30% – 40%) than in the case of the

original, unmodified version of the hybrid lighting algorithm

with tiles that were twice as big.

V. SUMMARY

The results obtained in the tests show that both the scene

geometry and the lights’ distribution are important factors

impacting the rendering time.

Using an octree to store the lists of lights allows for a

significant reduction (up to 65%) in the number of elements

on the lists compared with the other tested algorithms. This

resulted in fewer list insertion operations that needed to

be performed for each frame. However, additional checks

performed in order to determine whether or not a light could

be stored in an internal node resulted in an overall slower

algorithm than the original version.

The approach of using billboards to approximate the lights’

positions and ranges resulted in many calculations that were

repeated by multiple threads. As each billboard’s pixel is

potentially processed by a different thread, each thread has to

check if the light affects all nodes in a group independently of

other threads. One idea for modifying the described algorithm

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Number of lights in a scene ×103

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Av
er

ag
e 

to
ta

l n
um

be
r o

f l
ig

ht
 li

st
 e

le
m

en
ts

×106

clustered shading (16x16)
clustered shading (32x32)
hybrid lighting (64x64)
hybrid lighting (32x32)
octree-based modification (64x64)
octree-based modification (32x32)

Fig. 19. Total number of light list elements averaged for all frames (Sponza

scene) depending on the total number of lights in a scene, for each tested
algorithm. The tile size, in pixels, is written in parentheses.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Number of lights in a scene ×106

0

1

2

3

4

5

6

Av
er
ag

e 
to
ta
l n

um
be

r o
f l
ig
ht
 li
st
 e
le
m
en

ts

×106

clustered shading (16x16)
clustered shading (32x32)
hybrid lighting (64x64)
hybrid lighting (32x32)
octree-based modification (64x64)
octree-based modification (32x32)

Fig. 20. Total number of light list elements averaged for all frames (Rungholt

scene) depending on the total number of lights in a scene, for each tested
algorithm. The tile size, in pixels, is written in parentheses.

ANDRZEJ LAMECKI ET AL.: HIERARCHICAL DATA STRUCTURES IN RENDERING SCENES CONTAINING A MASSIVE NUMBER OF LIGHT SOURCES 543



is to adapt this method so that one light is processed entirely

by a single thread.

Another modification that could result in shorter rendering

times is to replace the sparse octree representation with full

three-dimensional arrays, each representing one octree level.

This modification would make it possible to read information

about any node, without the necessity of tracing a path from

the octree’s root.

Another aspect of rendering scenes with many lights is

accounting for multiple shadow sources. Shadow rendering

poses a serious challenge, especially in the presence of many

light sources, as both the rendering times [16] and shadow

quality [17] have to be considered.

REFERENCES

[1] M. McGuire, “Computer graphics archive,” July 2017. [Online].
Available: https://casual-effects.com/data

[2] A. Lauritzen, “Deferred rendering for current and future rendering
pipelines,” SIGGRAPH Course: Beyond Programmable Shading, pp. 1–
34, 2010.

[3] O. Olsson, E. Persson, and M. Billeter, “Real-time many-light manage-
ment and shadows with clustered shading,” in ACM SIGGRAPH 2015

Courses, 2015, pp. 1–398.
[4] O. Olsson and U. Assarsson, “Tiled shading,” Journal of Graphics, vol.

GPU, pp. 235–251, 11 2011.
[5] T. Harada, “A 2.5 d culling for forward+,” in SIGGRAPH Asia 2012

Technical Briefs, 2012, pp. 1–4.
[6] O. Olsson, M. Billeter, and U. Assarsson, “Clustered deferred and

forward shading,” in Proceedings of the Fourth ACM SIGGRAPH/Euro-

graphics conference on High-Performance Graphics. Citeseer, 2012,
pp. 87–96.

[7] J. Archer, G. Leach, P. Knowles, and R. van Schyndel, “Hybrid lighting
for faster rendering of scenes with many lights,” The Visual Computer,
vol. 34, no. 6, pp. 853–862, 2018.

[8] J. Dupuy, J.-C. Iehl, and P. Poulin, Quadtrees on the GPU, 10 2018, pp.
211–222.

[9] D. Wehr and R. Radkowski, “Parallel kd-tree construction on the gpu
with an adaptive split and sort strategy,” International Journal of Parallel

Programming, vol. 46, no. 6, pp. 1139–1156, 2018.
[10] J. R. Jørgensen, K. Scheel, and I. Assent, “Gpu-inscy: A gpu-parallel

algorithm and tree structure for efficient density-based subspace cluster-
ing.” in EDBT, 2021, pp. 25–36.

[11] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann, “Interactive
indirect illumination using voxel cone tracing,” in Computer Graphics

Forum, vol. 30, no. 7. Wiley Online Library, 2011, pp. 1921–1930.
[12] Y. O’Donnell and M. G. Chajdas, “Tiled light trees,” in Proceedings of

the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games, 2017, pp. 1–7.
[13] Microsoft, “Direct3d 11 website,” 2022. [Online].

Available: https://docs.microsoft.com/en-us/windows/win32/direct3d11/
atoc-dx-graphics-direct3d-11

[14] NVIDIA Corporation, “Cuda toolkit website,” 2022. [Online]. Available:
https://developer.nvidia.com/cuda-toolkit

[15] J. Burkardt, “The truncated normal distribution,” Department of Scien-

tific Computing Website, Florida State University, pp. 1–35, 2014.
[16] O. Olsson, E. Sintorn, V. Kämpe, M. Billeter, and U. Assarsson,

“Efficient virtual shadow maps for many lights,” in Proceedings of

the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive

3D Graphics and Games, ser. I3D ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 87–96. [Online].
Available: https://doi.org/10.1145/2556700.2556701

[17] K. Kluczek, “Quality metric for shadow rendering,” in 2016 Federated

Conference on Computer Science and Information Systems (FedCSIS).
IEEE, 2016, pp. 791–796.

544 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022


