
Abstract4A common problem when using real  data is  the

fact that the values usually exhibit some degree of uncertainty.

Measurement  uncertainties  therefore  represent  a  major

challenge when trying to interpret and draw conclusions from

real  data.  This  is  especially  true  in  on-site  analysis  in  the

environmental  sector  where  the  uncertainty  in  sample  plays

such a large role. An approach for the modelling and analyze of

data  for  polluted  water  and  the  inclusion  of  measurement

uncertainties  is  presented.  This  approach  is  based  on  fuzzy

modelling,  in  which  the  uncertainty  of  the  parameters  is

represented  by  so-called  fuzzy  numbers  and  thus  reflect  a

possible blurred range of these parameter values. The result is

a  fuzzy  pattern  classifier,  which  allows  a  fuzzy  and  thus

realistic  characterization  of  unknown  water  samples.  The

procedure  is  exemplified  using  the  extinction  spectra  taken

using a UV/Vis spectrometer.

I. INTRODUCTION

HE conservation  of  water  resources  and  the  need  to
continuously  monitor  the  quality  of  these  water

resources (e.g., in watercourses, wastewater, bathing lakes,
etc.)  is  of  increasing  importance  nowadays.  The
determination of sufficient characteristic values to describe
the  water  quality  and  the  subsequent  characterization
represent a significant challenge. Various parameters play an
important  role  in  this.  Polycyclic  aromatic  hydrocarbons
(PAHs) such as benzene or naphthalene are a priority sub-
stance  in  water  policy.  In  addition,  other  significant
indicators  may  be  relevant  for  the  determination  of
pollutants. [1] These substances can be determined using a
variety of standardized analytical methods. However, many
methods  have  limitations,  particularly  when  investigating
very  low  concentrations  in  water.  In  addition,  these
measurement  methods  are  traditionally  performed  in  the
laboratory mostly after water sampling at different locations
at  different  times.  These  approaches  are  no  longer
considered  efficient  [234].  To  detect  and  analyze  the
formation  of  pollutants  directly  at  the  source,  an  on-site
sensor  system  is  required.  Continuous  and  unbiased
measurements of this type can then be used for the optimal
control and verification of water quality. For this reason, the
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Helmholtz  Centre  for  Environmental  Research  (UFZ)  is
working  on  an experimental  setup that  can  analyze  water
samples directly on-site using ultraviolet (UV) / visible (Vis)
spectroscopy.  Each  sensor-based  measurement  has  an
objective  uncertainty,  which  essentially  depends  on  the
measuring  method  and  instrument.  For  example,  for
measuring instruments this uncertainty can be specified by
an accuracy or error class according to DIN 1319-2, DIN
1319-3.  Unstable  operating  conditions  which  occur
especially in the environmental sector, and here with mobile
on-site  analysis,  lead  to  additional  uncertainties.  For
instance, seasonal changes in temperature and humidity may
also contribute to the uncertainty of a measurement.

One  of  the  advantages  of  using  fuzzy  classification
methods is that such uncertainties can be characterized. The
assignment to a pollutant substance is not crisply defined but
is categorized according to a grade of membership.  These
are in the range between zero and one. The underlying fuzzy
is based on a theory published by Zadeh in 1965 [5] and
since then, it has been used and further developed in many
areas, current such as the selection process for outsourcing
users [6]  or for  the description of transportation problems
through the extension of fuzzy sets [7]. The basic idea is to
extend  the  classic  binary  classification,  in  this  case  the
pollutant is present or not, to allow a gradual change. In our
case, this allows the model to output that the pollutant may
be present and further analysis is necessary. This is shown
by the membership function to a fuzzy set. Such fuzzy forms
of  description,  in  which  the  crisp  values  are  included  as
special  cases,  represent  a  new  optimized  meaning  in  the
characterization of water quality. They have the advantages
of greater flexibility and proximity to reality compared to the
crisp forms of description, and moreover allow the adequate
implementation of expert knowledge.

The  procedure  is  demonstrated  using  the  measurement
data of water samples recorded by a UV/Vis test setup. The
characteristic  properties  of  different  water  samples  (here
measured in the form of extinction spectra) with different
substance concentrations are to be derived from the data in a
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so-called learning phase and to be used to model a fuzzy 

pattern classifier. With this classifier, a statement is to be 

made as to whether a certain substance is present with 

uncertainty, present or present with a certain degree of 

certainty. If a substance is not present, the membership of 

these three classes will be zero. This serves as the basis for a 

fuzzy and, thus, realistic characterization of current 

(unknown) water samples in the next working phase. 

Depending on the results, recommendations for action can be 

made afterwards. 

II. METHODICAL BASICS 

A. The UV/Vis measuring setup 

The measuring device used is a UV/Vis measuring setup. 

UV/Vis spectroscopy uses electromagnetic radiation to 

detect substances in water. In the case of pollutants in water, 

for example, part of the radiation is absorbed by the 

pollutants. This can be seen in the absorption/extinction 

spectrum by comparing the measurement to a blank 

measurement. By means of the absorbed wavelength and the 

level of absorption, the type and concentration level of the 

substance can be concluded. The experimental setup was 

realized at the UFZ Leipzig and will be integrated into a 

mobile submersible probe for future on-site data acquisition. 

The setup consists of a UV/Vis light source with a deuterium 

and a tungsten lamp, a measuring cell, and a spectrometer. 

The connection of the three components is used via optical 

fibers. The measuring cell consists of two collimator 

adapters with optical windows, a stainless-steel flow cell and 

two 90° collimators each. The cuvette containing the 

dissolved sample substance can be inserted into the flow cell. 

The control and data acquisition of the measurement setup 

are carried out on a laptop using Python software, which 

automatically compares the measured data with a 

prerecorded blank spectrum to create an extinction spectrum 

from the two transmission spectra according to the Beer-

Lambert law. Measurement uncertainties already arise during 

the testing in the laboratory, e. g. from the lamp due to 

fluctuations in energy supply or due to the noise caused by 

the spectrometer. For later mobile use, the results can also be 

affected by e. g. temperature or humidity. Which would be 

reflected in the noise behavior of the spectra, or it can lead to 

a rise in the baseline. 

 

B. Fundamentals of the Fuzzy Pattern Classification  

The fuzzy system used here is based on the fuzzy pattern 

classifier introduced by Bocklisch [8]. This methodology is 

widely used in pattern recognition for object classification. 

Here, a set of fuzzy membership functions ¿: x ³ [0, 1] are 
created per class, which model characteristic features of this 

class.  Through the membership functions, the feature values 

x * IR of an object can be mapped to the unit interval, which 

represents the membership to a feature of an ideal class 

member. All the memberships are then merged and classified 

into the appropriate classes. Then the object is assigned to 

the class that has the highest aggregated value.  This 

procedure is already used in many areas such as in signal 

processing applications and automation systems [9, 10] or in 

the field of neuronal statements and medical diagnostic 

reasoning [11, 12]. In addition, this fuzzy modeling is also 

used for data-inherent structures [13] or for online 

recognition of fuzzy time series patterns [14].  

 

The exact procedure is divided into a learning phase and 

a working phase. In the learning phase, a fuzzy classification 

model is constructed in a multidimensional feature space. 

This can be achieved by choosing between a data-driven or 

expert-based approach. In the data-driven procedure, several 

measurement runs are performed for predefined prototypical 

dilution series. First, the recorded object data sets (learning 

data) are divided into crisp groups. Two strategies are 

possible: 

1) A cluster analysis (e.g., hierarchically agglomerative) is 

performed for the object data. This is a mathematical 

method, which creates corresponding groups through the 

accumulation of certain similar objects (in the sense of a 

small distance measure) as a result. 

2) An a priori division of the objects into groups based on 

expert knowledge is carried out. This can be done by 

dividing the objects, here e.g., dividing the extinction 

maxima according to before or above the detection limit. 

Subsequently, these crisp groups are transferred to fuzzy 

groups. The description of each group in the one- or multi-

dimensional feature space is achieved here by a highly 

flexible, parametric membership function of the 

AIZERMAN potential function type. This function is 

described and illustrated in simplified form for the 

symmetrical one-dimensional case (Fig. 1). 

 

        (1) 

 

 

Fig.  1 One-dimensional AIZERMAN                                                 

potential function [4] 

 

Meaning of the parameters (see also Fig. 1):  

÷ Local information u0 (crisp): representative of the 

fuzzy quantity (special case) 
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÷ Broadening c (to the left and right side of u0): 

precisely observed range 

÷ Border membership b ÷ [0,1]: determines the 

membership values at the borders of the strictly 

area 

÷ Maximum value of membership a (usually 

normalized with a = 1) 

÷ d describes the continuously decreasing course of 

the membership function (d ð >: crisp (binary) 

description) 

 

The potential function can be used to describe both one-

sided open intervals and closed intervals in a fuzzy way. In 

addition, the differentiation of the left and right-sided branch 

increases the adaptability. In the multivariate case, the 

characteristic dimension of the membership function is 

expanded accordingly, whereby each group can be 

represented by an analytically closed membership function. 

By using a closed analytical membership function to describe 

each group in the one- or multi-dimensional feature space, 

the method used here also differs from the rule-based fuzzy 

logic [15]. In a data-driven procedure, the parameters are 

calculated automatically from the recorded (learning) data 

sets by means of supervised learning [8]. 

The abovenamed AIZERMAN potential function may be 

applied to each axis of a multidimensional space. Thus, even 

information about high-dimensional groups can be described 

efficiently by a few parameters. A further advantage of the 

AIZERMAN potential function approach is that trapezoidal 

and triangular attribution functions as well as the so-called 

fuzzy singletons (crisp description as a special case of fuzzy 

case) can be converted into such a uniform description form, 

thus enabling a highly flexible and universal application with 

the possibility of modelling. 

As an alternative to this data-driven approach, the 

parameters can be determined by expert knowledge, i. e for 

each of the characteristics fuzzy areas are defined manually 

and the fuzzy groups are then formed. This approach is 

typically used for linguisdetertic characteristics. Their values 

are not exactly defined, but colloquially defined by certain 

expressions (e. g. <small=, <medium=, <large=). 
In the working phase, the classification model (Fuzzy 

Pattern Classifier) created in the learning phase is used for 

fuzzy identification of the current water sample (rep-resented 

by corresponding working data). The result is an 

membership or sympathy vector, whose components indicate 

the memberships to all declared classes. The current water 

status can be determined in a precise way from the maximum 

attribution values. The security (or risk) of this decision can 

be determined by the differences in the membership values. 

 

III. RESEARCH RESULTS AND DISCUSSION 

A. Structure of the data base 

Several dilution series with different concentrations of 

benzene, naphthalene, uranine and rhodamine B were 

prepared for the compilation of different data sets. By means 

of the measurement setup, extinction spectra were recorded 

for each substance at different concentrations (see Fig. 2). 

 

 
 

 

 

 

Fig.  2 Concentration-dependent extinction spectra of (a) benzene, (b) 

naphthalene, (c) uranine and (d) rhodamine B 

Each substance was subjected to several measurement 

runs. Table 1 presents the selected dilution samples or 
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their respective datasets and explains the abbreviations 

contained therein. The classification into this groups is 

based on the limit of detection or limit of quantification 

of the recorded data and is used for the subsequent 

classification into sharp classes. 

 

TABLE I. 

WATER SAMPLES USED WITH ABBREVIATED TITLE  

Short description 
Description of the samples with 

classification into the different existing 

classes 

BUP Benzene is unsurely present 

BP Benzene is present  

BSP Benzene is surely present  

NUP Naphthalene is unsurely present 

NP Naphthalene is present  

NSP Naphthalene is surely present  

UUP Uranine is unsurely present 

UP Uranine is present  

USP Uranine is surely present  

RUP Rhodamine B is unsurely present 

RP Rhodamine B is present  

RSP Rhodamine B is surely present  

 

The extinction spectra of each compound were first 

described mathematically with an algorithm. For the 

mathematical description, several Gaussian functions were 

added to a total function and the parameters were each 

adapted to a spectrum of a substance. This characteristic 

overall function is then overlayed on all spectra and fitted to 

the spectra using the method of least squares. The R-squared 

is calculated. As the overall function is characteristic for 

each substance, the R-squared basically indicates the 

probability with which a certain substance is present. The 

extinction maximum gives a statement about the 

concentration content of the substance. These data were then 

stored in an overall dataset. Subsequently, the data sets were 

selected on a random basis and then divided into so-called 

learning and work data (see Section 2.1). The R-squared and 

extinction maxima were stored in an object file (.OTX). Fig. 

3 shows a section of the created object file. This consists of a 

header with the necessary information about the data and 

then lists the object number, the corresponding class (here 

the assignment to the respective water sample) and the 

measured values for each of the two characteristics. 

 

 

Fig.  3 Extract of learning data in OTX format 

 

B. Classifier Development 

In the learning phase, a fuzzy classification model was 

first constructed in the two-dimensional characteristic space. 

The data-driven approach was combined with an expert-

based approach by dividing the learning data into sharp 

groups and then building up the fuzzy pattern classifiers. A 

priori grouping is used to divide the learning data into crisp 

groups (see Fig. 4). 

 

Fig.  4 Object distribution of data according to a priori grouping 

  The parameters for the fuzzy pattern classifier were 

transferred from crisp groups to fuzzy ones based on the 

parametric belonging function. For each characteristic of 

an object the membership function was described with 

the parameter values. Here, c is the elementary 

uncertainty of the objects and can be regarded as the 

measurement uncertainty of the respective measured 

values. Subsequently, the objects are first unified in one-

dimensional sets and then transformed into 

multidimensional fuzzy pattern classes (in this case two-

dimensional) using an N-fold compensatory Hamacher 

intersection operator [16]: 

    

 

(2) 

 

 Here n describes the total numbers of dimensions and i 

present the index of the basis functions. If this is applied to 

all sets, the result is 12 classes in the two-dimensional 

feature space. (See Fig. 5). 
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Fig.  5 Result of the classifier development

For  this  fuzzy  pattern  classifier,  only  the  measured
concentrations  were  considered.  To ensure  that  very  high
concentrations  can  also  be  automatically  included  in  the
evaluation,  the  fuzzy  pattern  classifier  was  adapted  using
expert  knowledge.  The  expert-based  procedure  offers  a
supplement  to  the  data-driven  approach,  with  which  an
adaptation of the constructed classifier can be carried out.
Since  no  very  high  concentrations  were  measured  in  the
present test runs, but it is known from Beer-Lambert's law
that these also increase with increasing extinction maxima,
the respective classes were enlarged in the direction of the
feature "extinction maxima" (see Fig. 6).

Fig.  6 Expert-based adaptation of the built classifier

In the working phase, the classification model created in
this way was used for the fuzzy identification of the current
water  samples.  The  work  data  are  represented  here  by
<artificial= work data, since they were generated by means
of the original learning data set. This means that the total
function  was  again  overlayed  on  the  spectra  and  the  R-
squared and the extinction maximum were determined. For a
given  substance  or  mixture  of  substances  with  the

corresponding  characteristic  values  for  R-squared  and
extinction maxima, a characterization can now be carried out
by  determining  the  membership  to  the  fuzzy  groups
described by the fuzzy pattern classifier. The selection of the
group  can  typically  be  made  according  to  the  highest
membership value. As an example, this is demonstrated for a
total  of  six  water  samples  or  their  object  data  sets,  see
Table 2 and Fig. 7.

Fig.  7 Graphical representations of the assignment of test data

In Table 2, the largest value has been marked to illustrate
the  accuracy  of  the  possible  assignment.  A  partial
superimposition  of  classes  does  not  always  allow a  clear
assignment. Nevertheless, interpretations can be made based
on the calculated class membership.

Point  1  is  only  assigned  to  BUP  with  a  very  low
membership value, which already indicates that benzene can
only be present  here with uncertainty.  It  can therefore be
assumed that benzene is hardly present in this measurement.
Point 2 is clearly assigned to BP with a value above 0.75.
Point  6  is  also  clearly  assigned  to  classes  RP  and  RSP.
Therefore,  it  can  be  concluded that  benzene is  present  at
point 2 and that rhodamine B is present for sure at point 6.
At  point  3,  there  is  a  low  allocation  to  NP,  whereby  a
tendency towards NUP is also recognisable. This fact can be
explained  by  the  same  substance,  but  with  different
concentrations  of  these  two  substance  mixtures,  which  is
also  reflected  in  the  strong  superposition  of  the
corresponding classes. Here, the substance should be further
observed to see in which direction it develops. In the case of
points 4 and 5, both points are clearly allocated to a specific
class with point 4 belonging to UUP and point 5 belonging
to RUP. Since the concentrations here are very low, both are
assigned to the classes that represent an uncertain presence
of the respective substance.

IV. CONCLUSION

An approach to the characterization of water samples for
on-site  methods  using  fuzzy  classification  was  presented.
Measurement uncertainties during data acquisition and the
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associated fluctuations in the measured characteristic values
can be modelled much more flexibly and more realistically
than  with  conventional  methods  due  to  the  fuzzy  group
description.  The data  necessary  to  obtain the  membership
functions can be obtained both by real measurements and by
a linguistic description of different states by a human expert.
Alternatively, a combined approach is possible. In summary,
the  consideration  of  uncertainties  in  the  detection  and
evaluation of water samples is of great benefit. Firstly, the
data can be modelled in a much more flexible and realistic
manner  by  means  of  the  implementation  of  fuzzy
information.  Secondly,  data-based  and/or  expert-based
modelling  can  be  used  (applicability  to  numerical  or
linguistic  characteristics  including  mixed  combinations  of
characteristics)  which  also  offers  an  advantage  for  such
methods.  Finally,  the  modelling  of  states  with
fuzzy/incomplete description and the applicability to high-
dimensional characteristic spaces can be realized.

Overall,  the  presented  methodology  offers  a  suitable
approach for automatic classification of water sample data in
on-site  analysis.  Successful  field  deployments  for  future
applications  require  a  more  extensive  data  base  with  an
increased  number  of  characteristics  for  more  detailed
characterization of the water samples.
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