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Abstract—This contribution focuses on the most popular
scheme of reasoning in approximate reasoning, generalized
modus ponens. Also, we consider the case when the reasoning is
performed with one fuzzy rule. Usually, the compositional rule
of inference introduced by Zadeh is involved. However, it is also
common to use the Bandler-Kohout subproduct. We compare
these two rules showing by experimental results the conditions
when applying one of them is more appropriate. We concentrate
on an example of image transformation where applying a
different rule of inference gives a different conclusion. Moreover,
we point out some theoretical justifications for particular fuzzy
connectives used in both methods (fuzzy implication functions,
triangular norms and, in general, fuzzy conjunctions).

I. INTRODUCTION

W
HENEVER we have imprecise data but would like to
obtain meaningful results, we use methods called ap-

proximate reasoning. In this contribution, we analyse approx-
imate reasoning based on fuzzy sets regarding one scheme,
generalised modus ponens. For this scheme, we infer using
the following idea,

RULE: IF x is A, THEN y is B

FACT: x is A′

CONCLUSION: y is B′

where A,A′, B,B′ are fuzzy sets representing properties of
objects x and y. A and A′ are such that they are only slightly
different (in some subjective opinions and using this informal
language). It is why the conclusion expressed by a B′ should
also be "similar" to B to keep the intention of approximate
reasoning. In our investigations, we consider two rules of
inference:

• the Compositional Rule of Inference (CRI), see [1]

B′(y) := sup
x∈X

T (A′(x), I(A(x), B(y))), y ∈ Y,

(CRI)
• the Bandler-Kohout Subproduct (BKS), see [2]

B′(y) := inf
x∈X

I(A′(x), T (A(x), B(y))), y ∈ Y,

(BKS)

where T is a t-norm or a generalization of a conjunction and
I is a fuzzy implication. We analyse particular sample data in
order to show when (CRI) is better than (BKS) and vice versa.
It should be noted that various scientists study these two rules
of inference, see, e.g. [3], [4]. We focus on image processing

and show that using a different inference rule gives a distinct
conclusion, what is reflected in the output image. Our main
hypothesis is: if A and A′ are quite "similar", then B and
B′ will be more similar when B′ is obtained from (CRI).
However, if A and A′ are "different", then B and B′ will be
more similar when B′ will be calculated from (BKS).

The paper is organised as follows. Section 2 recalls some
necessary definitions and facts used in the sequel. In Section
3, we present some experimental results and state our conclu-
sions, observations, and verifications of hypothesises. Section
4 presents some theoretical results that partially justify our
assumptions.

II. PRELIMINARIES

First, let us introduce a symbol F(X) as a family of all
fuzzy sets on X . Let us start with recalling some standard
definitions and facts regarding t-norms and fuzzy implications.

Definition 2.1 (see [5], [6]): A function T : [0, 1]2 → [0, 1]
is called a triangular norm (t-norm in short), if it satisfies the
following conditions for all x, y, z ∈ [0, 1]

(T1) T (x, y) = T (y, x),
(T2) T (x, T (y, z)) = T (T (x, y), z),
(T3) T (x, y) ≤ T (x, z) for y ≤ z, i.e., T (x, ·) is non-

decreasing,
(T4) T (x, 1) = x.

Theorem 2.2 (see [6, Theorem 5.1]): For a function
T : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) T is a continuous Archimedean t-norm.
(ii) T has a continuous additive generator, i.e., there exists

a continuous, strictly decreasing function f : [0, 1] →
[0,∞] with f(1) = 0 such that

T (x, y) = f−1 (min{f(x) + f(y), f(0)}) , x, y ∈ [0, 1].

Moreover, such a representation is unique up to a
positive multiplicative constant.

We will need the following characterization of convex
functions.

Theorem 2.3 (see [7, Theorems 7.3.2 and 7.3.3]): If a
function f : [0, 1] → R is continuous, then the following
statements are equivalent:

(i) f is convex.
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(ii) For all x, y ∈ [0, 1] such that y ≤ x and all ε > 0 such
that x+ ε, y + ε ∈ [0, 1] it holds

f(y + ε)− f(y) ≤ f(x+ ε)− f(x). (1)

In our investigations we also use fuzzy implication func-
tions.

Definition 2.4 (see [5], [8]): A function I : [0, 1]2 → [0, 1]
is called a fuzzy implication, if it satisfies the following
conditions:

(I1) I is non-increasing with respect to the first variable,
(I2) I is non-decreasing with respect to the second vari-

able,
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Definition 2.5 (see [8]): We say that a fuzzy implication I

satisfies

(i) the identity principle, if

I(x, x) = 1, x ∈ [0, 1], (IP)

(ii) the left neutrality property, if

I(1, y) = y, y ∈ [0, 1], (NP)

(iii) the ordering property, if

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

Definition 2.6 (see [8, Definition 2.5.1]): A function
I : [0, 1]2 → [0, 1] is called an R-implication if there exists
a t-norm T such that

I(x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y}, x, y ∈ [0, 1].
(2)

If I is generated from a t-norm T , then it will be denoted by
IT .

For R-implications generated from left continuous t-norms
we have the following characterization.

Theorem 2.7 (cf. [8, Proposition 2.5.2]): For a t-norm T the
following statements are equivalent:

(i) T is left-continuous.
(ii) A pair (T, IT ) satisfies the following residual principle

T (x, z) ≤ y ⇐⇒ IT (x, y) ≥ z, x, y, z ∈ [0, 1],
(RP)

(iii) The supremum in the formula (2) is the maximum, i.e.,

IT (x, y) = max{t ∈ [0, 1] | T (x, t) ≤ y}, x, y ∈ [0, 1].
(3)

Theorem 2.8 (see [8, Theorem 2.5.21]): If T is a continuous
Archimedean t-norm with the additive generator f as given in
Theorem 2.2, then

IT (x, y) = f−1(max{f(y)− f(x), 0}), x, y ∈ [0, 1]. (4)

III. EXPERIMENTAL RESULTS

Here, as we mentioned in the Introduction, we will consider
the case when our set of fuzzy rules contains only one rule.
Therefore the inference process will proceed exactly according
to (CRI) and (BKS). Let us take two different rules that
concern the same topic. In both cases we will use (CRI) and
(BKS) and we will compare our results.

In this matter, we would like to compare fuzzy sets A ∈
F(X) and B ∈ F(Y ). It is important to show that dependen-
cies between them have an influence on a choice of the rule
of inference (CRI) or (BKS). Keeping in mind X 6= Y , we
cannot calculate the standard similarity measure. However, we
will use this notion to construct a function which compares A

and B. Throughout literature we may find different properties
of similarity measures and in a consequence different sets of
axioms (see [9]–[12]). Let us mention some of them which
can be considered here. Let S : F(X)

2 → [0, 1].

(P1) S(X, ∅) = 0, S(A,A) = 1, A ∈ F(X),
(P2) S(A,B) = S(B,A), A,B ∈ F(X),
(P3) S(A,B) = S(Aσ, Bσ), A,B ∈ F(X), where if

A = [a1, . . . , an], B = [b1, . . . , bn] then Aσ =
[aσ(1), . . . , aσ(n)], Bσ = [bσ(1), . . . , bσ(n)] and σ ∈
Sn (is a permutation of {1, . . . , n}).

Let us take the following two well-known similarity mea-
sures (see [9] and [12]),

M1(A,B) =

{

1, A = B = ∅,
∑

n

i=1 min{A(ai),B(bi)}∑
n

i=1 max{A(ai),B(bi)}
, otherwise,

and

M2(A,B) = AMn
i=1(1− |ai − bi|), A,B ∈ F(X),

where AM is the arithmetic mean.
For comparing sets A ∈ F(X), B ∈ F(Y ) we will
assume that |X| = |Y | = n and take the following function
N1, N

1, N2, N
2 : F(X)×F(Y ) → [0, 1].

N1(A,B) =







1, A = B = ∅,

min
σ,τ∈Sn

∑
n

i=1 min{A(aσ(i)),B(bτ(i))}∑
n

i=1 max{A(aσ(i)),B(bτ(i))}
, otherwise,

N1(A,B) =







1, A = B = ∅,

max
σ,τ∈Sn

∑
n

i=1 min{A(aσ(i)),B(bτ(i))}∑
n

i=1 max{A(aσ(i)),B(bτ(i))}
, otherwise,

N2(A,B) = min
σ,τ∈Sn

AMn
i=1(1− |aσ(i) − bτ(i)|),

N2(A,B) = max
σ,τ∈Sn

AMn
i=1(1− |aσ(i) − bτ(i)|),

where A ∈ F(X), B ∈ F(Y ). For these functions we see that
for instance G(X, ∅) = 0 = G(∅, Y ) and G(A,A) = 1, where
A = [x1, . . . , xn] = [y1, . . . , yn] and G ∈ {N1, N

1, N2, N
2}.

Symmetry cannot be checked because of the domain (which
is not symmetric, however if we take a function defined on a
domain F(Y )×F(X), then of course values will be equal).
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Now let us consider two examples which can show the
guidelines for the choice between (CRI) and (BKS). First,
let us mention that our motivation for this work is the
comparison of two different images which were obtained as
the conclusions from (CRI) (Fig. 2) and (BKS) (Fig. 3) - each
pixel was considered as an input with one fuzzy rule used in
the inference process (see [13]).

Fig. 1. The original image.

Fig. 2. Image obtained with (CRI).

In the following examples we used NumPy and Matplotlib
libraries for Python (see [14], [15]). Also we have applied two
pairs of (T, I):

1) (TP, IGG), where TP(x, y) = xy and

IGG(x, y) = ITP
(x, y) =

{

1, x ≤ y,
y
x
, x > y,

Fig. 3. Image obtained with (BKS).

2) (TLK, ILK), where TLK(x, y) = max{0, x+y−1} and
ILK(x, y) = ITLK

(x, y) = min{1, 1− x+ y}.

In both these cases, we have left-continuous t-norms and R-
implications generated by corresponding t-norms.

Example 3.1: This example is directly connected with the
transformations of Fig. 1 which are presented above. However,
because of the quite big size of the original image, we analyse
the one consisting of small parts of it (Fig. 4). It contains
different colours visible in the Fig. 1 and it has 1456 pixels.

Fig. 4. Image made of pieces of the Fig. 1.

The first rule which is used by us is the following:

If an input pixel is then an output pixel is

It means: if the pixel has values [246, 246, 81], then the
output pixel has values [206, 249, 88]. Then for fuzzy sets
A,B representing these values of pixels (which in general
can be from the different universes) we have N1(A,B) =
0.915, N1(A,B) = 0.506, N2(A,B) = 0.935, N2(A,B) =
0.522, so in all cases similarity is rather high. Now let us see
how the similarity of A and A′ looks like compared with the
one of B and B′. The results are given in the following charts.
To make the plots more clear we have drawn them for every
second pixel from the Fig. 4.
We can see that regardless what similarity measure is used, the
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similarity of B&B′ is directly proportional to the similarity
of A&A′ for the rule (CRI) (Fig. 5, 6, 9, 10). However in
the case of (BKS) the situation is not as clear as before (see
Fig. 7, 8, 11, 12). Nevertheless, we might say that for many
input data the similarity of B&B′ is inversely proportional,
in particular to data where similarity of A&A′ is greater than
0.5. These conclusions can be also confirmed by the linear
regression (in magenta).

Fig. 5. Dependence between similarities calculated with M1 for (CRI) and
(TP, IGG), 1st rule.

Fig. 6. Dependence between similarities calculated with M2(CRI) and
(TP, IGG), 1st rule.

Example 3.2: Here we consider the same Fig. 4, the same
pairs (TP, IGG), (TLK, ILK) but we have another rule (we
call it the 2nd rule):

If an input pixel is then an output pixel is

It means: if the pixel has values [246, 246, 81], then the out-
put pixel has values [128, 42, 239]. Hence, for fuzzy sets A,B
we have N1(A,B) = 0.714, N1(A,B) = 0.346, N2(A,B) =
0.785, N2(A,B) = 0.372, so in all cases similarity is lower
than in Example 3.1. Now let us compare obtained similarities
as we did before. On Figures 13, 14, 17, 18 we can see that
values of similarities are still directly proportional. Simulta-
neously, we might say that for most of data obtained from
BKS the similarity of B&B′ is inversely proportional to the

Fig. 7. Dependence between similarities calculated with M1 (BKS) and
(TP, IGG), 1st rule.

Fig. 8. Dependence between similarities calculated with M2 (BKS) and
(TP, IGG), 1st rule.

Fig. 9. Dependence between similarities calculated with M1 for (CRI) and
(TLK, ILK), 1st rule.
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Fig. 10. Dependence between similarities calculated with M2(CRI) and
(TLK, ILK), 1st rule.

Fig. 11. Dependence between similarities calculated with M1 (BKS) and
(TLK, ILK), 1st rule.

Fig. 12. Dependence between similarities calculated with M2 (BKS) and
(TLK, ILK), 1st rule.

similarities of A&A′ (Fig. 15, 16, 19). Here the exception is
only Figure 20, where we cannot say that.

Fig. 13. Dependence between similarities calculated with M1 for (CRI) and
(TP, IGG), 2nd rule.

Fig. 14. Dependence between similarities calculated with M2(CRI) and
(TP, IGG), 2nd rule.

Fig. 15. Dependence between similarities calculated with M1 (BKS) and
(TP, IGG), 2nd rule.

After these examples we state the following observations,
which are not what we expected at the beginning.

Hypothesis 1: The more A and B are similar, the more B

and B′ are similar for (CRI).
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Fig. 16. Dependence between similarities calculated with M2 (BKS) and
(TP, IGG), 2nd rule.

Fig. 17. Dependence between similarities calculated with M1 for (CRI) and
(TLK, ILK), 2nd rule.

Fig. 18. Dependence between similarities calculated with M2(CRI) and
(TLK, ILK), 2nd rule.

Fig. 19. Dependence between similarities calculated with M1 (BKS) and
(TLK, ILK), 2nd rule.

Fig. 20. Dependence between similarities calculated with M2 (BKS) and
(TLK, ILK), 2nd rule.

Hypothesis 2: The less A and B are similar, the more B

and B′ are similar for (BKS).
It turned out, it is not entirely true. Hence, our observation

and conclusion are as follows.
Observation 1: Let A,A′ ∈ F(X), B,B′ ∈ F(Y ).

(i) The similarity of B and B′ is directly proportional to
the similarity of A and A′ for the rule (CRI).

(ii) The similarity of B and B′ is not always proportional
to the similarity of A and A′ for the rule (BKS).

(iii) The similarity of B and B′ is usually inversely propor-
tional to the similarity of A and A′ for the rule (BKS).

IV. THEORETICAL PART

In this section, we want to justify the point (i) from
Observation 1.

Let us consider the case of R-implications generated from
left-continuous t-norms. First of all let us recall that such pairs
(T, IT ), where T is a left-continuous t-norm, satisfy

y = sup
x∈[0,1]

T (x, I(x, y)), y ∈ [0, 1], (CRI-GMP)

which can be seen as a generalization of the property of the
interpolativity (see [13]).
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Let us focus on the formula (CRI). Our initial assumption is
A and A′ express the fact there is small difference between
some property of an object x.
Let us suppose that |X| = |Y | = n, n ∈ N, n > 1 and let us
denote A = [x1, . . . , xn], A

′ = [x′
1, . . . , x

′
n], B = [y1, . . . , yn]

and let

εi = |xi − yi|, i = 1, . . . , n,

δi = |xi − x′
i|, i = 1, . . . , n.

Also suppose that if A and B are ’similar’, then |xi − yj | ≥
εi, i 6= j.

We will show that the following inequality holds for any
Archimedean continuous t-norm T with a convex generator f
(t-norms used for the experiments have convex generators),

yi + c ≤ T (x′
i, IT (xi, yi)) ≤ yi + a,

for a ∈ {−εi − δi, 0,−εi + δi}, c ∈ {−εi − δi,−δi,−εi + δi}
and xi such that xi − εi − δi ≥ 0, i = 1, . . . , n.
Firstly, let us consider the case δi = xi − x′

i.
1) if xi ≤ yi, then we have

T (xi − δi, IT (xi, yi)) = T (xi − δi, 1)

= xi − δi

= yi − εi − δi,

and

yi − εi − δi = xi − δi ≤ T (xi − δi, IT (xi, yi)).

2) if xi > yi, then

T (xi − δi, IT (xi, yi)) ≤ yi ⇐⇒

IT (xi − δi, IT (xi, yi)) ≥ IT (xi, yi),

which is true from the (RP) and the monotonicity of
IT . Now we will show yi − δi ≤ T (xi − δi, IT (xi, yi)).
Let us recall inequality (1), which can rewritten in the
following way

f(y + ε) + f(x) ≤ f(x+ ε) + f(y), where y ≤ x.

This can be applied here as

f(xi − δi) + f(xi − εi) ≤ f(xi) + f(xi − εi − δi),

where x := xi− εi, ε = εi, y := xi− εi− δi. The above
inequality is equivalent to

f(xi − δi) + f(xi − εi)− f(xi) ≤ f(xi − εi − δi)

⇐⇒

f−1(f(xi − δi) + f(xi − εi)− f(xi)) ≥ xi − εi − δi

Note that xi − εi − δi ≥ 0, so

f(xi − δi) + f(xi − εi)− f(xi) ≤ f(0)

and

min{f(0), f(xi − δi) + f(xi − εi)− f(xi)}

= f(xi − δi) + f(xi − εi)− f(xi),

so further we may write

T (xi − δi, f
−1(f(xi − εi)− f(xi))) ≥ xi − εi − δi

⇐⇒

T (xi − δi, IT (xi, xi − εi)) ≥ xi − εi − δi

Now, let x′
i > xi, so δi = x′

i − xi.
1) if xi ≤ yi, then we have

T (x′
i, IT (xi, yi)) = x′

i = yi + δi − εi.

2) if xi > yi, then we have

T (x′
i, IT (xi, yi)) = T (x′

i, IT (x
′
i − δi, x

′
i − δi − εi))

≤ x′
i,

which, by (RP), is equivalent to

1 = IT (x
′
i, x

′
i) ≥ IT (xi − δi, x

′
i − δ − εi)

and
T (x′

i, IT (xi, yi)) ≤ x′
i = yi − εi + δi.

Moreover,

xi + δi − εi ≤ T (x′
i, IT (xi, yi)).

Indeed, again using the property of convex continuous
function from (1) we have

f(x+ ε) + f(y) ≥ f(x) + f(y + ε),

and applying it for the generator f of a t-norm T we
obtain

f(xi+2δi)+ f(xi− εi− δi) ≥ f(xi+ δi)+ f(xi− εi),

for such substitutions:
x := xi + δi,
y := xi − εi − δi,
ε := δi.
Next, from the fact f is strictly decreasing we may write
f(xi)+ f(xi− εi− δi) ≥ f(xi+2δi)+ f(xi− εi− δi).
Therefore we have

f(xi − δi − εi) + f(xi) ≥ f(xi + δi) + f(xi − εi),

that is equivalent to

f(xi − δi − εi) ≥ f(xi + δi) + f(xi − εi)− f(xi)

⇐⇒

xi − δi − εi ≤ f−1(f(xi + δi) + f(xi − εi)− f(xi))

⇐⇒

xi − δi − εi ≤ T (xi + δi, f
−1(f(xi − εi)− f(xi)))

⇐⇒

xi − δi − εi ≤ T (xi + δi, IT (xi, xi − εi))

⇐⇒

yi − δi ≤ T (x′
i, IT (xi, yi))

Here again, we used the fact that

f(xi+δi)+f(xi−εi)−f(xi) ≤ f(xi−δi−εi) ≤ f(0).
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The conclusion is the following: for inferred B′ =
[y′1, . . . , y

′
n] values of y′i for i ∈ {1, . . . , n} are in the neigh-

bourhood of yi and if εi, δi approach 0, y′i also approaches yi
and in the consequence value of the similarity measure of B

and B′ is close to 1.

V. CONCLUSIONS

In this contribution, we have compared two rules of infer-
ence, the Compositional Rule of Inference and the Bandler-
Kohout Subproduct. Our goal was to investigate some depen-
dencies between input and output. Our observations are the
following. The similarity of B and B′ is directly proportional
to the similarity of A and A′ for the rule (CRI). The similarity
of B and B′ is not always proportional to the similarity of A
and A′ for the rule (BKS). The similarity of B and B′ is
usually inversely proportional to the similarity of A and A′

for the rule (BKS), especially if the similarity of A and A′

(the antecedent and the input) is greater than 0, 5. In future
work, we want to study these methods deeply with more rules
and for different fuzzy logical operations classes.
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