
Distributed and Adaptive Edge-based AI Models for
Sensor Networks (DAISeN)

Veselka Boeva, Emiliano Casalicchio
Shahrooz Abghari

Ahmed A. Al-Saedi, Vishnu Manasa Devagiri
Computer Science Department, Blekinge Institute of Technology

SE-371 79 Karlskrona, Sweden
Email: {vbx, emc}@bth.se

Andrej Petef
Peter Exner, Anders Isberg, Mirza Jasarevic

Sony Europe BV
R&D Center Europe

Lund, Sweden
Email: andrej.petef@sony.com

Abstract—This position paper describes the aims and prelimi-
nary results of the Distributed and Adaptive Edge-based AI Models
for Sensor Networks (DAISeN)1 project. The project ambition is
to address today’s edge AI challenges by developing advanced
AI techniques that model knowledge from the sensor network
and the environment to support the deployment of sustainable
AI applications. We present one of the use cases being considered
in DAISeN and review the state-of-the-art in three research
domains related to the use case presented and directly falling into
the project scope. We additionally outline the main challenges
identified in each domain. The developed Global Navigation
Satellite Systems (GNSS) activation model addressing the use
case challenges is also briefly introduced. The future research
studies planned for the remaining period of the project are finally
outlined.

I. INTRODUCTION

T
HE NUMBER of solutions that provide Artificial In-
telligence (AI) and Machine Learning (ML) based sys-

tems has been growing recently. These solutions facilitate
the creation of new smart products and services in many
different fields. In addition, sensor networks are undergoing
great expansion and development and the integration of AI
and sensor networks benefits many areas such as Industry
4.0, healthcare, mobility, logistics, and many other Internet-
of-Things (IoT) applications. However, this has also put new
challenges in front of researchers and practitioners. New real-
time AI and ML algorithms are needed along with different
strategies to embed these algorithms in sensor boards and
network nodes such as fog/edge nodes. For example, edge-
based AI requires robust and adaptive models that take into
account the temporal component of a data flow and allow for
vertical and horizontal scaling of the decision-making process.
These models must employ efficient learning algorithms that
are capable of dealing with information varying over time
and coping with large scale missing and inaccurate values. In
addition, the decision-making models should be composable
so that they can be distributed on the edge devices in order to
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1Daisen is a volcanic mountain located in Tottori Prefecture, Sanin Region
of Japan.

ensure a trade-off between the decision accuracy, latency, and
consumed energy per decision.

The IoT is an emerging key technology for future industries
and the everyday lives of people, e.g., it has been playing an
increasingly important role in healthcare, agriculture, home
services, industrial processes, and transportation. Wireless
Sensor Network (WSN) is an enabling technology for IoT [1],
and, by definition, is the bridge between the physical world
and the intelligence residing on the Internet. The integration of
AI and sensor networks (by means of the IoT) are now realities
that are changing our lives. Sensor networks are widely used
to collect environmental parameters, e.g., in homes, buildings,
and vehicles, where they are used as a source of information
that aids the decision-making process and, in particular, it
allows systems to learn and monitor activity. Although there
are numerous advantages of sensor networks, it should be
mentioned that they also consume energy and contribute to
E-waste [2]. These place new stress on the environment and
the smart world.

According to the World Economic Forum (WEF)2, the IoT
is undoubtedly one of the largest enablers for responsible
digital transformation. WEF survey has outlined that more than
80% of IoT deployments are currently addressing, or have
the potential to address the Sustainable Development Goals
(SDGs)3 defined by the United Nations, for example, industry,
innovation, and infrastructure; smart cities and communities;
affordable and clean energy (SDG #7); good health and
well-being (SDG #3); clear water and sanitation (SDG #6);
smart agriculture; responsible production and consumption
(SDG #12).

Today’s IoT solutions embed and leverage AI both in the
end-user services and the network’s management. To boost
sustainability, IoT solutions need to be sustainable and usable.
These goals are achievable only by means of advances in AI,
decision making, and edge and fog computing. AI algorithms
and decision-making models are at the core of state-of-the-
art and future IoT applications and need to be distributed
among IoT devices, such as WSN nodes, and edge and fog

2World Economic Forum, Internet-of-Things Guidelines for Sustainability
(2018) http://www3.weforum.org/docs/IoTGuidelinesforSustainability.pdf

3United Nations’ Sustainable Development Goals https://sdgs.un.org/goals
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nodes, to scale vertically and horizontally, and to minimize
energy consumption. At the same time, the management
of complex IoT infrastructure (that includes fog WSN and
edge/fog computing nodes) should be operated with energy-
aware decision-making mechanisms that leverage distributed
ML/AI techniques. The DAISeN project aims to address the
challenges discussed above by developing:

• advanced AI algorithms for continual, shared, and evolv-
ing learning, that enable learning from multiple data
sources by distributed training, and continual updating
of the model;

• distributed decision-making models allowing vertical and
horizontal scaling in order to guarantee high-quality
decision-making concerning time consumption, energy
consumption, and data communication.

This position paper is organized as in what follows. The
research objectives of the DAISEeN project are described in
Section II. In Section III-B we outline one of the use cases
being considered in DAISeN and review the state-of-the-art
ML and data mining techniques applicable at the edge. They
are analyzed in relation to the use case to bring to evidence the
challenges and gaps the project aims to fill. Preliminary results
are reported in Section IV. Finally, the paper is concluded by
our outlook (Section V).

II. RESEARCH OBJECTIVES

The main focus of the proposed research lies in the usability
of AI on edge devices and fog nodes to improve the perfor-
mance and sustainability of sensor networks and the training
process.

The DAISEeN project will investigate methods for transfer-
ring and adapting AI algorithms to edge devices with limited
computational performance. The ambition is the development
of resource-aware AI algorithms that can be run on edge
nodes. These algorithms take into account the hardware and
software capabilities of the edge nodes and the capabilities
of the communication links between these nodes, always
keeping in mind that a balance is found between the limited
energy resources of edge devices and the complexity of the
AI algorithms. Therefore, the network traffic between the edge
devices has to be kept low. That can be achieved by several
methods such as context-aware techniques [3], dynamic device
clustering, role assignments, or intelligent sensor fusion, and
data reasoning techniques that can account for dynamically
changing surrounding environment, including context predic-
tion.

Another challenge addressed by DIASeN is the development
of advanced AI algorithms for continual, shared, and evolving
learning that enable learning from multiple data sources by
distributed training and continual updating of the model.
This can be achieved by developing unsupervised and semi-
supervised methods to automate knowledge extraction and
learning in data stream scenarios [4], [5]. The main problem
investigated is how the newly arrived information can be
taken into account in the learning phase and can be used for
continuous adaptation of the learned model [6]. In addition,

it will be studied how to develop, train, and evaluate a model
with no direct access to labeled data. Candidate approaches to
address those challenges are:

1) dynamic unsupervised and semi-supervised learning
models that are robust to the appearance of drifting con-
text and additionally enable to learn from multiple data
sources by distributed training, and continual updating
and evolving of the model [4], [6], [7], [8];

2) development of dynamic techniques for automatic anno-
tation (labeling) of the data;

3) usage of transfer learning techniques enabling reuse of
knowledge from training in earlier tasks to subsequent
tasks.

The other research ambition of DAISeN is the design of
distributed/composable data mining models. These models will
allow to vertically/horizontally scale the decision making in
order to guarantee high quality decisions in edge computing
environments. This can be achieved by adopting ML models
that can predict the computational level (i.e., cloud vs. edge)
with respect to the network operational context (e.g., latency
vs. accuracy). Such models will allow one to run the lighter
but less accurate models at the edge for the sake of latency,
and the computation-intensive but higher-accuracy models
in the cloud. The focus is on developing data mining and
ML techniques to maintain local models embedded in the
edge devices and further integrate low-level edge devices’
observations into a global model [4], [5], [9]. Computed at
a higher level, the latest can produce reliable decisions based
on the available input data. Those techniques will produce a
global model even when data from some devices are missing
due to network changes or degradation.

III. DAISEN USE CASE AND STATE OF THE ART

A. A context-aware GNSS activation use case

Sony provides software solutions in smart logistics for
monitoring and tracking goods. GNSS is the used positioning
technique for detecting the tracker’s current position. GNSS is
known to perform well in open sky environments. However,
the trackers may be in any place, such as open outdoors,
crowded city areas, indoors, and so on. Sony would like to
perform context-aware control of GNSS activation by auto-
matically and accurately detecting indoor/outdoor localization
of the trackers by consuming the least energy. The Sony
requirement is to use radio signals received from Long-Term
Evolution (LTE) base stations to detect the environment (in-
door/outdoor). The main idea is that the propagation of radio
signals is affected by the environment. Different environmental
scenarios have different signal strength characteristics. By
learning different signal strength characteristics, it would be
possible to determine the tracker’s environment.

The setup explained above requires advanced AI solutions
that can detect indoor/outdoor localization (environmental
context) of the tracker for controlling GNSS activation in order
to save power. In addition, these models are expected to be
able to continuously adapt to new scenarios and environments,
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as well as to learn in the distributed framework from many
trackers to improve environmental context detection.

B. Current state of the art and challenges

In this section, we review ML and data mining techniques
related to the use case described in Section III-A. The
discussed techniques fall into three main research domains:
context-awareness at the edge, continual and evolving learning,
and federated learning, see Table I.

1) Context awareness at the edge: Our considerations are
limited to indoor/outdoor context-awareness methods at the
edge due to the fact that it is related to the use case discussed
above (see Section III-A).

Efficient knowledge discovery is critical for the optimized
operation and management of IoT/sensor networks. Context
may affect the complex systems’ operation and management
procedures at various levels, from the physical to the commu-
nication, up to the application level [10]. For example, as dis-
cussed above, positioning edge devices, such as smartphones
and trackers, in outdoor areas typically rely on GNSS such
as the Global Positioning System (GPS), which performs well
in open sky environments. However, these devices may be in
any place, such as deep indoors, metal containers, crowded
urban areas, etc. In addition, the GPS consumes too much
energy to be useful for many applications. Therefore, detecting
indoor/outdoor and providing this context-aware information
in various environments may be helpful and lead to battery-
saving solutions. Many indoor/outdoor detection methods have
already been proposed.

In [11], these methods are classified into two main groups:
threshold-based techniques and ML-based techniques. Ap-
proaches in the first group use fixed detection rules and thresh-
olds, such as a sensor reading above a certain value, to classify
an edge node state (e.g., indoor/outdoor). The second group of
solutions uses ML algorithms to detect indoor/outdoor status
based on features extracted from smartphones, edge nodes,
and in general, embedded sensors. ML-based indoor/outdoor
environment detection techniques are in the focus of our
interest and are reviewed further in this section.

In [12], an approach, entitled SenseMe, uses the C4.5 algo-
rithm on data generated from GPS, gyroscope, accelerometer,
and the Bluetooth module to sense environmental context and
the context-aware location. In [13], the authors propose a
sound-based indoor/outdoor detection method that utilizes bi-
nary classification of the environment’s acoustic reverberation
features. Canovas et al. [14] employ a binary classification
technique on the Received Signal Strength Indicator (RSSI)
from 802.11 access points to identify a pedestrian’s indoor or
outdoor status. Ashraf et al. [15] propose MagIO, a solution
that utilizes magnetic field signals sensed by smartphones for
detecting indoor/outdoor states. Magnetic field features are
classified with different ML algorithms, including Support
Vector Machines (SVM), Gradient Boosting Machines (GBM),
Random Forest (RF), k-Nearest Neighbor (kNN), and Deci-
sion Trees (DT). In [16], the authors apply an ML algorithm
to classify the neighboring GSM station’s signal in different

environments and identify the users’ current context by signal
recognition. Radu et al. [17] propose to detect indoor/outdoor
context by employing co-training according to the feature of
light, magnetic, and cell sensors. The proposed solution can
automatically learn characteristics of new environments and
devices, thereby providing a detection accuracy exceeding
90% even in unfamiliar circumstances. Multiple contextual
features are also used in [18], which leveraged J48 and
other ML algorithms to detect the indoor/outdoor state with
high accuracy. An interesting hybrid solution that integrates
unsupervised and supervised algorithms relying on the location
accuracy and signal strength is introduced in [19].

Challenges: Most of the reviewed approaches rely on the
presence of a large amount of labeled data and report higher
performance on datasets coming from the same location-
s/devices as those used to build the model than on new
environments. However, when detecting environmental (in-
door/outdoor) context at the edge level in real-world scenarios
usually labeled data is scarce or entirely missing. Furthermore,
the environment dynamic and the context complexity should
be taken into account, but at the same time, keeping in mind
that the detection models should be light in order to be able
to run on the device [3]. Evidently, novel context-aware data
mining and learning techniques are needed. These must be
resource-efficient, but also should be able to support continual
learning from multiple sources and robust model adaptation to
new environments.

2) Continual and evolving learning: The main ideas de-
picted in the continual learning paradigm are knowledge
sharing, adaptation, and transfer [20]. Continual learning al-
gorithms may have to deal with catastrophic forgetting [21],
data distribution shifts [22], or imbalanced or scarce data
problems [23]. Catastrophic forgetting [21] refers to a model
experiencing performance degradation at previously learned
concepts when trained sequentially in learning new concepts.
The catastrophic forgetting is a significant challenge to tackle
in the continual learning context since, by definition, the
continual learning setting deals with sequences of classes or
tasks. Other challenges that should be considered are data
distribution shifts and the emergence of new classes. Changes
in the data distribution over time are commonly referred to as
concept drift. Gepperth and Hammer [22] define two kinds of
concept drift: virtual and real. Virtual concept drift concerns
the input distribution and may due to imbalanced classes over
time. On the contrary, real concept drift is caused by novelty
on data or new classes and can be detected by its effect on,
e.g., classification accuracy. The continual learning model has
to detect the change and automatically fix it. An undetected
shift in the data distribution will lead to forgetting. Online
change detection algorithms deal with this challenge as it is
shown in [24], [25].

The study [20] surveys different supervised continual learn-
ing approaches and classifies them into three main categories:
replay, regularization-based, and parameter isolation methods.
This classification is based on how task-specific information
is stored and used throughout the sequential learning process.
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TABLE I
2.2. DISTRIBUTED AI REQUIREMENTS IN RELEVANT STATE-OF-THE-ART AREAS

Domain State-of-the-art area Relevant use case requirements

Computations at the edge Context awarness at the edge Detect indoor/outdoor localization of the edge node (tracker)

Learning from streaming data Continual and evolving learning Continuously update the model when new data are available

Distributed AI Federated learning Distributed learning from many edge nodes (trackers)
for improving the context detection

The most important studies published in these three categories
are summarized in Table II. Replay methods replay previous
task samples while learning a new task to alleviate forgetting.
The replayed samples are either reused as inputs for rehearsal
or for constrained optimization of the new task loss to pre-
vent previous task interference. Rehearsal methods explicitly
retrain a limited subset of stored samples while training on
new tasks [26], [27], [28], [29]. In the absence of previous
samples, pseudo rehearsal is an alternative strategy used in
early works with shallow neural networks [30], [31], [32],
[33]. Constrained optimization is considered an alternative
solution to rehearsal by leaving more freedom for backward/-
forward transfer. Rehearsal might be prone to overfitting the
subset of stored samples and appears to be bounded by joint
training [34], [35]. Regularization-based methods introduce an
additional term in the loss function, consolidating previous
knowledge when learning new data. These methods can fur-
ther be divided into data-focused and prior-focused methods.
Knowledge distillation from a previous model to the trained
model on the new data is the primary building block in data-
focused methods [36], [37], [38], [39]. Prior-focused methods
mitigate forgetting by estimating a distribution over the model
parameters used prior when learning from new data [40], [41],
[42], [43], [44], [45]. Parameter isolation methods isolate pa-
rameters for specific tasks and can guarantee maximal stability
by fixing the parameter subsets of previous tasks. For example,
Mallya and Lazebnik [46] have proposed an approach that
uses weight-based pruning techniques to free up redundant
parameters across all layers of a deep network after it has
been trained for a task. Another approach built upon ideas
from fixed network quantization and pruning is introduced
in [47]. A different approach for continual learning is proposed
in [48], namely, it searches for the best neural architecture
for each coming task via sophisticated reinforcement learning
strategies. The studies in [49], [50] also fall into the category
of dynamic architecture-based continual learning solutions.

Most existing continual learning approaches are designed
in a supervised fashion assuming all data from new tasks
have been manually annotated. However, in many real-world
applications of continual learning, e.g., learning from sensor
data streams to make real-time classification, the availability of
relevant labeled data is often low or even non-existing [51],
[52], [53]. Most real-world data is usually not consistently
labeled, i.e., there is no explicit indication of the exact periods
of relevant events and occurrences of interesting trends, which

breaks down the traditional supervised learning paradigm.
Data labeling is mostly done manually by human experts.
This process is, however, labor-intensive, time-consuming,
and very expensive. Unsupervised continual learning, which
is expected to tackle the aforementioned issues, has not
been well studied [54]. Caron et al. [55] have proposed
to iteratively cluster features and update the model with
subsequently assigned pseudo labels obtained by applying a
standard clustering algorithm. Another recent work proposes
to perform clustering and model updates simultaneously to
address the model’s instability during the training phase [56].
However, these methods only work on static datasets and
cannot learn new knowledge incrementally. In [57], the authors
introduced a simple and effective method that, in an unsuper-
vised setting, can be adapted to existing supervised continual
learning approaches. The authors propose to use a pseudo
label instead of the ground truth to make continual learning
feasible in unsupervised mode. The pseudo labels of new data
are obtained by applying a global clustering algorithm.

Evolving clustering models are good candidates to tackle
concept drift scenarios. They have been designed to mine
massive datasets or online continuous data streams in an
unsupervised learning context by grouping and by summa-
rizing data in a fast-incremental manner. Evolving clustering
methods can process data stepwise and update and evolve
cluster partitions in incremental learning steps [58], [59]. Ac-
cording to [58], different phases of an evolutionary clustering
algorithm can be categorized into matching, accommodating
new data, and model refinement. Dynamic clustering is also
a form of online/incremental unsupervised learning [4], [6],
[7], [9], [60]. However, it considers the incremental fashion
of building the clustering model and self-adaptation of the
built model. Dynamic clustering algorithms can split or merge
the clusters based on the need.

Challenges: Data is often collected from unreliable sources,
possibly having missing values and inaccurate labels. Hence,
there is a need for a conceptually new learning framework
to support continual and evolving learning under uncertainty
and noise [51], [53]. In general, to take advantage of new
developments in AI research, such as shared and continual
learning [61], we need novel data mining and learning models.
Those models should be capable of dealing with unlabeled
data having large-scale missing and inaccurate labels, enabling
learning from multiple data sources via distributed training and
continual evolution of the model [62], [63] while efficiently
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TABLE II
MAIN CATEGORIES OF SUPERVISED CONTINUAL LEARNING METHODS ACCORDING TO THE SURVEY PUBLISHED IN [20].

Method’s category Sub-categories Studies Pros & Cons

Replay

Rehearsal [26], [27], [28], [29] Limited scalability,
Privacy issues,
No clear policy for unbalanced
tasks,
Task-agnostic

Pseudo-rehearsal [30], [31], [32], [33]

Constrained [34], [35]

Regularization-based
Prior-focused [40], [41], [42], [43], [44], [45] Prioritizing privacy,

Alleviated memory requirements,
Task-agnosticData-focused [36], [37], [38], [39]

Parameter isolation Fixed Network [47], [46] Efficient memory,
Prevents scalable class
incremental setupDynamic Architectures [48], [49], [50]

dealing with catastrophic forgetting and automatically adapting
to real concept drift.

3) Federated learning: Federated learning (FL) has been
introduced as promising collaborative learning, where edge
devices such as smartphones, tablets, sensors, etc. keep their
local data in their premises and exchange model parameters
with a central server for global model aggregation [64], [65].
The global model is updated by averaging the local model
parameters received by all the edge devices and is shared with
them again. These operations are repeated at each iteration
round. This setup has many advantages but also challenges
such as expensive communication, systems heterogeneity due
to the verity of devices in federated networks, and privacy
concerns [66]. The iterative nature of FL requires massive
communication between the central server and edge devices
to train a global model [65]. The communication overhead
at each iteration is not negligible, especially for complex
models, large-scale applications, and high-frequency updates,
and it becomes a challenge to be addressed [64], [65], [67].
Recently, many studies aiming to reduce communication costs
have been proposed. For example, [68] use models of dif-
ferent sizes to address heterogeneous clients equipped with
different computation and communication capabilities, while
the work in [69] uses decentralized collaborative learning
in combination with the master-slave model. The majority
of solutions that address the problem of reducing network
overhead in FL could be classified into two main categories.
The first category incorporates works that reduce the total
number of bits transferred for each local update through data
compression. The second category includes studies that aim
at reducing the number of local updates during the training
process.

The authors of [70] propose an enhanced FL technique by
introducing an asynchronous learning strategy on the clients
and a temporally weighted aggregation of the local models
on the server. The layers of the deep neural networks are
categorized into shallow and deep layers. The parameters of
the deep layers are updated less frequently than those of the
shallow layers. In addition, a temporally weighted aggregation
strategy is applied on the server to make use of the previously

trained local models, thereby enhancing the accuracy and
convergence of the central model. The paper [71] designs two
novel strategies to reduce communication costs. The first relies
on lossy compression on the global model sent server-to-client.
The second strategy uses Federated Dropout (FD), which
allows users to efficiently train locally on smaller subsets of
the global model and reduces the client-to-server communica-
tion and the local computation. Deep Gradient Compression
(DGC) is proposed to significantly reduce communication
bandwidth [72]. The authors of [73] introduce a new com-
pression framework, entitled Sparse Ternary Compression, that
is specifically designed to meet the requirements of the FL
environment. The authors of [74] implement a Federated Opti-
misation (FedOpt) approach by designing a novel compression
algorithm for efficient communication. Then, they integrate
additively homomorphic encryption with differential privacy to
prevent data from being leaked. Malekijoo et al. [75] develop
a novel framework that significantly decreases the size of
updates while transferring weights from the deep learning
model between clients and their servers. A novel algorithm,
namely FetchSGD, that compresses model updates using a
Count Sketch, and takes advantage of the mergeability of
sketches to combine model updates from many workers, is
proposed by [76]. Xu et al. [77] present a Federated Trained
Ternary Quantization (FTTQ) algorithm, which optimizes the
quantized networks on the clients through a self-learning
quantization factor.

A novel FedMed method with adaptive aggregation is
proposed using the topK strategy to select the top workers
with the lowest losses to update the model parameters in each
round in [74]. Asad et al. [78] have provided a novel filtering
procedure on each local update that only transfers significant
gradients to the server. The study proposed by [79] identifies
the relevant updates of participants and uploads them only to
the server. Specifically, at each round, the participants receive
the global tendency and check the relevancy of their local
updates with the global model. If they align, the updates are
uploaded. An FL two-step client selection protocol based on
resource constraints instead of the random client selection is
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proposed by [80]. FedPSO, a global model update algorithm,
transmits the model weights only to the client that has pro-
vided the best score (such as accuracy or loss) to the cloud
server [81].

Challenges: So far there is no evidence of how FL ap-
proaches are reducing the number of bits transferred compared
to FL approaches that reduce the number of local updates.
However, concerning the latter category of approaches, it is
vital to find out more efficient FL schemes other than FedAvg,
which converge with the same speed as FedAvg and apply to
any FL applications [82]. For example, the studies in [83]
and [84] have explored an approach that applies clustering
optimization to bring efficiency and robustness in FL’s commu-
nication: only the most representative updates are uploaded to
the central server for reducing network communication costs.

IV. PRELIMINARY RESULTS

A. An inductive system monitoring approach for GNSS acti-

vation

In order to address the above challenges, we have designed a
GNSS component activation model for mobile tracking devices
which automatically detects indoor/outdoor environments us-
ing the radio signals received from LTE base stations [3]. We
use an Inductive System Monitoring (ISM) technique [85] to
model environmental scenarios captured by each tracker via
extracting clusters of corresponding value ranges from base
stations’ signal strength. The ISM-based model is built by
using the tracker’s historical data labeled with GPS coordi-
nates. The built model is further refined by applying it to the
data without GPS location collected by the same device. This
procedure allows us to identify the clusters that describe semi-
outdoor scenarios. Thus, the model enables to discriminate
between two outdoor environmental categories: open outdoor
and semi-outdoor. Each cluster models an open outdoor or a
semi-outdoor scenario by defining a range of allowable values
for each base station in a given input vector. The vector of high
values and the vector of low values in a cluster are considered
as the cluster’s representatives describing a specific environ-
mental scenario. Evidently, the proposed model supplies the
user with easily interpretable representations of the device’s
outdoor environmental scenarios. Note that the built ISM-
based model does not contain the description of the indoor
environmental scenarios, i.e., during the monitoring phase,
data samples that do not fit any of the clusters are interpreted
as belonging to the indoor environment. As a result, the built
model is small and has modest requirements with respect to
storage and computations.

B. Evaluation results

The proposed ISM-based GNSS activation approach is
studied and evaluated on real-world data provided by Sony [3].
The used dataset contains radio signal measurements collected
by five trackers and their geographical location in various
environmental scenarios. We have explored the performance
of the built ISM-based GNSS component activation model on
this dataset in three different experiments. The obtained results

TABLE III
MODEL’S ACCURACY (%) ON DATA WITHOUT GPS COVERAGE FOR

SORTED AND UNSORTED TRACKERS’ SIGNAL STRENGTHS

Model Sorted signals Unsorted signals

M-d1 99.89 64.44
M-d2 57.15 49.82
M-d3 61.49 60.40
M-d4 68.81 56.04
M-d5 71.94 72.83

have been analyzed and interesting patterns about the GNSS
activation problem have been extracted. For example, we have
conducted an experiment in which we use data with GPS cov-
erage collected by each tracker to build a model representing
the tracker’s behavior. In addition, either the collected signals
strengths by the trackers have been sorted in descending order,
or they have been left as initially received. For testing, data
without GPS coverage have been used. Table III lists the
accuracy of the models for each tracker device with and
without sorting the signal strengths. As one can observe,
most models (M-di, i = 1, . . . , 5) exhibit, except d5, higher
accuracy in the case of sorted signal strengths. In addition,
in another experiment, we have discovered that the models
built on unshuffled data have shown higher performance.
Furthermore, we have compared the performance of the model
built on the data collected from all five devices with that of
the individual trackers’ models. The latter have demonstrated
higher performance than the overall model. Evidently, the use
of models with sorted and unshuffled signals is recommended.
In addition, the customization of each tracker’s model to the
device specific environmental scenarios is preferred, since it
ensures higher performance.

The obtained evaluation results will be used for further
improvement and optimization of the developed model (see
our future plans in Section V). The company is currently
evaluating and testing the model in the field.

V. OUTLOOK

This paper describes the main objectives, identified chal-
lenges, and preliminary results of the DAISeN project. The
main findings, valid for the reviewed research domains falling
into the scope of DAISeN, reveal that in order to address the
current challenges at the edge, we need novel resource and
energy-efficient data mining algorithms and ML models robust
to noisy, unlabeled, and missing data. Additionally, algorithms
that enable learning from multiple data sources by distributed
training and continual model adaptation are required.

In order to address the identified challenges, in the first half
of the project, we have developed a novel GNSS component
activation model for mobile tracking devices which is able
to automatically detect indoor/outdoor environments based on
the radio signals received from LTE base stations. The future
research studies planned for the remaining period of the project
involve the development of a domain integration GNSS activa-
tion technique that enables the integration of GNSS activation
models built on different domains (devices/locations) into an
overall model. In addition, we have the ambition to design
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a distributed GNSS activation framework that is enabled to
create a shared model with the help of a large number of edge
devices.
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