
Abstract4 The effectiveness of the university's functioning

and its organizational culture can be improved thanks to the

use of machine learning. At Universities, the context of student

anticipation is  very important from the point  of  view of  the

fundamental  planning  and  control  functions  associated  with

this specific form of management. The purpose of this study is

to present the results of an experiment involving the prediction

of student structure (attributes of students and their activities)

based on the use of a machine learning solution and comparing

them against  real  data obtained from a registry system of  a

European public  institution of  higher  education in  economic

sciences. At universities, there is a clear need to support various

components of system management. The experiments revealed

that - for 11 out of the 48 examined datasets - the Percentage

Similarity Index was in excess of 75% but was decidedly lower

for the remaining sets (with 18 sets assessed below the margin

of 50%).

I. INTRODUCTION

identifies a set of properties deemed important in the

context of enrolment management are consisted from

[1], [2]:

A
÷ factors that induce and incite university enrolment,

÷ proper  understanding  of  reasons  behind  dropouts  as

well as incentives for persistence in students,

÷ forms of financing employed by students to cover the

cost of their education,

÷ strategic  planning  of  tasks  related  to  the  university's

present and future financing needs,

÷ integration  between  enrolment  management  and

retention management tasks.

In  general,  the  principal  function  of  enrolment

management  is  to  provide  effective  control  over  student

characteristics and student population size. 

As observed by Dixon (1995), enrolment management may

be designed in pursuit of the following four objectives: (1)

clear  definition  and  propagation  of  institutional  goals,  (2)

ensuring stakeholders' full support for marketing plans and

activities made in relation to institutional goals, (3) making

strategic decisions on the role and volume of financial aid

required to reach and retain the desired size of the student

population, and (4) making significant commitments for the

realisation  of  the  above.  Enrolment  management  exerts  a

significant  impact  upon  the  structure  of  the  student

population  and,  consequently,  the  structure  of  university

revenues,  as  forms  of  service  and  curricula  are  directly

manifested in tuition costs, and thus determine the financial

standing  of  the  institution  [3].  According  to  a  European

University Association report, several distinct trends can be

observed in the development of public financing and student

enrolment  in  the  years  2008-2016  in  Europe  [4],  [5].  In

Poland, intensive efforts are underway at present to increase

public support  for higher learning to negate the effects of

brain  drain  and  the  gradual  decrease  of  the  student

population.  The above aspects  clearly emphasise the need

for a  more proactive design of  the institutional  enrolment

policy as an essential determinant of future tuition revenues,

resource allocation for subsequent academic years, and the

creation  of  marketing  plans,  especially  ensuring  their

adjustment to specific segments of the university's offer. 
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In the context of increased competition among the national 

universities, the strengthening of the influence of global 

educational processes on the domestic higher education, the 

need to change the management component of the system 

becomes obvious. In their development, universities face a 

large number of challenges, such as: the development of 

technologies, the commercialization of activities, the increase 

in the amount of information, the changing requirements of 

employers for graduates as potential employees. One of the 

research problems of higher education management is the 

prediction of  students structure. Many higher-education 

institutions are now using data and analytics as an integral 

part of their processes. Whether the goal is to identify and 

better support pain points in the student journey, more 

efficiently allocate resources, or improve student and faculty 

experience, institutions are seeing the benefits of data-backed 

solutions.  

The aim of the paper is to develop the method for students' 

structure prediction using machine learning. 

II. BACKGROUND 

Corporate culture in the organization arises regardless of 

whether it is planned from above or not. It exists as a given in 

any organization, even in a newly created company, it is 

created by the employees themselves. At the same time, it can 

either help in achieving the goals of the company, or slow 

down this process. Corporate culture determines how 

employees approach problem solving, interact with each 

other, behave in conflict situations, serve customers, deal with 

suppliers, and how they generally carry out their activities [6]. 

To organize effective work, it is necessary to use all 

available management methods. These methods, according to 

the authors of the book "Methods of personnel management" 

are divided into economic, administrative-legal and socio-

psychological [7]. 

Corporate governance always relies on both formal and 

informal structures. The formal structure is based on the 

norms that are mandatory for the organization's personnel: 

hierarchy of subordination, unity of command, sanctions, 

coercion. The informal structure is based on norms associated 

with values: sympathy, authority, collegiality, initiative. It is 

obvious that the use of one formal management leads to 

rigidity, lack of flexibility in the organization, hinders the 

development of initiative, which hinders the further 

development of the organization and leads to loss in 

competition, while the predominance of the informal structure 

will lead to chaos, loss of control over the entire hierarchical 

structure. chain. Therefore, a necessary condition for 

successful management is the fulfillment of two 

requirements: 

- decentralization of powers and responsibilities within the 

company to certain limits; 

- formation of a single team of employees of the 

organization. 

Currently, universities are mainly characterized by "Club 

culture", which allows them to work efficiently and smoothly 

[1]. 

There are a number of phases of employee interaction with 

the corporate culture of the university [8]: 

1. At the first stage (orientation phase), the employee gets 

acquainted with the mission, values, symbols of the 

university, using Internet sites and other information 

materials; 

2. At the second stage (adaptation phase), adaptation to the 

corporate culture of the university takes place; 

3. At the stage of interaction, immersion into the value 

system of the university takes place, a wide range of 

communicative interactions with various groups is carried 

out; 

4. The phase of integration involves the value unity of the 

university with the employee as a bearer of corporate culture. 

Those at the forefront of this trend are focusing on 

harnessing analytics to increase program personalization and 

flexibility, as well as to improve retention by identifying 

students at risk of dropping out and reaching out proactively 

with tailored interventions. Indeed, data science and machine 

learning may unlock significant value for universities by 

ensuring resources are targeted toward the highest-impact 

opportunities to improve access for more students, as well as 

student engagement and satisfaction [10]. 

Yet higher education is still in the early stages of data 

capability building. With universities facing many challenges 

(such as financial pressures, the demographic cliff, and an 

uptick in student mental-health issues) and a variety of 

opportunities (including reaching adult learners and scaling 

online learning), expanding use of advanced analytics and 

machine learning may prove beneficial.  

Below, we share some of the most promising use cases for 

advanced analytics in higher education to show how 

universities are capitalizing on those opportunities to 

overcome current challenges, both enabling access for many 

more students and improving the student experience[11]. 

Data science and machine learning may unlock significant 

value for universities by ensuring resources are targeted 

toward the highest-impact opportunities to improve access for 

more students, as well as student engagement and satisfaction. 

Advanced analytics4which uses the power of algorithms 

such as gradient boosting and random forest4may also help 

institutions address inadvertent biases in their existing 

methods of identifying at-risk students and proactively design 

tailored interventions to mitigate the majority of identified 

risks. For instance, institutions using linear, rule-based 

approaches look at indicators such as low grades and poor 

attendance to identify students at risk of dropping out; 

institutions then reach out to these students and launch 

initiatives to better support them. While such initiatives may 

be of use, they often are implemented too late and only target 

a subset of the at-risk population [4]. This approach could be 

a good makeshift solution for two problems facing student 

success leaders at universities. First, there are too many 
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variables that could be analyzed to indicate risk of attrition 

(such as academic, financial, and mental health factors, and 

sense of belonging on campus). Second, while it9s easy to 
identify notable variance on any one or two variables, it is 

challenging to identify nominal variance on multiple 

variables. 

III. MATERIALS AND METHOD 

A. Input data characteristic 

As already established, input data includes two groups of 

variables: 

÷ dependent variables (set of 9883 records, with each 

record described by 15 attributes) obtained from the 

registry system of the examined university for the years 

2016-2020; 

÷ independent variables (3  attributes) obtained from the 

national statistical records published by the Central 

Statistical Office 

The variables were coded as follows: 

÷ X1 - work_name 3 entities employing the candidates 

were divided according to the type of business; 

÷ X2 - code 3 fields of studies were grouped by subject; 

÷ X3 - work_city 3 places of student residence were 

coded by their physical distance from the university (in 

km); 

÷ X4 - nationality 3 the nationality of students; 

÷ X5 - gender 3 gender of students was coded as follows: 

0 for males, 1 for females; 

÷ X6 - status 3 codes of student status; 

÷ X7 - finished_university 3 the enrolment data provides 

details of each candidate's previous education. The 

recorded institutions of higher learning were assigned 

codes from 0 to 364. 

÷ X8 - work_years 3 work experience of candidates 

registered in the database (in years of service). 

B. The model9s learning method 

GANs are a relatively new method in the field of machine 

learning. These networks, which were introduced in 2014 by 

Ian Goodfellow and his collaborators, are designed to create 

new data that in some form mimics the statistical properties 

of a given set of training data. Given a target dataset, such as 

celebrity faces or categories from the ImageNet dataset, a 

GAN can be trained that generates new, unseen data that 

(ideally) fit comfortably and indistinguishably in the dataset. 

Since the introduction of GANs, several variations of the 

architecture and many theories to help train these inherently 

unstable networks have been developed[11]. 

In general, GANs are composed of generator and 

discriminator neural networks (Figure 1), which, for image 

data, are typically convolutional networks. 

 

 

Fig.  1 A diagram of a generic generative adversarial network. The 

network shown here is designed to produce new images of handwritten 

MNIST digits. The generator converts random noise into images that 

attempt to match the data from the target dataset. The discriminator 

distinguisges between real and generated data 

Training is accomplished by repeatedly presenting the 

networks with data from a target dataset. The generator is 

tasked with learning to convert random n-dimensional vectors 

to data matching the dataset. The discriminator, in turn, is 

tasked with distinguishing between data from the dataset and 

the generator9s output. In a descriptive analogy offered by 
Goodfellow et al., the generator can be likened to an art 

forger, the goal of which is to create undetectable forgeries of 

the world9s great artists. The discriminator plays the role of a 
detective, trying to discover which pieces are real and which 

are fakes. The loss function for a GAN is given by 

 
minÿ *maxÿ *ÿ(ÿ, ÿ)  = ýý>ýÿ(ý)[log(ÿ(ý))] + ýÿ>ýÿ(ÿ)[log (1 2 ÿ(ÿ(ÿ)))] = ýý>ýÿ(ý)[log (ÿ(ý))] + ýý>ýý(ý)[log (1 2 ÿ(ý))]  (1) 

where ÿ(ÿ)is the output of generator network, ÿ(ý) is the 

output the discriminator network, ÿ is a multidimensional 

random input to the generator, �ÿ is the distribution of z 

(usually uniform), and �ý(ý) and �ÿ(ý) are the probability 

manifold distributions for the generated data and the target 

dataset, respectively. Via backpropagation, these objectives 

direct the generator to create data that fits well with the 

dataset, while simultaneously increasing the distinguishing 

power of the discriminator. It can be shown[11] that, for a 

GAN with sufficient capacity, this training objective 

minimizes the Kullback-Leibler divergence between �ý(ý) 

and  �ÿ(ý). This divergence metric describes how similar two 

probability distributions are, with low values denoting greater 

similarity. In other words, training a GAN creates a generator 

that is able to mimic the distribution of data in the given 

dataset at some level. 

Models of the generator and the discriminator are presented 

below. The Sequential model utilises the following layers: 

Dense, LeakyReLU oraz BatchNormalization. All the layers 

and the model itself are derived from the Keras library. 

Tables VI and VII present the structure of both models. The 

generator model includes five layers of 'Dense', two layers of 

batch normalisation, and two functions Leaky ReLU, serving 

as activation functions. The discriminator model employs 

seven layers of 'Dense', four functions Leaky ReLU as 

activation functions for the neurons defined above. The 

'Output Shape' column reports a number of nodes for each 

layer. The loss function used in the discriminator model was 

developed on the basis of the Binary Cross Entropy function 

defined as follows (Eq. 1): 
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 ÿ���(þÿ , ÿÿ) = {ÿÿ 2 ÿÿþÿ + log(1 + ÿ2ÿÿ) ÿ� ÿÿ g 02ÿÿþÿ + log(1 + ÿÿÿ)            ÿ� ÿÿ < 0 (2) 

Both models (the generator and the discriminator) are fed with 

discriminator responses (argument zi): 

÷ The generator's loss function is the Binary Cross 

Entropy function with values þÿ = 1, ��ÿ "ÿ=0ý ÿÿ 
÷ Discriminator: sum of Binary Cross Entropy 

functions with values þÿ = {1, ��ÿ ÿÿÿý ÿ 0, ��ÿ ÿÿ�ÿ�ÿýÿÿý ÿ 

 

Both models utilise the 'Adam' algorithm with a learning step: 

0.0001. This step value has already been employed in GANs 

procedures for TensorFlow. At the same time, as evidenced 

by research presented in [12], the value yields much better 

results compared to other algorithms, offering the added 

benefit of facile and simple implementation in Keras. 

For the entire duration of the learning process, examples were 

fed randomly. The network gained knowledge of the student 

patterns based on the entire set of input data. The training 

procedure was set at 55 000 iterations. One epoch was 

represented by one packet of data holding information on 16 

students. Figure 2 provides a plot of the training history. 

 
Fig.  2 Training history 

 

As evidenced by the above, the discriminator was able to 

recognise between fake and real data at a relatively early stage 

of the training process. This was accompanied by 

deterioration in the quality of the generator's output over time. 

This phenomenon can be explained by differences in the 

number of layers. As the generator utilised fewer layers than 

the discriminator, its training processes were more 

immediate. However, the discriminator was, at the same time, 

more effective in its long-term predictions, owing to the 

benefit of more layers. The continual learning phenomenon 

was established. 

 

TABLE VI. 

GENERATOR. MODEL: "SEQUENTIAL" 

Layer (type) Output Shape Param # 

dense (Dense) (None, 4) 20 

batch_normalization_3  (Batch (None, 4) 16 

leaky_re_lu_9 (LeakyReLU) (None, 4) 0 

dense_1 (Dense) (None, 5) 25 

dense_2 (Dense) (None, 6) 36 

dense_3 (Dense) (None, 7) 49 

dense_4 (Dense) (None, 7) 56 

batch_normalization_1  (Batch (None, 7) 28 

leaky_re_lu_1 (LeakyReLU) (None, 7) 0 

dense_5 (Dense) (None, 8) 64 

Total params: 294 

Trainable params: 272 

Non-trainable params: 22 

  

TABLE VII. 

DISCRIMINATOR. MODEL: "SEQUENTIAL_1" 

Layer (type) Output Shape Param # 

dense_6 (Dense) (None, 7) 63 

dense_7 (Dense) (None, 6) 48 

leaky_re_lu_2 (LeakyReLU) (None, 6) 0 

dense_8 (Dense) (None, 5) 35 

leaky_re_lu_3 (LeakyReLU) (None, 5) 0 

dense_9 (Dense) (None, 4) 24 

leaky_re_lu_4 (LeakyReLU) (None, 4) 0 

dense_10 (Dense) (None, 3) 15 

leaky_re_lu_5 (LeakyReLU) (None, 3) 0 

dense_11 (Dense) (None, 2) 8 

dense_12 (Dense) (None, 1) 3 

Total params: 196 

Trainable params: 196 

Non-trainable params: 0 
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C. Methods of output data verification 

The Percentage Similarity Index (PSI)  was adopted to 

verify the established similarities between structures of 

individual variables and those generated by GANs. The 

index was calculated for equinumerous sets of structural 

indices based on formula (Eg. 2). 

 ÿÿý = 3 þÿÿ(ý1ý; ý2ý)ÿý=1  (2) 

where: 

÷ ÿÿý - percentage similarity index, 

÷ ý1ý - percentage share of k-th component in the structure of 

set 1, 

÷ ý2ý - percentage share of k-th component of the structure of 

set 2, 

÷ ÿ - number of elements in set 1 (both sets need to be 

equinumerous). 

The following similarity ranges were defined for the 

evaluation of the sets: 

÷ 100% - 90% - sets are similar, 

÷ 90% - 75% - sets are moderately similar, 

÷ 75% - 50% - similarity between sets is marginal, 

÷ 50% - 0% - sets are not similar 

IV. RESEARCH RESULTS AND DISCUSSION 

A. Output data 

The results obtained from the trained generator in the course 

of the experiment, complete with student characteristics, 

statistical properties and examples derived from the output 

data set, are presented below. Table VIII presents a segment 

of output data generated by GANs for the year 2021. 

 Each column of the generated output corresponds to 

specific information items stored in the university database of 

student records. Parts of the output data were rounded off, as 

dictated by the specificity of information stored therein. An 

example of such procedure is the 'Status' column, with domain 

defined by x*+0;4,'x*Z. 

B. Output data verification 

As suggested by the statistical properties of data, the 

generated output records are well contained in the brackets 

defined by the real data. It was assumed that the structure of 

output data generated by the GEN network for the years 2016-

2020 should take up values similar to those of the real records 

stored for the period. The PSI was used to verify the similarity 

between the structures of individual variables and the output 

data generated by the GEN network. Results of the output data 

verification procedure are provided in Table IX. The PSI 

exceeded 75% for eleven cases among all tested variables, 

which suggests their similar or moderately similar character. 

Thus, it may be concluded that in those cases, the training 

turned out to be consistent with these segments of data. The 

best results were obtained for variable X4, nationality 3 PSI 

for all tested years was over 90%, and the overall value was 

93.5%. Quite satisfactory levels of PSI, between 60 and 90%, 

were received for X3, city, X5, gender, and X7, work 

experience, overall PSI reached respectively 73.5%, 70.4%, 

and 67.2%. The worst fit, overall PSI 30.9%, was found for 

X8, university. For each variable, histograms were produced 

to observe the similarities between the representations of both 

datasets. Figures below present percentage shares in the 

categories represented in the real dataset and the set generated 

by the GEN network. Fig. 3 illustrates the structure of the 

'employer' variable (X1) for real and generated data for the 

tested years. The overall PSI index calculated for variable X1 

was at 44.5%, suggesting a dissimilarity between the 

structures generated by GENs and those of the real data. The 

structure of the 'study field' variable (X2) for real and 

generated data for 2016-2020 is shown in Fig. 4. The PSI 

index calculated for variable X2 was  52.3%, suggesting a 

TABLE VIII. 

CHARACTERISTICS OF REAL DATA 

Parameter Employer 
Study 

field 
City Nationality Gender Status Work experience 

Finished 

University 

mean 2.456 4.973 53.954 0.020 0.674 1.051 3.386 44.747 

std 2.261 2.857 123.136 0.331 0.469 0.843 6.215 71.159 

min 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

25% 0.000 3.000 0.000 0.000 0.000 0.000 0.000 2.000 

50% 3.000 4.000 0.000 0.000 1.000 1.000 0.000 3.000 

75% 4.000 6.000 70.200 0.000 1.000 1.000 4.000 78.000 

max 6.000 12.000 3 349.000 12.000 1.000 4.000 42.000 364.000 

TABLE IX. 

PERCENTAGE SIMILARITY INDEX (PSI) FOR TESTED VARIABLES 

Variable 
 Years 

All Years 
 2016 2017 2018 2019 2020 

Employer X1  46.2% 47.5% 41.3% 44.7% 37.9% 44.5% 

Study field X2 49.7% 49.3% 51.4% 52.4% 5.8% 52.3% 

City X3 68.9% 74.0% 72.8% 78.5% 71.9% 73.5% 

Nationality X4 90.1% 90.9% 95.9% 95.3% 99.5% 93.5% 

Gender X5 68.7% 66.9% 71.2% 71.3% 87.7% 70.4% 

Status X6 43.6% 90.3% 71.0% 15.6% 0.0% 54.0% 

Work exp. X7 77.1% 82.1% 59.4% 53.8% 50.7% 67.2% 

University X8 25.6% 33.3% 30.6% 31.8% 6.7% 30.9% 
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medium similarity between the structures generated by GENs 

and those of the real data. Data stored in the real records of 

the university identify management as the most attractive 

field of study. In contrast, output data generated by the 

network reported Audit and financial control as the dominant 

area. 

 

 
Fig.  3 Histogram of the 'employer' variable (X1) 

 
Fig.  4 Histogram of the 'study field' variable (X2) 

 
 

Fig. 5 presents the structure of the 'city' variable (X3) for 

real and generated data.  

 
Fig.  5 Histogram of the 'city' variable (X3) 

The overall PSI index calculated for variable X3 was 73.5%, 

suggesting a significant similarity between the structures 

generated by GENs and those of the real data. Real data shows 

that Wroclaw (including the city outskirts) is the place of 

residence for the overwhelming majority of the student 

population. The structure of GENs output data suggests that 

ca. 71% of students commute over a distance of 0 to 50 km, 

which is compatible with real data. 

The structure of the 'nationality' variable (X4) for real and 

generated data is illustrated in Fig. 6. The overall PSI index 

calculated for variable X4 was 93.5%, suggesting a strong 

similarity between the structures generated by GENs and 

those of the real data. The real data shows that more than 99% 

of postgraduate students come from Poland. The structure of 

GENs output data suggests that ca. 7% represent a foreign 

nationality. 

 
Fig.  6 Histogram of the 'nationality' variable (X4) 

Fig. 7 presents the structure of the 'gender' variable (X5) for 

real and generated data for the tested years. The overall PSI 

index calculated for variable X5 was 70.4%, suggesting a 

significant similarity between the structures generated by 

GENs and those of the real data. The actual data shows that 

female students account for two-thirds of the student 

population, while the data predicted by GENs shows complete 

female dominance. 

The structure of the 'status' variable (X6) for real and 

generated data is shown in Fig. 8. The PSI index calculated 

for variable X6 was 54.0%, suggesting a medium similarity 

between the structures generated by GENs and those of the 

real data. Generated data indicate that most of the students are 

promoted, while the real data show that many students are still 

studying, have been deleted or resigned. 

 
Fig.  7 Histogram of the 'gender' variable (X5) 

 
Fig.  8 Histogram of the 'status' variable (X6) 

Fig. 9 presents the structure of the 'work experience' 

variable (X7) for real and generated data for the tested years. 

The PSI index calculated for variable X8 was at 67.2%, 

suggesting a moderate similarity between the structures 

generated by GENs and those of the real data. Generated data 
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show that most of the students have worked for two years or 

less, while the real data show also that the work experience in 

many cases is longer.  

 
Fig.  9 Histogram of the 'work experience' variable (X7) 

The structure of the 'finished university' variable (X8) for 

real and generated data for the years 2016-2020 is illustrated 

in Fig. 10. The PSI index calculated for variable X8 was at 

30.9%, suggesting a dissimilarity between the structures 

generated by GENs and those of the real data. 

 

 

 

 
Fig.  10 Histogram of the 'finished university' variable (X8) 

Based on analytical evaluations, it may be concluded that 

the topic of student structure prediction (SSP) is not 

adequately represented in the professional literature. At the 

same time, the studied concept serves important practical 

purposes and presents a major challenge for the managerial 

cadres of public institutions of higher education. Another 

important issue of this paper is the use of GANs in 

predictions. The use of such tools is presented in the literature. 

However, from the viewpoint of this research and the 

instrumental utilisation of this technique in SSP, this 

particular segment of knowledge should not be treated as a 

point of reference in our discussion. There remains a key area 

for the purpose of the work, i.e. the use of GANs in the SSP. 

In this context, scarcity of reference material can be observed, 

similar to that of the SSP. The available literature is limited to 

the prediction of the number of students or students' 

performance. Naturally, these aspects are in close association 

with SSP, but they are too far detached from the nature of SSP 

to be of any rational significance in the studied context. Their 

practical benefits may be important from a broader 

perspective of using machine learning solutions as a form of 

management support in university administration. Because of 

the observed scarcity of reference material related to the 

studied context, the authors of this study propose to treat the 

presented research results as a contribution to the discussion 

on the use of GANs in the SSP. 

V. CONCLUSION AND IMPLICATIONS 

Working on a copious set of factors of potential impact 

upon the student structure prediction presented in this paper, 

the authors examined the perspective of applying 'intelligent 

solution' methods for the task performed based on Generative 

Adversarial Networks. The research was conducted on a 

dataset of records describing the real population of students 

of postgraduate studies over a period of 5 academic years, 

between 2016 and 2020. Individual properties and attributes 

of students were coded. The dataset was supplemented by a 

number of indices describing the general economic condition 

of the region proper for the studied university and the 

timeframe under study. The final design included 12 

dependent variables and three independent variables to give a 

total of 15 variables. The experiment made use of artificial 

intelligence networks, specifically the GANs networks. The 

network was presented with the tasks or reproducing the 

structure of students to produce output adequately 

comparable with real data recorded for previous years. The 

Percentage Similarity Index (PSI) was calculated for each 

variable to illustrate the similarity between their real structure 

and that produced by GANs. The experiments revealed that 3 

for 11 out of the 48 examined datasets 3 the PSI index was in 

excess of 75% but was decidedly lower for the remaining sets 

(with 18 sets assessed below the margin of 50%). This should 

be interpreted as evidence that only parts of data generated by 

GANs sufficiently reflect the real data. Additional tests may 

be required to provide grounds for more reliable predictions 

of student structure, including those involving different sets 

of independent variables. The need for extension of the set of 

variables is fairly evident. More effort should be placed to 

verify their information potential and activate a learning 

mechanism after verifying or exchanging variables. Other 

methods for selecting variables should also be examined, as 

the present set was established based on the expert method. 

Further research directions may involve the development of 

methods based on other neural network architectures (such as 

Recurrent Neural Networks, Convolutional Neural Networks) 

to predict postgraduate students' structure. The method 

applied by authors may not be an ideal solution to the problem 

at hand. However, since the attempt proved partially effective, 

the results are of scientific value and may serve as the basis 

for further examination of the SSP concept.  
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