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Abstract—As autonomous cyber-physical systems are respond-
ing to the dynamism of our hyper-connected digital world, they
are forming so called dynamic autonomous ecosystems, which
require a change in methods ensuring their safe behavior. Within
this change, reactions to predictable scenarios need to be replaced
with adaptability to the unpredictable context, with gradual
safety mechanisms, able to decide whether or not to trigger a
certain mitigation procedure. In this paper, we outline our vision
towards evolution of safety mechanisms to support dynamic and
self-adaptive architectures of autonomous ecosystems. We are
proposing an approach to address this research problem with the
help of trust and reputation combined with gradual adaptation
of safety procedures at runtime.

I. INTRODUCTION

T
HE growing demand for complex autonomous cyber-

physical systems is stimulating their advancement in the

direction of forming cooperative and collaborative autonomous

ecosystems [1]. Such autonomous ecosystems, i.e. dynamic

autonomous systems of systems, can provide a higher degree

of autonomy and are capable of adapting to previously un-

known situations. At the same time, however, their dynamic

and self-adaptive nature is making it very challenging to ensure

their safe and secure behavior, both at the individual level as

well as at the level of the ecosystem as a whole [2].

The recent rapid development in autonomous driving is

indicating that new autonomous systems might be joining

city ecosystems sooner than the cities need to get ready to

ensure the safety of these ecosystems as a whole, which is

challenging not only technically but also from the perspective

of understanding the ways in which societies perceive safety

and trust in these autonomous systems.

Even though there has been substantial progress in the

research of the methods ensuring safety in individual au-

tonomous systems, the methods are falling short on the larger

scale of autonomous ecosystems, in which the individual

autonomous systems dynamically join and leave the ecosystem

and interact with each other in a decentralized manner [1]. In

this environment where multiple autonomous systems operate

in the same physical space with high level of complexity and

dynamic context changes, existing safety-assurance methods

on the level of each individual systems might become too

rigid to support the overall ecosystems.

Borrowing from the ways in which our societies ensure

safety of its members, one of the most promising ways towards

the safety of dynamic autonomous ecosystems is through the

mechanisms of adaptive safety reflecting the actual safety risks

in a given situation, which can be understood based on the trust

and trustworthiness of the ecosystem members one interacts

with [3], [2].

To stimulate the progress in this emerging field, the aim of

this paper is to examine the problem of safety-assurance in

dynamic autonomous ecosystems and envision an approach

for adaptive safety in the ecosystems. Namely, we set the

foundations for a new approach to adaptive safety, responding

to the level of trust among autonomous systems. To this end,

we first identify and present five scenarios of the key chal-

lenges related to safety in dynamic autonomous ecosystems,

and then propose a framework to support adaptive safety in

the ecosystems.

The structure of the paper as follows: Section 2 identifies

the key challenges of adaptive safety in dynamic autonomous

ecosystems and presents the example scenarios. Section 3

discusses research related to the addressed problem, fol-

lowed with Section 4 presenting a solution and proposing a

framework to support adaptive safety in dynamic autonomous

ecosystems. Section 5 discusses assumptions and limitations

made in designing the approach, which is followed with a

conclusion and summary of future work.

II. PROBLEM DESCRIPTION

Safety as it is perceived and enforced on the level of

individual autonomous cyber-physical systems is falling short

on the magnitude of ecosystems [2]. The techniques that are

capable of keeping a single system safe are not scaling to a

dynamic ecosystem where member systems are heterogeneous

and can join or leave the ecosystem at any time. This context

requires an adaptive approach to safety that should be based

on a kind of classification among member systems. One of the

most promising strategies that only started to emerge recently,

is to adapt safety to the level of trust among components

within the whole ecosystem. In that context, a component of

the autonomous ecosystem that is reported as untrusted by

other ecosystem members (impacting its reputation within the

ecosystem) might fall under (temporary) safety supervision

and control, safeguarding its trustworthy operation.

To set the context for this research, this section identifies

and discusses five challenges (described in the individual

subsections) that need to be resolved to set the foundation

of our approach to trust-driven adaptive safety in dynamic

autonomous ecosystems. Our aim is to provide a solution to

these challenges and propose a safety assurance framework for

autonomous ecosystems on top of it.
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A. Intentional vs. unintentional behavior

When an action done by an autonomous system has been

classified as malicious, knowledge about the intent of this

system can be an important decision factor when selecting

the right kind of reaction. Unintentional malicious behavior

can happen due to a malfunction in one of the components of

the autonomous systems, delay in network communication or

a software bug. On the other hand, it is possible to design a

system that behaves in a harmful way in certain situations and

tries to inflict as much damage as possible [2].

Fig. 1. Example scenario where intent classification is important

Consider an example in Figure 1 where two autonomous

vehicles are meeting at an intersection. If vehicle B sends

false information about its speed to vehicle A, relying on this

information would cause a crash. In case the sensor responsible

for measuring the speed of vehicle B is malfunctioning, a

good course of action for vehicle A is to slow down and

let vehicle B merge into the lane without interfering with it.

However, if vehicle B is programmed to crash into vehicle A,

the mitigation would not be sufficient in avoiding a crash.

B. Supervision awareness

Unintentional malicious behavior can be sometimes cor-

rected by letting the system know that it is behaving the wrong

way. However, in some cases this operation would equip

the system with additional information that could leveraged

against another systems or to compromise the integrity of the

ecosystem as a whole [2].

In the past decade, there were multiple scandals where ve-

hicle manufacturers installed supervision awareness detection

in their products [4]. The goal of this piece of software was

to detect whether the vehicle is under emissions test or used

by its owner. Based on the detected context, the ECU was

instructed to reduce the CO2 emissions by lowering the overall

torque and power produced by the engine. This example can be

simply extended to the domain to the autonomous ecosystems,

where a member system can behave differently if it is being

monitored and start behaving maliciously when it detects that

the supervision is suspended.

C. Misclassification of behavior

When deciding whether an action of a system is malicious

or not, there is always a margin of error. No classification

technique can be always perfect and this inherently carries

some danger when using such technique to make decision

about enforcing safety mechanisms. If a behavior is incorrectly

classified as malicious, reactions to this false-negative sce-

nario can unnecessarily limit the functionality of the system.

Furthermore, the result can influence any future interaction

with this system can be restricted in the ecosystem. On the

other hand, when a malicious action is wrongly classified

as regular or safe behavior, this case is a false-positive and

it can allow the system to cause even more damage then it

originally intended to inflict on the ecosystem [2]. Some kind

of compensation between these two extremes is necessary to

both maintain the functionality and also ensure safety.

Fig. 2. Example scenario where misclassification can cause issues

Consider a scenario in Figure 2 where both misclassification

cases can cause issues. If autonomous vehicle C is not capable

of detecting the malicious intent of autonomous vehicle D,

the situation can escalate into a frontal crash. Meanwhile, if

vehicle D is wrongly classified as malicious, the triggered

collision avoidance mechanism can slow down vehicle C more

than it would be necessary with a correct classification. This

would slow down the whole intersection for a longer amount

of time that could affect other autonomous vehicles as well.

D. Feedback loops

The possibility of repetitive misclassification in multiple

systems that interact with each other can create an even more

challenging issue. Safety mechanisms invoked by one system

can be interpreted by other systems as malicious. Any reaction

to this false-negative can be also interpreted as malicious

which can cause a gradual triggering of more and more strict

safety features in every interacting system. This can even lead

to a permanent stall of the whole ecosystem, especially if

one of the member systems has been intentionally designed to

cause an issue like this. This possibility should be considered

when designing the safety architecture of an ecosystem [2].

Fig. 3. Example scenario where feedback loop can cause dangerous behavior
of both vehicles

Figure 3 shows two autonomous vehicles heading in the

same direction, where vehicle E has a higher speed rating and

eventually it would overtake vehicle F. If vehicle F does not
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recognize the overtaking action and classifies the acceleration

of vehicle E as malicious, it can accelerate to a higher speed

to avoid a possible collision. This behavior can be interpreted

by vehicle E as malicious and as a reaction it could decrease

its speed. As there is no reason for vehicle F to increase its

speed anymore, it can adjust its speed to the initial one. If

vehicle E returns to its original speed, the whole situation can

repeat itself from the beginning. The other possible outcome is

to adjust the speed of both vehicles to the same speed, which

would be not optimal for vehicle E as it is capable of higher

speeds for a longer amount of time.

E. Compatibility

In any autonomous ecosystems there is a possibility of hav-

ing heterogeneous member systems, manufactured by various

vendors, using different implementations that not necessarily

provide the same (safety) features. In order to ensure the safe

behavior of the ecosystem, it is necessary to be able to provide

some kind of backwards compatibility for systems with a

reduced set of safety features. Alternatively, the ecosystem

should be able to (at least temporarily) equip these systems

with some kind of common safety mechanism. An extreme

edge case of this problem is when a human is interacting with

the ecosystem, which can be interpreted as a member system

with zero compatibility and no possibility to receive a new

safety mechanism.

Fig. 4. Example scenario for a critical compatibility issue

The example in Figure 4 shows four vehicles meeting at

an intersection. Autonomous vehicles G and H use the most

modern safety assurance framework which provides a solution

for all the problems stated in Section 2. Autonomous vehicle

I uses a different implementation in which some of these

problems are not fully covered. Lastly, vehicle J is driven by

a human who has no or minimal knowledge about what kind

of software is running on the three autonomous vehicles.

III. STATE OF THE ART AND RELATED WORK

Safety can be interpreted differently in each domain. Our

research found that the most relevant definitions for our

purposes are "the ability of a distributed application and its

parts to continue operating in a safe manner during and after

a transformation" [5] and the "avoidance of hazards to the

physical environment" [6].

A. Safety in Autonomous Vehicles

Research in the area already covers most of the safety

aspects of individual autonomous systems. Collision avoid-

ance [7], communication security and recovering from at-

tacks [8], [9] in the subdomain of autonomous vehicles are

not dealing with safety on the magnitude of an ecosystem as

a whole. Safety assurance in vehicle platooning [10] on the

other hand is close to the area of interest, however, it does not

provide answers to all the problems stated in Section 2.

B. Simplex architecture

The concept of "using simplicity to control complexity" [11]

implemented by the Simplex architecture is an interesting

approach to ensuring safe behavior of a system, popular in

control systems and beyond. The core of the idea is to split

up a system into a complex component (advanced controller)

supporting all its ordinary behavior and a simpler component

(baseline controller) that is only intended to resolve critical sit-

uations. A decision module between these two components can

select which one should be enabled in certain situations [12].

While combining multiple simplexes can be a viable solution

in having a complex system of systems where each system

is responsible for its own safe behavior [13], [14], they are

not designed to deal with uncertain situations. Also they can

be prone to feedback loops and the lack of the granularity of

the safety assurance can cause problems if a misclassification

occurs [2].

Fig. 5. The simplex architecture [14]

C. Self-adaptation

Self-adaptive cyber-physical systems are capable of han-

dling uncertain situations [15]. This adaptability can be

achieved by techniques such as runtime model querying [16]

or Monitor Analyze Plan Execute with Knowledge (MAPE-

K) [17] feedback loops. Security that is defined as "something

"concerned with protecting assets from harm" can be also

enforced in an adaptive way that is being evaluated during

runtime [18]. This and techniques like Adaptive Control Lya-

punov Functions aCLFs [19] can be also applied to (instead

of security) enforce the safety of an autonomous system.

DAVID HALASZ, BARBORA BUHNOVA: RETHINKING SAFETY IN AUTONOMOUS ECOSYSTEMS 83



Although these solutions are well designed for autonomous

systems, they do not provide answers to securing an ecosystem

as a whole. Scaling a feedback loop by distributing it to

multiple systems face difficulties as member systems are not

always collaborative.

Fig. 6. Framework to support adaptive security [18]

D. Safety in distributed ecosystems

When considering safety in largely distributed ecosystems,

wireless networks become a noteworthy source of knowledge,

even though their most important aspect is communication

security [20], [21]. The way how ad-hoc and self organiz-

ing mesh networks [22], [23] work strongly resembles the

dynamicity in autonomous ecosystems. Techniques from this

subdomain [24], [25], [26] might be useful in our context. It is

however limiting that they can only cover the cyber part of a

cyber-physical ecosystem. Cutting off a node from a network

can surely increase safety, however, ignoring a robot or an

autonomous vehicle in a similar way can cause more problems

than it solves. Moreover, such scenario could hint a malicious

system about no longer being monitored, which introduces the

problem of supervision awareness in the ecosystem.

E. Classification of behavior

Determining if an action done by a system is malicious or

not is the most important factor when selecting the appropriate

reaction in other member systems. Due to the dynamicity of

the ecosystem, such classification has to be conducted contin-

uously and at real-time. In an ideal case, each member system

could have its own model constructed [27] and propagated

that could be queried by other systems to decide on further

actions. The approach is called models@run.time [16] and it

is intended to be used in scenarios that were not taken into

account when the system had been designed [28]. The problem

with this approach is the requirement of a valid model for each

member system, which is not always possible to construct.

Another issue is the distribution of these models and the fact

that sharing them with malicious systems might equip them

with knowledge about vulnerabilities and increase the overall

attack surface [2].

IV. PROPOSED SOLUTION

Ensuring safe and secure behavior of autonomous cyber-

physical ecosystems is a challenging task and it requires a new

approach on how relationships between individual entities are

perceived. The inherent complexity and the dynamic context

changes of the consistency of such ecosystems cannot be

solved during design time. Therefore, any proposed solution

has to able to handle previously unexpected or uncertain

situations during runtime. Referring to our previous work [2]

and Liu et al. [29], we believe that leveraging real-time

evaluated trust among ecosystem components can provide

sufficient input to make real-time decisions about safety in

dynamic autonomous ecosystems [30].

The definition of trust can to be borrowed from different

branches of science [31], such as Psychology [32], Philoso-

phy [33] and Organizational Management [34]. Simply put,

autonomous systems shall understand trust similarly as we

humans do.

Most of the research in the area is conducted around the

qualitative understanding of trust [31], i.e. classifying it into a

binary form to either trust or not to trust. These approaches,

however, due to the lack of the granularity of their output, are

prone to misclassification. Since the appearance of the Internet

of Things, there are some promising approaches that are able

to assess trust quantitatively [29], e.g. into a percentage. Due to

the higher variety in the output, such methods are statistically

less likely to be far away from the right result in case of an

error in the trust calculation. It is important to mention, that

trust can be calculated directly (trust) from a target system or

obtained indirectly (reputation) from other systems that have

had former interactions with the target system [35], [36], [37].

In some cases the two can be merged into a combined value

with predefined or dynamic weights.

Any input consumed by our solution has to be more granular

than a binary, e.g. to trust or not to trust. This should

significantly reduce the chance of errors happening due to

misclassification as the distance between the ideal and the

actual output is statistically lower than in a binary situation.

This granularity should be mirrored in the safety enforcement

with a graduality of triggering safety mechanisms or exposing

features towards other autonomous systems [2].

The decision tree for a single autonomous system of an

example safety mechanism is shown in Figure 7. For sim-

plification, it assumes a numeric input coming from a trust

model with a decimal number between 0 and 1. This trust

level is being continuously recalculated in real-time against

any interacting autonomous system and used to decide which

features should be exposed or concealed and which safety

mechanisms should be triggered in individual situations. A

low trust level allows a minimal set of features and a large

number of safety mechanisms and as the trust level is growing,

the trend is gradually reversing. It is important, that safety

mechanisms are also available on the highest level of trust

and the system can move to a lower trust level at any time

during its operation.
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Fig. 7. Example decision tree: actions to take based on trust [2]

A. Safety Assurance Framework

The envisioned framework supporting trust-based adaptive

safety is drafted in Figure 8. Its core components are the Trust

Model, the Decision Tree and the Safety Module connecting

these two. 1) The Trust Model calculates a Trust Value of a

target system based on inputs from sensors and a reputations

propagated by other actors of the ecosystem. 2) The Trust

Value calculated by the model is consumed by the Safety

Module and propagated to other systems doing similar calcu-

lations. 3) The Safety Module using the Decision Tree selects

what safety mechanisms should be enabled or disabled and

what features can be exposed to or concealed from the target

system. 4) The Decision Tree allows the possibility to alter

itself either by a software update or by the system itself using

a self-adaptive technique.

The process of trust calculation is continuously triggered by

the Safety Module after each adaptation cycle. This ensures

that the system has the most recent information about how

much a target system can be trusted at all time.

In case the Trust Value has been assessed wrongly, granu-

larity of the trust output combined with the gradual triggering

of safety features significantly decreases the margin of error

and its consequences. In case a system with high level of trust

behaves maliciously, the fast recalculation of the Trust Value

can not just help the attacked system to quickly adapt, but

this new information can be propagated to other members of

the ecosystem. The spreading reputation can influence trust

computations in other systems, ensuring their safety features

are prepared for a future encounter with a malicious sys-

tem. Furthermore, fresh reputation information might provide

means to end a feedback loop introduced by wrong trust

calculations.

The real-time recalculation and quick reaction time of

triggering safety features should address most of the possible

issues related to the detection of intent. Due to the continuous

recalculation of the Trust Value, supervision awareness is also

addressed by this technique. A malicious system that previ-

ously maximized its trustworthiness to access a certain feature

can be quickly detected. We envision that trust propagation in

ecosystems would create clusters of safely operating member

systems and push malicious ones to the periphery. Interaction

with them should not be completely severed as knowledge

about them can be helpful in preventing further harm in the

future.

If trust is calculated by using predictive simulations via

Digital Twins [3], the same Digital Twins can be also used

to partially determine the capabilities of other systems. This

equips the Safety Assurance Framework with critical informa-

tion regarding compatibility and might prevent certain cases

of feedback loops. In this case the framework has to be able

to receive Digital Twins and run predictive simulations even

independently from its Trust Model. It is also necessary to

consider situations when digital twins are not available or

predictive simulation is not an option, e.g. in case of a human.

Most importantly, the Decision Tree has to be constructed in

a way that it handles these situations.

B. Example scenario

Consider a scenario of two autonomous vehicles in Figure 9

leveraging our framework. Both vehicles can in advance assess

how much they trust each other. In case if that information

is available, they can rely on reputation propagated by other

actors of the ecosystem as well. From the perspective of

vehicle A, when trust towards the malicious vehicle B is

calculated as 0.7, the system would initially trigger safety

mechanisms only for avoiding a frontal collision by moving to

the right side of the road. As the Trust Value is high enough,

this information would be communicated to vehicle B. If the

malicious behavior is becoming more obvious, the constantly

recalculated Trust Value first drops to 0.4, vehicle A begins to

reduce its speed and tries to find a course that would minimize

the risk of a collision. As the vehicles are getting closer to

each other and the Trust Value reaches 0.2, an active collision

avoidance mechanism takes over the control and tries to keep

safe distance from vehicle B.

In a reversed scenario if the wrongly calculated Trust Value

is 0.2, the same active collision avoidance mechanism is

controlling vehicle A. Vehicle B detects this behavior and
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Fig. 8. Framework to support Trust-based Adaptive Safety

Fig. 9. Example scenario

also starts behaving more cautiously, which increases the Trust

Value towards it to 0.5. This leads to more information sharing

between the two vehicles and the increased number of inputs

increases the Trust Value to 0.9 by the time the two vehicles

meet and they both move to their right side of the road and

continue with an increased speed.

After their encounter, both vehicles store the final Trust

Value, that would prevent them from getting into similar

scenarios with each other. In the meantime, all calculated

Trust Values are propagated into the ecosystem (in terms of

a reputation of each individual vehicle), which should reduce

any misclassification for other actors.

V. DISCUSSION

Our approach proposes a paradigm shift in comparison with

existing solutions. This paper is exploratory in nature and

intends to start a community discussion about future steps in

this direction.

Even though trust is the designated decision factor in our

approach, it is only considered as an input to the proposed

mechanism. The Trust Model is treated as a black box and

its main requirement is to produce a non-binary granular

output. Having a safety mechanism decoupled from its input

allows us to have additional flexibility. Autonomous systems

can implement different Trust Models [30] and it might also

happen that decision factors other than trust will be consumed

by the solution.

Our future plans are to finalize the specification of the

Safety Assurance Framework and define its input and output

interfaces. Meanwhile, our research team is reviewing trust

computation methods that can be consumed by the proposed

solution. After both are ready and available, our plan is to

reach out to automotive companies and work together with

them to validate the framework on real-life case studies.

VI. CONCLUSION

Due to the rising complexity of autonomous ecosystems,

new software-architecture mechanisms are necessary to re-

spond to the dynamicity of changes while ensuring safety

even in uncertain situations. In this work, we propose to

address this challenge via mechanisms to gradually enable

safety mechanisms based on the assessed level of trust towards

other members of the ecosystem, in combination to new ways

of assessing the trustworthiness of individual system compo-

nents. Furthermore, we describe the fundamentals of a Safety

Assurance Framework that would support this mechanism. In

our next steps we plan to create a more thorough design of the

framework and validate it on case studies provided by possible

partners from the industry. We believe that this idea will evolve

into a set of prototypical tools supporting promoting of safe

autonomous ecosystems.

ACKNOWLEDGMENT

This research was supported by ERDF "CyberSecurity,

CyberCrime and Critical Information Infrastructures Center of

Excellence" (No. CZ.02.1.01/0.0/0.0/16_019/0000822).

REFERENCES

[1] R. Capilla, E. Cioroaica, B. Buhnova, and J. Bosch, “On autonomous
dynamic software ecosystems,” IEEE Transactions on Engineering Man-

agement, pp. 1–15, 2021. doi: 10.1109/TEM.2021.3116873

[2] D. Halasz, “From systems to ecosystems: Rethinking adaptive safety,”
in 17th International Symposium on Software Engineering for Adap-

tive and Self-Managing Systems (SEAMS ’22). IEEE, 2022. doi:
10.1145/3524844.3528067

[3] E. Cioroaica, T. Kuhn, and B. Buhnova, “(do not) trust in ecosystems,”
in 2019 IEEE/ACM 41st International Conference on Software Engi-

neering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 2019.
doi: 10.1109/ICSE-NIER.2019.00011 pp. 9–12.

86 POSITION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



[4] M. Contag, G. Li, A. Pawlowski, F. Domke, K. Levchenko, T. Holz, and
S. Savage, “How they did it: An analysis of emission defeat devices in
modern automobiles,” in 2017 IEEE Symposium on Security and Privacy

(SP), 2017. doi: 10.1109/SP.2017.66 pp. 231–250.
[5] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, “Composing

adaptive software,” Computer, vol. 37, no. 7, pp. 56–64, 2004. doi:
10.1109/MC.2004.48

[6] A. Banerjee, K. K. Venkatasubramanian, T. Mukherjee, and S. K. S.
Gupta, “Ensuring safety, security, and sustainability of mission-critical
cyber–physical systems,” Proceedings of the IEEE, vol. 100, no. 1, pp.
283–299, 2012. doi: 10.1109/JPROC.2011.2165689

[7] G. Li, Y. Yang, T. Zhang, X. Qu, D. Cao, B. Cheng, and K. Li, “Risk
assessment based collision avoidance decision-making for autonomous
vehicles in multi-scenarios,” Transportation Research Part C: Emerging

Technologies, vol. 122, p. 102820, 2021. doi: 10.1016/j.trc.2020.102820.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0968090X20307257

[8] S. Bouchelaghem, A. Bouabdallah, and M. Omar, “Autonomous
Vehicle Security: Literature Review of Real Attack Experiments,”
in The 15th International Conference on Risks and Security of

Internet and Systems, Paris, France, 2020. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-03034640

[9] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou, “A review
on safety failures, security attacks, and available countermeasures
for autonomous vehicles,” Ad Hoc Networks, vol. 90, p. 101823,
2019. doi: 10.1016/j.adhoc.2018.12.006 Recent advances on security
and privacy in Intelligent Transportation Systems. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1570870518309260

[10] J. Axelsson, “Safety in vehicle platooning: A systematic literature re-
view,” IEEE Transactions on Intelligent Transportation Systems, vol. 18,
pp. 1–13, 08 2016. doi: 10.1109/TITS.2016.2598873

[11] L. Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18,
no. 4, pp. 20–28, 2001. doi: 10.1109/MS.2001.936213

[12] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The simplex architecture
for safe online control system upgrades,” in Proceedings of the 1998

American Control Conference. ACC (IEEE Cat. No.98CH36207), vol. 6,
1998. doi: 10.1109/ACC.1998.703255 pp. 3504–3508 vol.6.

[13] P. Vivekanandan, G. Garcia, H. Yun, and S. Keshmiri, “A simplex archi-
tecture for intelligent and safe unmanned aerial vehicles,” in 2016 IEEE

22nd International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), 2016. doi: 10.1109/RTCSA.2016.17
pp. 69–75.

[14] D. Phan, J. Yang, M. Clark, R. Grosu, J. Schierman, S. Smolka, and
S. Stoller, “A component-based simplex architecture for high-assurance
cyber-physical systems,” in 2017 17th International Conference on

Application of Concurrency to System Design (ACSD), 2017. doi:
10.1109/ACSD.2017.23 pp. 49–58.

[15] H. Muccini, M. Sharaf, and D. Weyns, “Self-adaptation for cyber-
physical systems: A systematic literature review,” in 2016 IEEE/ACM

11th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS), 2016. doi: 10.1145/2897053.2897069
pp. 75–81.

[16] N. Bencomo, R. France, B. Cheng, and U. Aßmann, Eds., Mod-

els@run.time: foundations, applications, and roadmaps, ser. Lecture
notes in computer science. Germany: Springer, Dec. 2014. ISBN 978-
3-319-08914-0 Dagstuhl Seminar 11481 on models@run.time held in
November/December 2011.

[17] P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and analyzing
mape-k feedback loops for self-adaptation,” in 2015 IEEE/ACM 10th

International Symposium on Software Engineering for Adaptive and Self-

Managing Systems, 2015. doi: 10.1109/SEAMS.2015.10 pp. 13–23.
[18] M. Salehie, L. Pasquale, I. Omoronyia, R. Ali, and B. Nuseibeh,

“Requirements-driven adaptive security: Protecting variable assets at
runtime,” in 2012 20th IEEE International Requirements Engineering

Conference (RE), 2012. doi: 10.1109/RE.2012.6345794 pp. 111–120.
[19] A. J. Taylor and A. D. Ames, “Adaptive safety with control barrier

functions,” in 2020 American Control Conference (ACC), 2020. doi:
10.23919/ACC45564.2020.9147463 pp. 1399–1405.

[20] L. S. Rutledge and L. J. Hoffman, “A survey of issues in computer
network security,” Computers & Security, vol. 5, no. 4, pp. 296–
308, 1986. doi: 10.1016/0167-4048(86)90050-7. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0167404886900507

[21] M. S. Siddiqui, “Security issues in wireless mesh networks,” in 2007
International Conference on Multimedia and Ubiquitous Engineering

(MUE’07), 2007. doi: 10.1109/MUE.2007.187 pp. 717–722.
[22] A. J. Fehske, I. Viering, J. Voigt, C. Sartori, S. Redana, and

G. P. Fettweis, “Small-cell self-organizing wireless networks,” Pro-

ceedings of the IEEE, vol. 102, no. 3, pp. 334–350, 2014. doi:
10.1109/JPROC.2014.2301595
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