
Small Footprint Embedded Systems Paradigm Based

on a Novel and Scalable Implementation of FORTH

BogusCaw Cyganek

AGH University of Science and Technology, Poland

Al. Mickiewicza 30, 30-059 Kraków, Poland

cyganek@agh.edu.pl

Abstract4This paper describes architecture of the novel

implementation of the Forth interpreter-compiler. The

architecture follows the object- and component-oriented design

paradigms. The implementation is done with the modern C++ 20

language taking full advantage of such constructs as lambda

functions, variadic templates, as well as the coroutines and

concepts. The system is highly modular and easily scales for small

footprint embedded systems. We propose to extend Forth with the

coroutine words that allow for async operations and lightweight

cooperative multi-threading. We show successful deployment of

the proposed Forth implementation on three platforms, two PC

frameworks running Linux and Windows, respectively, as well as

on tiny embedded system NodeMCU v3 with the 32-bit RISC

ESP8266 microprocessor and 32/80KB memory. The platform also

has educational value, showing intrinsic operation of Forth and

modern C++. Software is available free from the Internet.

Keywords4: Forth, compiler-interpreter, multi-tasking, co-

routines, co-operative systems, IoT

I. INTRODUCTION

Forth is a computer language developed by Charles Moore in

early 70s as a system to control the radio telescope when he

worked in the National Radio Astronomy Observatory [11][13]

[19]. Its name was coined to commemorate the fourth

generation of computers but since the file system restricted

names to five letters only, Moore skipped the middle <U= and
left Forth. The fascinating story of Forth is described in The

Evolution of Forth [11], while a short biography of Charles

Moore is in Wikipedia [13]. Forth has always been very

outstanding, original and interesting computer language [1][10]

[12][14][15]. Although not in the mainstream, slightly forgotten

today, we are deeply convinced it can still serve many purposes.

This is especially true in the context of small embedded systems

that need interactive features, such as ones for the Internet of

Things (IoT), and also if Forth can be shown in the new light of

a novel implementation in modern C++, as presented in this

paper.

There are many free and commercial implementations of

Forth, such as Gforth, which is a free GNU portable

implementation of the ANS Forth standard for Linux/Unix,

Windows, and other operating systems [20]. Another

implementation is Swift Forth® by Forth Inc. [21]. On the other

hand, a popular implementation with many follow ups is

jonesforth project [22]. We just named few of the available

projects, many more can be found online [19][23].

However, to the best of our knowledge, none of the above

mentioned implementation uses modern C++, i.e. ver. 17 or 20

[5][24]. On the other hand, having a Forth implementation done

with modern C++ allows to use the latest very efficient and

productive features of C++, such as STL containers, variadic

templates, on-time compilation, regular expressions, lambda

functions, and coroutines. Especially the latter offers new ways

of efficient implementation of the async IO operations, state

machines, or lightweight multithreading, as will be discussed.

Hence, the proposed implementation greatly reduces system

complexity, at the same time allowing for scalable solutions.

The complete Forth project presented in this paper, named

BCForth, is available free from the Internet [16]. This also

makes it a good teaching platform for the computer classes.

But most of all, what can be interesting in Forth when

confronted with e.g. modern C++? The main difference is

presence of the interpreter and compiler, at a relatively small

footprint on the other hand. This means that, contrary to C++,

which to add a new software component requires recompilation

and rebuild, a Forth based system is very interactive and

extensible. That is, the user can run the existing words but also

can extend the system by his/her defined new words, which are

immediately compiled and instantly become available for

construction of next words, and so on. Not less important is the

mentioned small footprint of Forth, which renders it useful for

small embedded platforms, IoT, or even in the so called bare-

metal systems. Hence, we can easily imagine a simple but smart

sensor, which is run by Forth alone and allows communication,

as well as extensions, in the run time.
The rest of the paper is organized as follows. Architecture of

the Forth platform is presented in Section II. It is organized in
four subsections: core architecture (II.A), key data structures
(II.B), hierarchy of Forth words (II.C), and finally the system
activity (II.D). The coroutine component 3 a proposed novel
add-on to the Forth language 3 is dealt with in Section (III).

Position Papers of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 123–130

DOI: 10.15439/2022F275

ISSN 2300-5963 ACSIS, Vol. 31

©2022, PTI 123

System deployment and experiments are presented in Section
(IV). The paper ends with conclusions in Section (V).

II. ARCHITECTURE OF THE NOVEL FORTH PLATFORM

The main purpose of the BCForth, is to provide a flexible

implementation of Forth with the modern C++20, which can be

easily ported to various embedded platforms endowed with the

C++ compiler. BCForth contains also an extension in the form

of the coroutines, as will be discussed. Contrary to some older

implementations in assembly or C, modern C++ allows clear,

understandable and extensible code. For instance, if necessary

BCForth can be reduced of its components (e.g. it can run only

with the interpreter), or it can be even ported to the older version

e.g. C++ 11.

 In this section we present basic assumptions behind the

architecture of BCForth, while its implementation can be

accessed free from the GitHub [16].

A. Core Architecture

Fig. 8 depicts the overall architecture of the Forth language

defined in the project BCForth. The role and responsibilities of

each class in the hierarchy are as follows.

÷ TForth 3 the base class defining all basic data

structures, such as: the data stack represented by

DataStack, the words9 dictionary WordDict

(std::unordered_map), as well as the auxiliary

return stack RetStack.
TForth defines the WordEntry, which is the structure

holding all necessary information about a word and kept

as a value of each word in the dictionary.

InsertWord_2_Dict inserts a newly created word to

the dictionary, whereas GetWordEntry retrieves a

word from the dictionary by providing its name as a key;

WordOptional is returned to cope with situations of

non-existing words. Various words are represented as

objects from the rich TWord family. These have access

to the data stack defined in TForth. Each word present

in the TForth dictionary is ready to be executed by

calling the ExecWord with the word_name as its

parameter. Hence, TForth alone, is sufficient to handle

the pre-defined and non-contextual words (i.e. ones that

don9t need any other tokens from the input stream). This
makes TForth alone a minimalistic Forth system.

TForth defines also an auxiliary vector NodeRepo to

hold objects that need to be present but that do not go to

the dictionary of words (Fig. 8). These are e.g. compiled-

in literals.

÷ TForthInterpreter 3 derived from TForth is

responsible for handling the interpreter mode, in which

a stream of tokens is processed and executed.

Operation of TForthInterpreter mostly relies on

interpreting the incoming stream of tokens, as integer or

floating-point literals (these are distinguished by the dot

. inside the literal), or as word names to be executed and

their optional parameters. However, no new words can

be defined (this is a role left for TForthCompiler).

÷ TForthCompiler 3 extends TForthInterpreter by

providing the ability of entering definitions of new

words. New words can be entered to the dictionary (Fig.

2) with the defining construction colon-semicolon (: ;).

For instance,

: ACTION DO I . CR LOOP ;

defines a new word ACTION which upon a call

23 0 ACTION

prints all values 0-22, each in a new line.

However, apart from the calls to the words already

defined and registered in the dictionary, word definitions

can contain nested structural words, such as IF & THEN
... ELSE, DO & LOOP, etc., as well as the two-stroke

CREATE & DOES> creational pattern, or the IMMEDIATE

/ POSTPONE handling modes.

÷ TForthReader 3 an auxiliary class for converting a

text stream, such as a terminal window or a text file, into

a stream of Forth9s tokens. This is done by text splitting

over the white symbols (space, tab, new line), as well as

after stripping off the Forth9s comments. This way
obtained stream of text tokens is fed to the interpreter

and/or compiler objects, as described in Section (II.D).

 One of the main architectural assumption is a strong

separation of the input stream processing components, the token

stream processing components, and the word defining objects.

In other words, the latter does not bother with any variants of

the input and output terminals. On the other hand, the streams

of Forth tokens are obtained by the TForthReader object. If

this is a word definition, tokens are passed to

TForthCompiler, in order to compile-in a new word.

Otherwise, tokens go to TForthInterpreter for word(s)

execution.

B. Key Data Structures

Details of Forth can be found in many sources [1][4]. Here

we focus mostly on the basic data structures and operations

which they are used for. Fig. 1 depicts few characteristic

operations on the Forth9s data stack.

7

7

2

7

2

DUP

7

2

2

+

7

4

SWAP

4

OVER

4

ROT

7

7 7

4

4

4

+ *

56

+

DROP

Fig. 1 Examples of the most common stack operations in Forth. All values are

entered in the RPN. DUP duplicates the top value of the stack. A binary

operator, such as +, removes the two topmost values, performs the operation,
and pushes the result onto the stack. SWAP changes order of the two topmost

values. OVER copies the second operand and pushes it to the top of the stack.

ROT does the rotation of the three topmost stack values. DROP removes the

topmost value from the stack.

 The operations are straightforward once we recall that all

operations are in the Reverse Polish Notation (RPN) [5]. It can

124 POSITION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

be observed that each newly entered value (object) is pushed

onto the data stack. Each operation, on the other hand, such as

the + operator, or a DUP (duplicate) operation, pops off the

necessary number of parameters, performs its specific action,

and pushes the result, if there is any (for + this will be the sum,

whereas DUP simply duplicates the top value of the stack).

 In all of the aforementioned operations an error is thrown if

the stack does not contain a number of operands (values)

expected by a word. This breaks execution of a word and the

special on-error cleaning procedure is launched, after which

Forth gets good chances to enter the interpretation mode again,

waiting for new commands.

Name

DROP

...

DROP

2DROP

...

CompoWord { WordPtr, ... }

... ds.Pop()
A single

word entry

std::map< > ,

DROP

10

Data stack

(ds)

TStackFor

Fig. 2 Forth words are kept in the dictionary data structure, implemented as the

C++ std::unordered_map with the key being any Name (std::string),

while definitions are kept in a hierarchical CompoWord structures (based on

std::vector containing pointers to already defined words and other

procedures). Frequently, new words call words already present in the

dictionary, such as 2DROP which two times calls DROP. Also, the words have

an access to the data stack.

 The second data structure characteristic to Forth is the word

dictionary. Fig. 2 depicts structure of the Forth9s dictionary in
the BCForth implementation that holds definitions of the

words, i.e. procedures. Each word is identified by its name.

As shown in Fig. 2, words can access the stack which

holds the input and output parameters. Such definition is first

scanned by the lexical tokenizer (

Fig. 8) to produce valid tokens, such as numeral literals and

names of other words. The tokens are then parsed by the Forth

compiler and, upon success, new definition is entered to the

word dictionary

C. Hierarchy of Words

Fig. 9 depicts hierarchy of word defining classes, which has

been already outlined in the general architecture shown in

Fig. 8. The roles of the classes in the TWord hierarchy are as

follows.

÷ TWord is a template base class defining functional

objects (functors) for the word hierarchy. The F template

represents a class that defines all necessary data

structures. Currently for this purpose TForth from Fig.

9 is used. Its main functionality, as well as of all of its

descendant, is the action defined by the virtual

functional operator (). Naturally, invoking any

Forth9s word will be translated into calling the

corresponding operator (). Hence, the entire TWord

hierarchy can be seen as the command design patter [8].

÷ StructuralWord originates the sub-group of the

structural words, such as the conditional statement IF &
ELSE & THEN, the counted loop DO & LOOP and many

more. However, StructuralWord is only a type-

holder, whereas the most important function-holder is

CompoWord.

÷ CompoWord defines the composite design pattern [8][5]

to hold any sequence of Forth9s words, also of the same
type; such a recursive hierarchy allows composition of

nested statements, such as DO & IF & THEN & LOOP,

etc.

÷ IF is an example of a composite to hold other

composites (similarly other objects in this sub-group). In

this case it holds two branches: fTrueBranch

representing a set of operation (another composite)

chosen if, in the run-time, a condition (a value on the

data stack) before the IF statement evaluates to true,

and fFalseBranch which stores operations executed

on the false condition.

÷ TValFor and TDataContainer are the two classes

to represent a compiled-in value or a container of values,

respectively. The type of the stored objects is given by

the second template parameter V.

÷ StackOp 3 is a variadic template originating the suite of

its specializations for defining data stack operations with

various number of input and output parameters. For this

purpose any function with 0, 1 or 2 input parameters, as

well as 0 (void) or 1 return value, can be provided.

These are supplied in the form of lambda functions

passed to the constructor of the StackOp. Thanks to

combination of this variadic template and the lambda

functions dozens of stack operations are defined which

otherwise required definition of separate classes in the

TWord hierarchy [16].

÷ Dot, Comma, etc. 3 are examples of specialized system

words.

 As already mentioned, the key architectural assumption is

expression of any Forth9s word as the composite pattern,
composed of other words, possibly also being composites, and

so forth. Such a hierarchical structure provides a flexibility to

define language constructions composed of structural

statements nested to any depth

D. System Activity

 In this section a brief overview of the activity of the Forth9s
interpreter and compiler are outlined.

 The TForthInterpreter class was already outlined in

Section (II.A). As shown in

Fig. 8, it is directly derived from the base TForth class. Since

the main data structures TForthInterpreter inherits from

its base, its key role is to execute words from the stream of text

tokens, as outlined in the activity diagram shown in Fig. 3.

 TForthCompiler is the last and the most complex class in

the hierarchy in

BOGUSŁAW CYGANEK: SMALL FOOTPRINT EMBEDDED SYSTEMS PARADIGM 125

Fig. 8. As mentioned, its main responsibility is parsing a word

defining stream of tokens, contained in-between the : (colon)

; (semicolon) symbols, and accordingly composing

corresponding code of the newly created word.

operator ()

EnterWordDefinition ExecuteWords

ProcessContextSequences

IsInteger?

IsFloatingPt?

ProcessDefiningWord

TForth::ExecWord

Fig. 3 UML activity diagram of the TForthInterpreter. The ExecuteWords

executes a series of steps after which it is recursively called until the input

stream of text tokens is emptied. The EnterWordDefinition is the compiler

branch

 If this operation is successful, the new word is placed in the

Forth9s dictionary, from which it can be invoked by the

interpreter, as well as used in definitions of future words, again

processed by the compiler, and so on. Its activity diagram is

shown in Fig. 5.

: MY-WORD ;IF ELSE THENtrue_branch_context false_branch_context

DO LOOPloop_context

IF ELSE THENtrue_branch_context false_branch_context

Fig. 4 Changing context concept. Each word, as well as each branch of a

structural construction such as IF & ELSE & THEN, DO & LOOP, etc. has its

own context implemented with its own composite CompoWord. Each such
object has links to other words, also other CompoWords, and so on. The entire

structure is parse by a successive recursive call to the parsing procedure

 Fig. 4 depicts an example of the nested structure

constructions. The key observation is that each sub-branch

opens a new context, which can be treated as a separate sub-

word construction, and so on. This creates a hierarchical

composition which can be processed in a recursive manner 3 at

each level the sub-branch is processed independently as a

separate sub-word and in its own context.

 Finally, the remaining Forth words are defined in separate

Forth modules. These are special classes (Fig. 9) to enter word

definitions for various domains, such as floating-point, string &

memory processing, and from different sources, such as hard

coded, string or file stream. The pure abstract root

TForthModule starts their class hierarchy

EnterWordDefinition

Compile_StructuralWords_Into

Compile_All_Into

operator ()

ExecuteWords

Fig. 5 Activity diagram of TForthCompiler. EnterWordDefinition implements

the principal functionality of the Forth compiler 3 parsing word defining stream

of text tokens and constructing the corresponding implementation. To process

structural statements, which can be nested to any depth, each structural

statement enters into a new context represented by a separate composite object.

Processing is done by recursive calls of the Compile_All_Into function until the
entire defining stream is processed. Compile_StructuralWords_Into processes

the structural statements such as conditional IF, DO, etc. in interaction with the

structural words of the TWord hierarchy

III. FORTH ENDOWED WITH THE COROUTINES

Existence and roles of functions, or routines, in computer

programs are ubiquitous and well known. However, there is a

special type of a routine called a coroutine, which can suspend

its execution preserving its state to be resumed later [9], as

shown in Fig. 6.

 For such functionality coroutines need to have associated

memory to store local data and the resumption point. In this

respect there are two groups: stackfull and stackless coroutines.

Modern C++20 provides the framework and mechanisms for

the latter [7][3]. That is, they suspend execution by returning to

the caller and the data that is required to resume execution is

stored separately from the stack. This allows for sequential code

that executes asynchronously e.g. to handle non-blocking I/O

without explicit callbacks, allows for the so called lazy-

computations e.g. to generate infinite series of values, but most

of all it allows for cooperative multitasking purely on the Forth

platform. The latter is very useful feature especially on small

and resource constraints platforms that nevertheless require the

kind of multitasking [2]. Forth built in coroutines allow for such

126 POSITION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

operation in much more lightweight way compared to the

preemptive multitasking. Hence, coroutines are a unique feature

of BCForth.

ENTER

RETURN

 (a)

ENTER

RETURN

SUSPEND RESUME

DESTROY

(b)

Fig. 6 State diagram of an ordinary routine (a) and a coroutine (b). The latter

can also suspended, preserving its state, to be resumed later. This allows for

async operations or lightweight threading

 The main proposed idea is to introduce new Forth words,

which will operate as the stackless co-routines (however, they

have an access to the Forth9s stack). For this purpose a new
word named CORO is proposed, which if put after a word9s
definition, makes it a coroutine (this is similar to the

IMMEDIATE post word). In the Forth9s nomenclature we
propose to call them co-words. For instance, the following

defines the word FIBER_0 that does XOR of the first cell in a

buffer BUF, then reads the second cell from that buffer and

pushes it onto the Forth9s stack

: FIBER_0 BUF @ 0xAB XOR BUF ! 0x02 BUF + @

; CORO [155]

However, CORO with the optional parameter [155] makes it a

Forth9s coroutine that toggles some bits, and suspends after 155
ms, or terminates if the second cell in BUF is not 0. This is

possible thanks to the CORO_Frame and FiberTask<T> C++

coroutine structure that operates as a wrapper around any

WorkerWord, such as FIBER_0, in our example, while

time_slice becomes 155. An outline of CORO_Frame looks

as shown in Algorithm 1. FiberTask<T> in line [1] is a

structure with the nested class promise_type, as required by

the C++20 framework [7]. On the other hand, GetTimePoint

in lines [3,5,10] does the time management, resulting with the

suspend via co_await in [9].

The next proposed new word is COYLD (from co-yield) that

suspends a given word leaving its value on the top of the Forth9s
stack. Thanks to this, the value generating words can be defined.

With its help the CO_RANGE word has been created which, upon

each call, generates and pushes onto the Forth9s stack
consecutive values from a predefined range. For example 10

20 2 CO_RANGE creates a generator of values 10 to 20 with

step of 2. Then each call to CO_RANGE leaves 12, 14, &, 18 on
the stack.

The last from the proposed words is the COSUS (from co-

suspend). It suspends a Forth9s word at its point of call, from
which that word will resume if called again (naturally, an

8ordinary9 Forth word would start from the beginning).

IV. SYSTEM DEPLOYMENT AND EXPERIMENTS

The complete C++ implementation of BCForth with

exemplary Forth programs is available from the GitHub [16].

This is a multi-platform header only library aimed at

Linux/Unix, Windows, and MacOS. It was successfully built

and deployed on the following platforms:

1. PC computer with Linux Ubuntu 18.4 and 20.4, run on

laptop Dell Precision 7710. Compiled with the gcc version

10 and 11. The latter allows co-routines.

2. PC computer with Windows 10 run on laptop Dell Precision

7760. Compiled with the Microsoft Visual C++ 2019 v.

16.9.2, as well as MV 2022 v. 17.2.6.

3. Embedded system NodeMCU v3 with the 32-bit RISC

ESP8266 microprocessor [17][18], controlled by the 80

MHz clock (based on Tensilica Diamond Standard

106Micro architecture). The system equipped with the 32

KB instruction memory and 80 KB data RAM. The system

contains built-in Wi-Fi, 10 GPIO ports, ADC converter and

USB-UART CH340 link, allowing also external

programming. Built in the PlatformIO Arduino equipped

with the gcc version 10. This is an example of a IoT tiny

platform with its own system but yet without co-routines.

Fig. 7(a) depicts the NodeMCU board, while BCForth run

in the interactive mode in the terminal window is shown in Fig.

7(b).

 (a)

 (b)

Fig. 7 Embedded system NodeMCU v3 with the 32-bit RISC ESP8266
microprocessor 32KB+80KB RAM, 80 MHz clock (a). BCForth running in the

terminal window (b)

Although both Linux and Windows 10 allowed for a

complete implementation, special attention deserves the third

platform which is a tiny NodeMCU v3 embedded systems with

only the 32 KB instruction memory and 80 KB data RAM.

BOGUSŁAW CYGANEK: SMALL FOOTPRINT EMBEDDED SYSTEMS PARADIGM 127

Nevertheless, with some minor modifications, it was also

possible to run BCForth. This shows that despite C++ the

footprint of the BCForth can be as small as to fit to the small

(and cheap) embedded platforms and/or IoT systems.

However, even more important is fast time (approx. three

weeks) of BCForth system tuning to the new platform done by

Mr. W. GaCecki & Ms. K. Rapacz, students of the 1st year of the

graduate studies Electronics & Telecommunication, as a

completion of their project to the Systems Design and Modeling

Methodologies classes under author9s supervision at the AGH
University of Science and Technology. This proves that

BCForth implementation is straightforward for all persons with

at least medium competitions in the modern C++ programming,

as well as that it can be easily deployed on similar tiny

embedded frameworks. This also adds the teaching aspect of

the presented system and, hopefully, can be used with

educational and technical benefits by a broader group of

students and enthusiasts of embedded systems

V. CONCLUSIONS

In this paper a novel and free Forth language platform
BCForth [16], aimed at embedded systems of various sizes, is
proposed. The main advantage of Forth is coexistence of the
compiler and interpreter that allows for direct communication
with a user and easy composition of new words (procedures).
Unique BCForth features are as follows: (i) modular C++20
based implementation, (ii) implementation of coroutines for
async operations and lightweight multithreading, (iii)
educational/teaching platform for students of electrical
engineering faculties. Envisioned things to do are: (i) modules
with new words (e.g. file operations, graphics, etc.), (ii) GUI for
Forth development and debugging, (iii) auto setup for easier
deployment on the limited footprint platforms. We are deeply
convinced that this novel implementation of Forth will be
beneficial for embedded systems, as well as in education and
further popularization of Forth and C++.

REFERENCES

[1] Brodie L.: Thinking Forth. A Language and Philosophy for Solving
Problems, Creative Commons, 2004.

[2] Belson B., W. Xiang, J. Holdsworth and B. Philippa, C++20 Coroutines
on Microcontrollers 3 What We Learned, IEEE Embedded Systems
Letters, vol. 13, no. 1, pp. 9-12, 2021.

[3] Belson B., et al.. A Survey of Asynchronous Programming Using
Coroutines in the Internet of Things and Embedded Systems. ACM Trans.
Embed. Comput. Syst. 18/3, 2019.

[4] Conklin E.K., Rather E. D.: Forth Programmer9s Handbook, FORTH Inc.
2010.

[5] Cyganek B.: Introduction to Programming with C++ for Engineers.
Wiley-IEEE Press, 2021.

[6] Dunkels A., Schmidt O., Voigt T., Muneeb A. Protothreads: simplifying
event-driven programming of memory-constrained embedded systems.
4th international conference on Embedded networked sensor systems
(SenSys '06). ACM, 29342, 2006.

[7] https://en.cppreference.com/w/cpp/language/coroutines

[8] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, 1994.

[9] Knuth D. E. The art of computer programming, Vol. 1: Fundamental
algorithms (3rd. ed.), Addison-Wesley, 1997.

[10] Pelc S.: Programming Forth. MicroProcessor Engineering Limited, 2005.

[11] Rather E. D., Colburn Donald R., and Moore Charles H.: The evolution
of Forth. History of programming languages-II. Assoc. for Comp.
Machinery, New York, USA, 6253670, 1996.

[12] Rather E. D.: Forth Application Techniques, 6th edition, FORTH Inc.
2019.

[13] https://en.wikipedia.org/wiki/Charles_H._Moore#cite_note-2

[14] https://forth-standard.org/

[15] https://theforth.net/

[16] https://github.com/BogCyg/BCForth

[17] https://en.wikipedia.org/wiki/ESP8266

[18] https://en.wikipedia.org/wiki/NodeMCU

[19] https://en.wikipedia.org/wiki/Forth_(programming_language)

[20] https://gforth.org/

[21] https://www.forth.com/

[22] http://git.annexia.org/?p=jonesforth.git;a=summary

[23] https://awesomeopensource.com/projects/forth

[24] https://cppreference.com

128 POSITION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

TForth

+ InsertWord_2_Dict : WordPtr

+ ExecWord : bool

+ Insert_2_NodeRepo : WordPtr

TForthInterpreter

TForthCompiler

fDataStack : DataStack

fWordDict : WordDict

fNodeRepo : NodeRepo

WordDict :

std::unordered_map< Name, WordEntry >

TForth::WordEntry

- fWordUP : WordUP

- fWordIsCompiled : bool

- fWordIsImmediate : bool

- fWordIsDefining : bool

- fWordComment : Name

DataStack :

TStackFor< CellType, kStackMaxCells >

NodeRepo : std::vector< WordUP >

ProcessContextSequences(Names & ns)

ExecuteWords(Names && ns)

+ operator() (Names && ns)

ProcessContextSequences(Names & ns)

Compile_StructuralWords_Into

(CompoWord< TForth > & theWord, Names & ns)

Compile_All_Into
(CompoWord< TForth > & theWord, Names & ns)

EnterWordDefinition(Names && ns) : bool

- fStructuralStack : StructuralStack

TForthReader

+ operator() (std::istream & i) : Names

TWord

+ operator () (void) : void

+ operator() (Names && ns)

F

0..*

11

See Fig. 9.

Fig. 8 Architecture of the BCForth system. The main branch is composed of three classes: TForth, TForthInterpreter and TForthCompiler. These use the hierarchy

of word nodes, originated from the TWord base (Names denotes a collection of text tokens). The input/output operations are interfaced by the TForthReader class,

which transforms an input stream (terminal or a file) to a series of tokens.

BOGUSŁAW CYGANEK: SMALL FOOTPRINT EMBEDDED SYSTEMS PARADIGM 129

TWord

TValFor

CompoWord

Composite

IF

fData : V

- fWordsVec : std::vector< WordPtr >

F

+ operator () (void) : void

StructuralWord

+ AddWord (WordPtr) : void

+ operator () (void) : void

F

F

- fTrueBranch : CompoWord

- fFalseBranch : CompoWord

+ operator () (void) : void

DO_LOOP

- fBodyNodes : CompoWord

+ operator () (void) : void

DOES

- fCreationBranch : CompoWord

- fBehaviorBranch : CompoWord

+ operator () (void) : void

F
V

+ operator () (void)

TDataContainer

fContainer :

std::vector< V >

F
V

+ operator () (void)

Dot
F

Comma
F

Create
F

Allot
F

Postpone
F

StackOp ...

- fOp : std::function< Ret () >

Ret

+ operator () (void)

F

 StackOp ...

- fOp : std::function< Ret (Arg) >

Ret

+ operator () (void)

F

Arg

 StackOp ...

- fOp :

std::function< Ret (Arg_x, Arg_y) >

Ret

+ operator () (void)

F

Arg_x

Arg_yStructural words

Fig. 9 Hierarchy of classes defining the Forth words. The composite design pattern, implemented with the CompoWord branch, constitutes the main building block

of all words registered to the Forth dictionary. The next branch constitute system specific words, such as Dot or Create. The StackOp branch, implemented as a

variadic template and its specializations, is responsible for majority of the data stack operations, such as arithmetic and logical operations.

Algorithm 1. Scheme of the CORO_Frame routine.

1 template < typename T, auto time_slice, auto WorkerWord >

2 FiberTask< T > CORO_Frame (auto worker_load) {

3 auto tp0 = GetTimePoint(); // coroutines suspend on time elapsed

4 for(;;) {

5 // embed/call worker word WorkerWord with worker_load

6 // if done, then co_await or break for co_return

7

8 if(GetTimePoint() - tp0 > time_slice) {

9 co_await std::suspend_always{}; // suspend if time elapsed

10 tp0 = GetTimePoint();

11 }

12 }

13 co_return -1;

14 }

130 POSITION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

