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Abstract4This paper describes architecture of the novel 

implementation of the Forth interpreter-compiler. The 

architecture follows the object- and component-oriented design 

paradigms. The implementation is done with the modern C++ 20 

language taking full advantage of such constructs as lambda 

functions, variadic templates, as well as the coroutines and 

concepts. The system is highly modular and easily scales for small 

footprint embedded systems. We propose to extend Forth with the 

coroutine words that allow for async operations and lightweight 

cooperative multi-threading. We show successful deployment of 

the proposed Forth implementation on three platforms, two PC 

frameworks running Linux and Windows, respectively, as well as 

on tiny embedded system NodeMCU v3 with the 32-bit RISC 

ESP8266 microprocessor and 32/80KB memory. The platform also 

has educational value, showing intrinsic operation of Forth and 

modern C++. Software is available free from the Internet.  

Keywords4: Forth, compiler-interpreter, multi-tasking, co-

routines, co-operative systems, IoT 

I. INTRODUCTION 

Forth is a computer language developed by Charles Moore in 

early 70s as a system to control the radio telescope when he 

worked in the National Radio Astronomy Observatory [11][13] 

[19]. Its name was coined to commemorate the fourth 

generation of computers but since the file system restricted 

names to five letters only, Moore skipped the middle <U= and 
left Forth. The fascinating story of Forth is described in The 

Evolution of Forth [11], while a short biography of Charles 

Moore is in Wikipedia [13]. Forth has always been very 

outstanding, original and interesting computer language [1][10] 

[12][14][15]. Although not in the mainstream, slightly forgotten 

today, we are deeply convinced it can still serve many purposes. 

This is especially true in the context of small embedded systems 

that need interactive features, such as ones for the Internet of 

Things (IoT), and also if Forth can be shown in the new light of 

a novel implementation in modern C++, as presented in this 

paper. 

There are many free and commercial implementations of 

Forth, such as Gforth, which is a free GNU portable 

implementation of the ANS Forth standard for Linux/Unix, 

Windows, and other operating systems [20]. Another 

implementation is Swift Forth® by Forth Inc. [21]. On the other 

hand, a popular implementation with many follow ups is 

jonesforth project [22]. We just named few of the available 

projects, many more can be found online [19][23]. 

However, to the best of our knowledge, none of the above 

mentioned implementation uses modern C++, i.e. ver. 17 or 20 

[5][24]. On the other hand, having a Forth implementation done 

with modern C++ allows to use the latest very efficient and 

productive features of C++, such as STL containers, variadic 

templates, on-time compilation, regular expressions, lambda 

functions, and coroutines. Especially the latter offers new ways 

of efficient implementation of the async IO operations, state 

machines, or lightweight multithreading, as will be discussed. 

Hence, the proposed implementation greatly reduces system 

complexity, at the same time allowing for scalable solutions. 

The complete Forth project presented in this paper, named 

BCForth, is available free from the Internet [16]. This also 

makes it a good teaching platform for the computer classes. 

But most of all, what can be interesting in Forth when 

confronted with e.g. modern C++? The main difference is 

presence of the interpreter and compiler, at a relatively small 

footprint on the other hand. This means that, contrary to C++, 

which to add a new software component requires recompilation 

and rebuild, a Forth based system is very interactive and 

extensible. That is, the user can run the existing words but also 

can extend the system by his/her defined new words, which are 

immediately compiled and instantly become available for 

construction of next words, and so on. Not less important is the 

mentioned small footprint of Forth, which renders it useful for 

small embedded platforms, IoT, or even in the so called bare-

metal systems. Hence, we can easily imagine a simple but smart 

sensor, which is run by Forth alone and allows communication, 

as well as extensions, in the run time. 
The rest of the paper is organized as follows. Architecture of 

the Forth platform is presented in Section II. It is organized in 
four subsections: core architecture (II.A), key data structures 
(II.B), hierarchy of Forth words (II.C), and finally the system 
activity (II.D). The coroutine component 3 a proposed novel 
add-on to the Forth language 3 is dealt with in Section (III). 
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System deployment and experiments are presented in Section 
(IV). The paper ends with conclusions in Section (V). 

II. ARCHITECTURE OF THE NOVEL FORTH PLATFORM 

The main purpose of the BCForth, is to provide a flexible 

implementation of Forth with the modern C++20, which can be 

easily ported to various embedded platforms endowed with the 

C++ compiler. BCForth contains also an extension in the form 

of the coroutines, as will be discussed. Contrary to some older 

implementations in assembly or C, modern C++ allows clear, 

understandable and extensible code. For instance, if necessary 

BCForth can be reduced of its components (e.g. it can run only 

with the interpreter), or it can be even ported to the older version 

e.g. C++ 11.  

 In this section we present basic assumptions behind the 

architecture of BCForth, while its implementation can be 

accessed free from the GitHub [16]. 

A. Core Architecture 

 

Fig. 8 depicts the overall architecture of the Forth language 

defined in the project BCForth. The role and responsibilities of 

each class in the hierarchy are as follows. 

÷ TForth 3 the base class defining all basic data 

structures, such as: the data stack represented by 

DataStack, the words9 dictionary WordDict 

(std::unordered_map), as well as the auxiliary 

return stack RetStack. 
TForth defines the WordEntry, which is the structure 

holding all necessary information about a word and kept 

as a value of each word in the dictionary. 

InsertWord_2_Dict inserts a newly created word to 

the dictionary, whereas GetWordEntry retrieves a 

word from the dictionary by providing its name as a key; 

WordOptional is returned to cope with situations of 

non-existing words. Various words are represented as 

objects from the rich TWord family. These have access 

to the data stack defined in TForth. Each word present 

in the TForth dictionary is ready to be executed by 

calling the ExecWord with the word_name as its 

parameter. Hence, TForth alone, is sufficient to handle 

the pre-defined and non-contextual words (i.e. ones that 

don9t need any other tokens from the input stream). This 
makes TForth alone a minimalistic Forth system. 

TForth defines also an auxiliary vector NodeRepo to 

hold objects that need to be present but that do not go to 

the dictionary of words (Fig. 8). These are e.g. compiled-

in literals. 

÷ TForthInterpreter 3 derived from TForth is 

responsible for handling the interpreter mode, in which 

a stream of tokens is processed and executed. 

Operation of TForthInterpreter mostly relies on 

interpreting the incoming stream of tokens, as integer or 

floating-point literals (these are distinguished by the dot 

. inside the literal), or as word names to be executed and 

their optional parameters. However, no new words can 

be defined (this is a role left for TForthCompiler). 

÷ TForthCompiler 3 extends TForthInterpreter by 

providing the ability of entering definitions of new 

words. New words can be entered to the dictionary (Fig. 

2) with the defining construction colon-semicolon (: ;). 

For instance, 

: ACTION DO I . CR LOOP ;                         

defines a new word ACTION which upon a call  

23 0 ACTION 

prints all values 0-22, each in a new line. 

However, apart from the calls to the words already 

defined and registered in the dictionary, word definitions 

can contain nested structural words, such as IF & THEN 
... ELSE, DO & LOOP, etc., as well as the two-stroke 

CREATE & DOES> creational pattern, or the IMMEDIATE 

/ POSTPONE handling modes. 

÷ TForthReader 3 an auxiliary class for converting a 

text stream, such as a terminal window or a text file, into 

a stream of Forth9s tokens. This is done by text splitting 

over the white symbols (space, tab, new line), as well as 

after stripping off the Forth9s comments. This way 
obtained stream of text tokens is fed to the interpreter 

and/or compiler objects, as described in Section (II.D).    

 

 One of the main architectural assumption is a strong 

separation of the input stream processing components, the token 

stream processing components, and the word defining objects. 

In other words, the latter does not bother with any variants of 

the input and output terminals. On the other hand, the streams 

of Forth tokens are obtained by the TForthReader object. If 

this is a word definition, tokens are passed to 

TForthCompiler, in order to compile-in a new word. 

Otherwise, tokens go to TForthInterpreter for word(s) 

execution. 

B. Key Data Structures 

Details of Forth can be found in many sources [1][4]. Here 

we focus mostly on the basic data structures and operations 

which they are used for. Fig. 1 depicts few characteristic 

operations on the Forth9s data stack.  
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Fig. 1 Examples of the most common stack operations in Forth. All values are 

entered in the RPN. DUP duplicates the top value of the stack. A binary 

operator, such as +, removes the two topmost values, performs the operation, 
and pushes the result onto the stack. SWAP changes order of the two topmost 

values. OVER copies the second operand and pushes it to the top of the stack. 

ROT does the rotation of the three topmost stack values. DROP removes the 

topmost value from the stack.  

 The operations are straightforward once we recall that all 

operations are in the Reverse Polish Notation (RPN) [5]. It can 
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be observed that each newly entered value (object) is pushed 

onto the data stack. Each operation, on the other hand, such as 

the + operator, or a DUP (duplicate) operation, pops off the 

necessary number of parameters, performs its specific action, 

and pushes the result, if there is any (for + this will be the sum, 

whereas DUP simply duplicates the top value of the stack). 

 In all of the aforementioned operations an error is thrown if 

the stack does not contain a number of operands (values) 

expected by a word. This breaks execution of a word and the 

special on-error cleaning procedure is launched, after which 

Forth gets good chances to enter the interpretation mode again, 

waiting for new commands.  

Name

DROP

...

DROP

2DROP

...

CompoWord { WordPtr, ... }

...     ds.Pop()  ...   ...
A single 

word entry

std::map< > ,

DROP

10

Data stack

(ds)

TStackFor

 

Fig. 2 Forth words are kept in the dictionary data structure, implemented as the 

C++ std::unordered_map with the key being any Name (std::string), 

while definitions are kept in a hierarchical CompoWord structures (based on 

std::vector containing pointers to already defined words and other 

procedures). Frequently, new words call words already present in the 

dictionary, such as 2DROP which two times calls DROP. Also, the words have 

an access to the data stack.  

 The second data structure characteristic to Forth is the word 

dictionary. Fig. 2 depicts structure of the Forth9s dictionary in 
the BCForth implementation that holds definitions of the 

words, i.e. procedures. Each word is identified by its name.  

As shown in Fig. 2, words can access the stack which 

holds the input and output parameters. Such definition is first 

scanned by the lexical tokenizer ( 

Fig. 8) to produce valid tokens, such as numeral literals and 

names of other words. The tokens are then parsed by the Forth 

compiler and, upon success, new definition is entered to the 

word dictionary 

C. Hierarchy of Words 

Fig. 9 depicts hierarchy of word defining classes, which has 

been already outlined in the general architecture shown in  

Fig. 8. The roles of the classes in the TWord hierarchy are as 

follows. 

÷ TWord is a template base class defining functional 

objects (functors) for the word hierarchy. The F template 

represents a class that defines all necessary data 

structures. Currently for this purpose TForth from Fig. 

9 is used. Its main functionality, as well as of all of its 

descendant, is the action defined by the virtual 

functional operator (). Naturally, invoking any 

Forth9s word will be translated into calling the 

corresponding operator (). Hence, the entire TWord 

hierarchy can be seen as the command design patter [8].  

÷ StructuralWord originates the sub-group of the 

structural words, such as the conditional statement IF & 
ELSE & THEN, the counted loop DO & LOOP and many 

more. However, StructuralWord is only a type-

holder, whereas the most important function-holder is 

CompoWord. 

÷ CompoWord defines the composite design pattern [8][5] 

to hold any sequence of Forth9s words, also of the same 
type; such a recursive hierarchy allows composition of 

nested statements, such as DO & IF & THEN & LOOP, 

etc.  

÷ IF is an example of a composite to hold other 

composites (similarly other objects in this sub-group). In 

this case it holds two branches: fTrueBranch 

representing a set of operation (another composite) 

chosen if, in the run-time, a condition (a value on the 

data stack) before the IF statement evaluates to true, 

and fFalseBranch which stores operations executed 

on the false condition. 

÷ TValFor and TDataContainer are the two classes 

to represent a compiled-in value or a container of values, 

respectively. The type of the stored objects is given by 

the second template parameter V. 

÷ StackOp 3 is a variadic template originating the suite of 

its specializations for defining data stack operations with 

various number of input and output parameters. For this 

purpose any function with 0, 1 or 2 input parameters, as 

well as 0 (void) or 1 return value, can be provided. 

These are supplied in the form of lambda functions 

passed to the constructor of the StackOp. Thanks to 

combination of this variadic template and the lambda 

functions dozens of stack operations are defined which 

otherwise required definition of separate classes in the 

TWord hierarchy [16]. 

÷ Dot, Comma, etc. 3 are examples of specialized system 

words. 

 As already mentioned, the key architectural assumption is 

expression of any Forth9s word as the composite pattern, 
composed of other words, possibly also being composites, and 

so forth. Such a hierarchical structure provides a flexibility to 

define language constructions composed of structural 

statements nested to any depth 

D. System Activity 

 In this section a brief overview of the activity of the Forth9s 
interpreter and compiler are outlined.  

 The TForthInterpreter class was already outlined in 

Section (II.A). As shown in  

Fig. 8, it is directly derived from the base TForth class. Since 

the main data structures TForthInterpreter inherits from 

its base, its key role is to execute words from the stream of text 

tokens, as outlined in the activity diagram shown in Fig. 3. 

 TForthCompiler is the last and the most complex class in 

the hierarchy in  
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Fig. 8. As mentioned, its main responsibility is parsing a word 

defining stream of tokens, contained in-between the : (colon) 

; (semicolon) symbols, and accordingly composing 

corresponding code of the newly created word. 

operator ()

EnterWordDefinition ExecuteWords

ProcessContextSequences

IsInteger?

IsFloatingPt?

ProcessDefiningWord

TForth::ExecWord

 

Fig. 3 UML activity diagram of the TForthInterpreter. The ExecuteWords 

executes a series of steps after which it is recursively called until the input 

stream of text tokens is emptied. The EnterWordDefinition is the compiler 

branch 

 If this operation is successful, the new word is placed in the 

Forth9s dictionary, from which it can be invoked by the 

interpreter, as well as used in definitions of future words, again 

processed by the compiler, and so on. Its activity diagram is 

shown in Fig. 5. 

: MY-WORD                                                        ;IF ELSE THENtrue_branch_context false_branch_context

DO LOOPloop_context

IF ELSE THENtrue_branch_context false_branch_context

 

Fig. 4 Changing context concept. Each word, as well as each branch of a 

structural construction such as IF & ELSE & THEN, DO & LOOP, etc. has its 

own context implemented with its own composite CompoWord. Each such 
object has links to other words, also other CompoWords, and so on. The entire 

structure is parse by a successive recursive call to the parsing procedure 

 Fig. 4 depicts an example of the nested structure 

constructions. The key observation is that each sub-branch 

opens a new context, which can be treated as a separate sub-

word construction, and so on. This creates a hierarchical 

composition which can be processed in a recursive manner 3 at 

each level the sub-branch is processed independently as a 

separate sub-word and in its own context.  

 Finally, the remaining Forth words are defined in separate 

Forth modules. These are special classes (Fig. 9) to enter word 

definitions for various domains, such as floating-point, string & 

memory processing, and from different sources, such as hard 

coded, string or file stream. The pure abstract root 

TForthModule starts their class hierarchy 

EnterWordDefinition

Compile_StructuralWords_Into

Compile_All_Into

operator ()

ExecuteWords

 

Fig. 5 Activity diagram of TForthCompiler. EnterWordDefinition implements 

the principal functionality of the Forth compiler 3 parsing word defining stream 

of text tokens and constructing the corresponding implementation. To process 

structural statements, which can be nested to any depth, each structural 

statement enters into a new context represented by a separate composite object. 

Processing is done by recursive calls of the Compile_All_Into function until the 
entire defining stream is processed. Compile_StructuralWords_Into processes 

the structural statements such as conditional IF, DO, etc. in interaction with the 

structural words of the TWord hierarchy 

III. FORTH ENDOWED WITH THE COROUTINES 

Existence and roles of functions, or routines, in computer 

programs are ubiquitous and well known. However, there is a 

special type of a routine called a coroutine, which can suspend 

its execution preserving its state to be resumed later [9], as 

shown in Fig. 6. 

 For such functionality coroutines need to have associated 

memory to store local data and the resumption point. In this 

respect there are two groups: stackfull and stackless coroutines. 

Modern C++20 provides the framework and mechanisms for 

the latter [7][3]. That is, they suspend execution by returning to 

the caller and the data that is required to resume execution is 

stored separately from the stack. This allows for sequential code 

that executes asynchronously e.g. to handle non-blocking I/O 

without explicit callbacks, allows for the so called lazy-

computations e.g. to generate infinite series of values, but most 

of all it allows for cooperative multitasking purely on the Forth 

platform. The latter is very useful feature especially on small 

and resource constraints platforms that nevertheless require the 

kind of multitasking [2]. Forth built in coroutines allow for such 
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operation in much more lightweight way compared to the 

preemptive multitasking. Hence, coroutines are a unique feature 

of BCForth. 

ENTER

RETURN

  (a)  

ENTER

RETURN

SUSPEND RESUME

DESTROY

(b) 

Fig. 6 State diagram of an ordinary routine (a) and a coroutine (b). The latter 

can also suspended, preserving its state, to be resumed later. This allows for 

async operations or lightweight threading 

 The main proposed idea is to introduce new Forth words, 

which will operate as the stackless co-routines (however, they 

have an access to the Forth9s stack). For this purpose a new 
word named CORO is proposed, which if put after a word9s 
definition, makes it a coroutine (this is similar to the 

IMMEDIATE post word). In the Forth9s nomenclature we 
propose to call them co-words. For instance, the following 

defines the word FIBER_0 that does XOR of the first cell in a 

buffer BUF, then reads the second cell from that buffer and 

pushes it onto the Forth9s stack 

: FIBER_0 BUF @ 0xAB XOR BUF !   0x02 BUF + @ 

;   CORO  [155] 

However, CORO with the optional parameter [155] makes it a 

Forth9s coroutine that toggles some bits, and suspends after 155 
ms, or terminates if the second cell in BUF is not 0. This is 

possible thanks to the CORO_Frame and FiberTask<T> C++ 

coroutine structure that operates as a wrapper around any 

WorkerWord, such as FIBER_0, in our example, while 

time_slice becomes 155. An outline of CORO_Frame looks 

as shown in Algorithm 1. FiberTask<T> in line [1] is a 

structure with the nested class promise_type, as required by 

the C++20 framework [7]. On the other hand, GetTimePoint 

in lines [3,5,10] does the time management, resulting with the 

suspend via co_await in [9].  

The next proposed new word is COYLD (from co-yield) that 

suspends a given word leaving its value on the top of the Forth9s 
stack. Thanks to this, the value generating words can be defined. 

With its help the CO_RANGE word has been created which, upon 

each call, generates and pushes onto the Forth9s stack 
consecutive values from a predefined range. For example 10 

20 2 CO_RANGE creates a generator of values 10 to 20 with 

step of 2. Then each call to CO_RANGE leaves 12, 14, &, 18 on 
the stack.  

The last from the proposed words is the COSUS (from co-

suspend). It suspends a Forth9s word at its point of call, from 
which that word will resume if called again (naturally, an 

8ordinary9 Forth word would start from the beginning). 

IV. SYSTEM DEPLOYMENT AND EXPERIMENTS 

The complete C++ implementation of BCForth with 

exemplary Forth programs is available from the GitHub [16]. 

This is a multi-platform header only library aimed at 

Linux/Unix, Windows, and MacOS. It was successfully built 

and deployed on the following platforms: 

1. PC computer with Linux Ubuntu 18.4 and 20.4, run on 

laptop Dell Precision 7710. Compiled with the gcc version 

10 and 11. The latter allows co-routines. 

2. PC computer with Windows 10 run on laptop Dell Precision 

7760. Compiled with the Microsoft Visual C++ 2019 v. 

16.9.2, as well as MV 2022 v. 17.2.6. 

3. Embedded system NodeMCU v3 with the 32-bit RISC 

ESP8266 microprocessor [17][18], controlled by the 80 

MHz clock (based on Tensilica Diamond Standard 

106Micro architecture). The system equipped with the 32 

KB instruction memory and 80 KB data RAM. The system 

contains built-in Wi-Fi, 10 GPIO ports, ADC converter and 

USB-UART CH340 link, allowing also external 

programming. Built in the PlatformIO Arduino equipped 

with the gcc version 10. This is an example of a IoT tiny 

platform with its own system but yet without co-routines. 

Fig. 7(a) depicts the NodeMCU board, while BCForth run 

in the interactive mode in the terminal window is shown in Fig. 

7(b). 

 (a) 

 (b) 

Fig. 7 Embedded system NodeMCU v3 with the 32-bit RISC ESP8266 
microprocessor 32KB+80KB RAM, 80 MHz clock (a). BCForth running in the 

terminal window (b) 

Although both Linux and Windows 10 allowed for a 

complete implementation, special attention deserves the third 

platform which is a tiny NodeMCU v3 embedded systems with 

only the 32 KB instruction memory and 80 KB data RAM. 
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Nevertheless, with some minor modifications, it was also 

possible to run BCForth. This shows that despite C++ the 

footprint of the BCForth can be as small as to fit to the small 

(and cheap) embedded platforms and/or IoT systems.  

However, even more important is fast time (approx. three 

weeks) of BCForth system tuning to the new platform done by 

Mr. W. GaCecki & Ms. K. Rapacz, students of the 1st year of the 

graduate studies Electronics & Telecommunication, as a 

completion of their project to the Systems Design and Modeling 

Methodologies classes under author9s supervision at the AGH 
University of Science and Technology. This proves that 

BCForth implementation is straightforward for all persons with 

at least medium competitions in the modern C++ programming, 

as well as that it can be easily deployed on similar tiny 

embedded frameworks. This also adds the teaching aspect of 

the presented system and, hopefully, can be used with 

educational and technical benefits by a broader group of 

students and enthusiasts of embedded systems 

V. CONCLUSIONS 

In this paper a novel and free Forth language platform 
BCForth [16], aimed at embedded systems of various sizes, is 
proposed. The main advantage of Forth is coexistence of the 
compiler and interpreter that allows for direct communication 
with a user and easy composition of new words (procedures). 
Unique BCForth features are as follows: (i) modular C++20 
based implementation, (ii) implementation of coroutines for 
async operations and lightweight multithreading, (iii) 
educational/teaching platform for students of electrical 
engineering faculties. Envisioned things to do are: (i) modules 
with new words (e.g. file operations, graphics, etc.), (ii) GUI for 
Forth development and debugging, (iii) auto setup for easier 
deployment on the limited footprint platforms. We are deeply 
convinced that this novel implementation of Forth will be 
beneficial for embedded systems, as well as in education and 
further popularization of Forth and C++. 
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TForth

+ InsertWord_2_Dict : WordPtr 

+ ExecWord : bool

+ Insert_2_NodeRepo : WordPtr

TForthInterpreter

TForthCompiler

# fDataStack : DataStack

# fWordDict : WordDict

# fNodeRepo : NodeRepo

WordDict :

std::unordered_map< Name, WordEntry >

TForth::WordEntry

- fWordUP : WordUP

- fWordIsCompiled : bool

- fWordIsImmediate : bool

- fWordIsDefining : bool

- fWordComment : Name

DataStack :

TStackFor< CellType, kStackMaxCells >

NodeRepo : std::vector< WordUP >

# ProcessContextSequences( Names & ns )

# ExecuteWords( Names && ns )

+  operator() ( Names && ns )

# ProcessContextSequences( Names & ns )

# Compile_StructuralWords_Into

( CompoWord< TForth > & theWord, Names & ns )

# Compile_All_Into
( CompoWord< TForth > & theWord, Names & ns )

# EnterWordDefinition( Names && ns ) : bool 

- fStructuralStack : StructuralStack

TForthReader

+ operator() ( std::istream & i ) : Names 

TWord

+ operator () ( void ) : void

+  operator() ( Names && ns )

F

0..*

11

See Fig. 9.

 
 

Fig. 8 Architecture of the BCForth system. The main branch is composed of three classes: TForth, TForthInterpreter and TForthCompiler. These use the hierarchy 

of word nodes, originated from the TWord base (Names denotes a collection of text tokens). The input/output operations are interfaced by the TForthReader class, 

which transforms an input stream (terminal or a file) to a series of tokens. 
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TWord

TValFor

CompoWord

Composite

IF

# fData : V

- fWordsVec : std::vector< WordPtr >

F

+ operator () ( void ) : void 

StructuralWord

+ AddWord ( WordPtr ) : void 

+ operator () ( void ) : void 

F

F

- fTrueBranch : CompoWord

- fFalseBranch : CompoWord

+ operator () ( void ) : void 

DO_LOOP

- fBodyNodes : CompoWord

+ operator () ( void ) : void 

DOES

- fCreationBranch : CompoWord

- fBehaviorBranch : CompoWord

+ operator () ( void ) : void 

F
V

+ operator () ( void )

TDataContainer

# fContainer : 

std::vector< V >

F
V

+ operator () ( void )

Dot
F

Comma
F

Create
F

Allot
F

Postpone
F

StackOp ...

- fOp : std::function< Ret () >

Ret

+ operator () ( void )

F

              StackOp ...

- fOp : std::function< Ret ( Arg ) >

Ret

+ operator () ( void )

F

Arg

              StackOp ...

- fOp : 

std::function< Ret ( Arg_x, Arg_y ) >

Ret

+ operator () ( void )

F

Arg_x

Arg_yStructural words

 

Fig. 9 Hierarchy of classes defining the Forth words. The composite design pattern, implemented with the CompoWord branch, constitutes the main building block 

of all words registered to the Forth dictionary. The next branch constitute system specific words, such as Dot or Create. The StackOp branch, implemented as a 

variadic template and its specializations, is responsible for majority of the data stack operations, such as arithmetic and logical operations. 

 

Algorithm 1. Scheme of the CORO_Frame routine. 

1 template < typename T, auto time_slice, auto WorkerWord > 

2 FiberTask< T > CORO_Frame ( auto worker_load ) { 

3     auto tp0 = GetTimePoint(); // coroutines suspend on time elapsed 

4     for( ;; ) { 

5         // embed/call worker word WorkerWord with worker_load 

6         // if done, then co_await or break for co_return 

7  

8         if( GetTimePoint() - tp0 > time_slice ) { 

9             co_await std::suspend_always{}; // suspend if time elapsed 

10             tp0 = GetTimePoint(); 

11         } 

12     } 

13     co_return -1; 

14 } 
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