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Abstract—In this paper, we evaluate feature learning in the
problem of retrieving subjectively interesting sounds from elec-
tronic music tracks. We describe an active learning system
designed to find sounds categorized as samples or loops. These
retrieval tasks originate from a broader R&D project, which
concerns the use of machine learning for streamlining the
creation of videogame content synchronized with soundtracks.
The method is expected to function in the context of limited
data availability, and as such cannot rely on supervised learning
of what constitutes an "interesting sound". We apply an active
learning procedure that allows us to find sound samples without
predefined classes through user interaction, and evaluate the use
of neural network feature extraction in the problem.

Index Terms—music information retrieval, machine learning,
signal processing

I. INTRODUCTION

T
HE USE of machine learning methods in Music In-

formation Retrieval (MIR) has developed significantly

in the past decade thanks to the improvements in machine

learning areas such as deep neural networks [1] and increased

availability of big data. We now have large datasets available

for problems such as genre recognition and auto-tagging [2],

emotion recognition [3], and more specialized problems such

as pitch tracking have seen massive improvements too [4]. The

most limiting factor for many narrow MIR problems remains

the lack of massive training datasets required to train well-

performing deep models.

This issue becomes more problematic when we consider the

limitations of existing datasets in practical applications. Many

methods are continuously developed on existing well-defined

problems, but when new practical demands arise, it is often

hard to find appropriate data. The MIR problems described in

this work were defined in cooperation with a business partner

interested in streamlining the creation of music-synchronized

videogame content. Such content relies on the ability to trigger

in-game events, such as playing particle effects or animations,

in sync with the audio. One of the functionalities the developer

was interested in was a retrieval system in which the creator

points to a single example of a particular sound in the context

of an existing music track, and all other occurrences of that

sound can be automatically marked.

The desired scenario creates an ambiguity impossible to

resolve with just a single sample. As such, we have opted

for an active learning solution in which the annotations are

obtained through the interaction of the developer with the

retrieval results. Our goal was to limit the effort of the user

in finding other occurrences of the sound (ideally working

perfectly with just a single occurrence). The system was also

expected to perform in an open-set recognition scenario, where

sound types cannot be pre-defined.

In this work, we focus on empirical evaluation of deep

feature learning to the described retrieval scenario. We have

previously published early results relying on the use of feature

extraction techniques considered standard for music audio in

this task [5]. We build upon the earlier work by extending the

method through the use of deep feature learning and evaluate

the result on an improved version of the dataset. The improved

dataset contains more annotations and a clear distinction

between two categories of repeating sounds typically found

in electronic music - loops and samples.

II. RELATED WORK

Retrieval of sound effects has been an active topic in MIR,

and we can relate our problem to multiple existing ones.

Sound event detection and classification [7] were considered

supervised tasks in multiple contexts, including non-musical

ones. These supervised tasks are usually defined as retrieval

of specific, predefined sound classes from large-scale collec-

tions, which makes the supervised methods ill-fitting for our

problem. However, zero-shot learning approaches which relate

to the way our task is defined found success in sound effect

classification [8] and could potentially be applied to ours.

These rely on a pre-trained deep neural representation and

transfer learning. Source separation [9] and onset detection

[10] are related to our task in that we need to separate

the sample and detect its times of appearance. There are

onset detection datasets [11] for a limited range of sounds,

usually drums, that could potentially serve as a benchmark

for that type of sound only. However, our base assumption

about the desired functionality of the system is that there

are no limitations on the types of sounds users can mark as

interesting.

Loop discovery has been considered in several papers,

although it is not a very active research topic. In the area

of music structure analysis, there is a concern with find-

ing repeated patterns [12]. However, more relevant to our

application, there exists a loop retrieval approach based on
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tensor decomposition introduced in [14]. The idea originates

from [13] in which modeling of audio using predefined loops

was attempted. The tensor decomposition approach improves

upon that work by being able to decompose audio without

loops being known in advance. It was later developed to

create Unmixer [15], a publicly available system for fully

unsupervised loop decomposition.

Active learning has been applied to MIR tasks on multiple

fronts: genre recognition [16], mood recognition [17] and

narrow tasks such as singing voice detection [18]. These

works assume a scenario in which the goal is to maximize

performance given a limited annotation budget. As such, they

use a variety of metrics to select samples that are most

beneficial to annotate. Metrics for sample selection can be

broadly classified into two categories: based on uncertainty and

based on correlation [19]. In the first case, the most uncertain

samples or samples that would result in the largest model

change are chosen. In the second case, samples are chosen

to represent a significant subset of the data, e.g., each sample

is representative of a particular cluster obtained in dataset

clustering.

Unsupervised feature learning focuses on using large

amounts of unannotated data to train general-purpose neural

networks that can find use in downstream tasks with a small

amount of training data. Early approaches to this problem

usually utilize an encoder-decoder architecture [20] and the

information bottleneck principle. A network that first encodes

and then reconstructs the data implicitly creates a compact and

robust lower-dimensional representation that leverages patterns

within the unlabeled dataset. More recently, a lot of attention

has been given to contrastive learning which leverages the

power of data augmentation. A self-supervised network is

trained by comparing data created from a single sample

through different randomized augmentations, with the goal of

creating a representation that is invariant to the augmentation.

It has been shown that using the principle of contrastive

learning alone is sufficient to train robust representations

without labels for any supervised tasks [21].

III. MATERIALS AND METHODS

Below we describe all data and methods used in the study.

The dataset has been previously used in [5], but here it is

developed further with the separation of two distinct types

of sounds. The method of active retrieval and the feature

representation it uses are descrived in subsections B-D.

A. Dataset Description

The dataset consists of 300 songs from the Creative

Commons repository sampleswap.org. Audio files within the

dataset are complete songs, ranging from 2 to 7.5 minutes in

length. The songs have been selected from 4 musical genres

(House, Dubstep, Drum&Bass and Downtempo) and anno-

tated by three workers based on their subjective perceptions

of interesting sound samples and loops. In the creation of

electronic music, a sound sample is a pre-recorded sound that

can be used for its interesting sonic qualities, while loop is a

pattern that can seamlessly repeat, usually with both melodic

and percussive components. Note that these aren’t mutually

exclusive, as any sound sample can be used within a loop,

and any loop can be sampled. Our game developer partner

was interested in retrieving both reused samples and actual

loops, which lead to our attempt to develop a general method

for any "standout" repeatable sounds, while still maintaining

the distinction between both categories in the dataset.

When defining these concepts to the annotators, we asked

them to consider samples to be audio effects and characteristic

sounds that stand out against the musical background and can

be heard at least twice in the same track, whereas loops were

described as seamlessly repeating musical and rhythmic pat-

terns. The annotations were created with 0.1-second precision.

Within the sample category, annotators preferred short sounds:

the majority of the sounds chosen were less than 3 seconds

long. However, some persistent background sounds as long as

24 seconds were perceived and marked as a single sample of

interest. Loops were longer on average, however, some loops

as short as 2 seconds also occur in the dataset. Overall, there

is a decent variety of what a potential user could understand

as samples and loops represented within the dataset.

B. Active Learning Retrieval Approach

The desired system works as follows: given an audio file

representation X , time of occurrence t0 and duration d, the

goal is to find a set of times {t1, ..., tn} marking all other

occurrences of this sound within the audio file. This search is

performed according to Algorithm 1, which repeatedly polls

the user with new retrieval results and then adds the responses

to the growing set of positive samples P or negative samples

N . The function UserResponse(newsample) corresponds

to the user giving a yes/no answer whether newsample is

a correct result. The algorithm is limited by patience, a

parameter that represents the number of negative samples that

can be returned before the user gives up on searching.

Algorithm 1 Active Retrieval Procedure

function RETRIEVE(X, t0, d, patience)

P ± {t0}
N ± '
while |N | < patience do

newsample± GetBestSamples(X,P,N, d)
if UserResponse(newsample) = true then

P ± P * {newsample}
else

N ± N * {newsample}
end if

end while

return P

end function

The key issue in defining a method for solving this problem

is the implementation of the function GetBestSamples which

uses some representation of the sound file X , the set of

samples identified as positive so far P and the set of samples
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identified as negative so far N . This function should retrieve

the most fitting candidate for a new positive sample, and return

its time of occurrence. A natural choice for this function is

nearest neighboor search in a feature space that represents the

percieved similarity between sound excerpts well. In that case,

the key element becomes the choice of the feature space.

C. Feature Representations of Audio

The baseline methods we present can be applied to multiple

representations of audio, including a vector sequence obtained

from a pre-trained deep learning model. In evaluation, we

focus on the following vector sequence representations derived

from the audio spectrogram:

1) Mel spectrogram: Mel spectrogram is an example of a

spectral representation that takes the psychoacoustic properties

of sound into account. Mel spectrogram transforms short

frames of the signal into the frequency domain, using a loga-

rithmically spaced Mel frequency spectrum. This corresponds

to human perception of frequency better than the linearly

spaced Short Time Fourier Transform. Mel spectrogram is not

used directly as a feature representation (in preliminary tests,

it achieved worse results than MFCC), but instead, serves as

an input to a feature learning network described in subsection

D.

2) MFCC: Mel-frequency Cepstral Coefficients are fea-

tures commonly used in speech recognition that have found

success in multiple MIR tasks. MFCC vectors capture timbral

properties of sound well but lose precise frequency informa-

tion.

D. Unsupervised Feature Learning

Our unsupervised feature learning setup combines autoen-

coding and contrastive learning losses. We have found that

using only one of these was not sufficient, which will be

elaborated on in Section IV. For the contrastive loss, we chose

to base the network on the BYOL (Bootstrap Your Own

Latent) approach [22], an evolution of the earlier SimCLR

method [23]. For the autoencoding objective, we use a standard

MSE reconstruction loss with no additional modifications.

1) Bootstrap Your Own Latent: The BYOL approach is

an evolution of earlier contrastive learning methods, resulting

from the observation that the previous methods took some

unnecessary precautions from creating a loss with trivial, bad

global optima. The loss LBY OL for a pair of samples (x, x2)
created through data augmentation is written in a simplified

form in Eq. 1:

LBY OL(x, x
2) = 'N(Pr(P (E(x))))2N(Pf (Ef (x

2))))'2

(1)

Two samples resulting from data augmentation: x and x2,

pass through four consecutive components: E denotes an

encoder network, P denotes a projection network, Pr denotes

a predictor network and N denotes vector normalization. The

f subscript denotes the "frozen" version of components (i.e.,

not updated through gradient descent steps).

While network E is the feature extractor we are trying to

obtain as the end goal of feature learning, other components

exist to improve the training procedure. The projection layer

P is optional but has been shown by the authors of the

original SimCLR paper to improve the quality of trained

representations in downstream tasks. The predictor network

Pr helps prevent the collapse of training by making the

architecture asymmetric. Unlike earlier contrastive learning

methods, BYOL does not explicitly prevent a collapse to a

bad global optimum in its loss (for example, if the encoder

E outputs the same vector for any input, the MSE could be

easily reduced to 0). However, the creators of the method

have shown empirically that in a practical setting, with random

initialization and gradient descent training of the N , P , and Pr

components, the training procedure is not expected to collapse.

E, P and Pr networks are trained with gradient descent.

Ef and Pf components are instead updated as an exponential

running mean of respectively E and P . I.e., the parameters

θf of a frozen network are updated based on the parameters

θ of a respective unfrozen network, using Eq. 2 with a

hyperparameter α * (0, 1):

θf = αθf + (12 α)θ (2)

2) Autoencoder Network: For autoencoder training objec-

tive LAE , we use the simplest possible formulation, as shown

in Eq. 3:

LAE(x) = 'D(E(x))2 x'2 (3)

The loss is calculated on an example x using encoder

network E and decoder network D.

IV. RESULTS

The results presented below are obtained through Algorithm

1 with patience set to 5 and nearest neighboor implementation

of the function GetBestSamples. Between different experi-

ments, we only change the representation of sound supplied

to the algorithm.

Implementation we use to obtain our results utilizes librosa

[24] for the extraction of the audio features: Mel-spectrogram

and MFCC. All features were extracted at a 22kHz sampling

rate, with default parameters for the size of spectrogram frames

(window sizes of 1024 and hop lengths of 512, Hamming

window). The neural network was implemented and trained in

Pytorch [25]. Matrix and vector computations are performed in

NumPy [26], and for more computationally expensive matrix

operations (distance calculations for determining the nearest

neighbor) we also use Pytorch. On a system with an NVIDIA

2080Ti GPU, the use of GPU for distance calculations results

in a significant speedup of approximately 2x when processing

the entire dataset for evaluation.

For the encoder neural network in both BYOL and au-

toencoder approaches, we use a 5-layer convolutional neural

network with kernel size 3 and 128 channels in each layer.

For the decoder module in autoencoder, and the projection
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and predictor modules of BYOL, we found 2 layer convolu-

tional networks sufficient, and adding layers to those modules

resulted in no improvements. The network is trained for 1000

iterations with Adam optimizer and 256 batch sizes.

For BYOL augmentations we have tested the following: ad-

dition of Gaussian noise (mean 0, standard devaitaion 0.3),ran-

domly removing 20% of the 128 Mel-spectrogram frequency

bins, transposition by a fixed number of mel frequency bins

and an augmentation based on Harmonic-Percussive Sound

Separation (HPSS). The last augmentation applies HPSS to

separate the harmonic components from one of the samples in

pair (x, x2) in the loss function of BYOL (Eq. 1). Final results

are obtained with a combination of all agumentations.

As our end goal is to find all occurrences of the sound, the

key figure of merit is recall, and as the task is practically

oriented, our evaluation is based on the recall achievable

within given patience. Precision of the system is less relevant,

as patience directly limits how many false-positive answers

can occur.

To contextualize the following results, we measured the

results of a naive nearest neighboor approach without the use

of active learning. The naive baseline achieves a recall of 0.3

on the Samples subset of the data, and 0.51 on the Loops

subset of the data.

A. Results In The Samples Category

Results in the audio samples category are shown in Fig.

1, including recall over specific genres. A learned feature

extractor outperforms the standard MFCC feature extrac-

tor. The improvements are seen mainly in Drum&Bass and

Downtempo songs. Within the House genre, retrieval achieves

equally good results for both approaches, which can be largely

explained by the low structural complexity of songs in this

part of the dataset (several tracks have a single repeating

loop as a baseline for the entire track, which makes retrieval

significantly easier). We can see that the main difficulty

appears in the Dubstep genre, where feature learning achieves

no improvement.

Fig. 1. Results in the sound samples category

B. Results In The Loops Category

Results in the audio loops category are shown in Fig. 2,

including recall over specific genres. We can see that the

retrieval of loops can be significantly easier than finding audio

samples, likely stemming from the fact that by our definition

loops share melodic and rhythmic qualities while for samples,

the musical background can vary a lot. The feature learning

approach improves over the MFCC features in overall results,

and the improvements are seen within every genre. Much

like in the sample searching task, the highest performance is

seen in the House genre, and Dubstep is an outlier in being

significantly harder than other genres.

Fig. 2. Results in the loops category

C. BYOL vs. Autoencoder

Fig. 3 shows the comparison of results depending on the

chosen loss function in both samples and loop categories,

which motivated us to choose a combination of BYOL and

autoencoder loss. While the BYOL loss alone is insufficient

and autoencoder is enough to outperform MFCC features, the

best performance is achieved when using a combination of

both approaches.

D. Augmentation Choice

Fig. 4 shows the comparison of results depending on the

choice of augmentation in BYOL training. The augmentation

selection for BYOL ended up being less crucial than expected.

This is especially seen for Harmonic-Percussive Separation,

which we expected to improve the results by helping the

extractor to focus on respectively percussive (more significant

for sound samples) or melodic (more significant for loops)

components of the sound. In practice, simple augmentations

such as dropping frequency bins or adding Gaussian noise are

enough to improve the results over autoencoder alone and the

use of highly computationally complex HPSS isn’t justified by

the results.

16 POSITION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Fig. 3. Reuslts deppending on feature learning approach

Fig. 4. Results depending on augmentations used in BYOL

E. More Representative vs. Bigger Training Data

As the key problem that motivates the use of feature learning

is limited data availability, we also compare the results of

training on a larger available dataset against the use of a

small, but representative dataset. For this comparison, we

used our sampleswap.org evaluation data (without labels) to

train the "representative" model, while the "bigger" model is

trained on a set of 15000 songs from the MagnaTagATune

dataset. MagnaTagATune includes electronic music, but is

not focused on it, and contains many genres irrelevant for

our evaluation set such as classical and folk music. In Fig.

5, we compare the results. As can be seen, we achieve

a similar retrieval quality with both approaches, but hand-

selected representative data slightly outperforms training on

a larger, but non-representative dataset.

V. CONCLUSIONS AND FUTURE WORK

We have demonstrated a feature learning approach im-

proving on our earlier work on the retrieval of subjectively

interesting sound excerpts. The task concerns using active

Fig. 5. Comparison of training the feature extractor on MTAT and our dataset

learning and user interaction to find multiple occurrences of

an interesting sound in a music piece.

To facilitate a better evaluation of our results, we have

developed our dataset to separate two categories of potential

interesting "sound components" of electronic music. Loops are

repeating melodic and rhythmic patterns commonly used by

electronic music composers, while sound samples are sounds

that stand out against the musical background and do not have

to be melodic or rhythmic in nature. We have found that sound

samples are significantly harder to find using our approach and

may require further effort to separate well from the musical

background.

The learneble feature extractor we used was a neural

network trained in a fully unsupervised manner, using the

principles of autoencoding and contrastive learning. We have

found that this approach improves results when compared to

a MFCC representation. A more detailed examination of the

method’s performance shows a number of conclusions. For

best performance, autoencoding and BYOL approaches fto

feature learning can be combined. Neither of these achieves

the best results alone. In BYOL, an agumentation-based

contrastive learning approach, the choice of augmentation

affected the results, but the effect was not crucial to achieving

good results. We have found that training on a small, but

representative dataset was better than using a larger dataset

with wide variety of music.

Future directions of development could include improve-

ments of the neural network architecture, and development of

the unsupervised learning method to achieve a representation

that better separates ditinct sound components.
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