
New Thermal Automotive Dataset for Object

Detection

Tomasz Balon∗, Mateusz Knapik†‡ and Bogusław Cyganek†

∗Department of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering,

Email: tbalon@student.agh.edu.pl
†Department of Computer Science, Electronics and Telecommunication

Email: mknapik@agh.edu.pl, cyganek@agh.edu.pl

AGH University of Science and Technology,

Al. Mickiewicza 30, 30–059 Kraków, Poland
‡MyLED Inc.

Email: m.knapik@myled.pl

Ul. W. Łokietka 14/2, 30–016 Kraków, Poland

Abstract—Although there are many efficient deep learning
methods, object detection and classification in visible spectrum
have many limitations especially in case of poor light conditions.
To fill this gap, we created a novel thermal video database con-
taining few thousands of frames with annotated objects acquired
in far infrared thermal spectrum. Thanks to this we were able
to show its usability in the traffic object recognition based on the
YOLOv5 network, properly trained to gain maximal performance
on thermal images, which contain many small objects and are
characteristic of different properties than the visible spectrum
counterparts. The proposed thermal database, as well as the fully
trained model are main contributions of this paper. These are
made available free for other researchers. Additionally, based
on the highly efficient car detector we show its application in
the car speed measurement based exclusively on thermal images.
The proposed system can be also used in the Advanced Driver-
Assistance Systems (ADAS), and help autonomous driving.

I. INTRODUCTION

A
RTIFICIAL intelligence (AI) and machine learning (ML)

are two of the fastest developing technologies nowadays.

New and novel architectures are developed to be faster, more

accurate and reliable. Image classification and object detection

is very active field of research and many innovative techniques

were proposed recently. Range of possible applications is very

wide and autonomous driving is one of them. It gained much

of an interest from scientists and companies recently. Vision

systems based on a visible lights have limitations when used in

a moving vehicle caused by wide range of lighting conditions

that can occur. Low light during the night time as well as

very high amounts of light during the day pose a challenge to

hardware and software modules. On the other hand, thermal

imaging in recent years gains popularity, both in industrial

solutions, as well as in research projects.

However, the development of the image analysis methods

might be rapid for images acquired using conventional RGB

sensors, other imaging technologies operating in spectrum

beyond visible light still fall short mostly due to the lack of

publicly available sufficiently large training datasets.

To help alleviate this problem, in this paper we present:

• A new novel traffic dataset acquired using thermal imag-

ing camera.

• Pretrained object detection model based on YOLOv5

architecture.

• An exemplary application based on detections: speed

measurement in thermal spectrum.

• Examples of potential further applications.

Our dataset contains videos with close to 30,000 hand-

annotated objects, many of small size, which makes them

difficult to detect. Our second contribution is pretrained object

detection model based on YOLOv5 architecture. Primary use

case intended for this model is detecting four classes of objects

in thermal images, as well as car speed measurement, which

is the third contribution provided in this paper.

The paper is organized as follows. Section II describes the

related works. In Section III process of acquiring the data

and model training is explained. Section III-B presents the

structure and provides more insight into dataset. Section IV

shows example of how acquired data might be used in calculat-

ing vehicle’s speed. In Section V more of future development

possibilities are discussed. Finally, Section VI concludes the

paper.

II. RELATED WORKS

Object detection combined with thermal imaging gained a

lot attention in recent years. Thermal imaging is based on

observing infrared waves emitted by warm objects [1]. It

allows user to see infrared spectrum which is invisible with

naked eye. Hence it’s willingly used not only during daylight,

but especially during nighttime or difficult weather conditions

[2] [3]. In this section an overview of the influencing works

related to the processing of thermal images, analysis and

detection in infrared spectrum is presented and discussed.

A. Object detection in thermal images

Knapik et al. [4] presented eye detection in thermal images

scheme using the virtual high dynamic range technique, to

enhance performance of the dense grid of scale-invariant
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feature descriptors, combined with the bag-of-visual-words

approach.

Redmon et al. proposed a series of improved versions of

the YOLO architecture, i.e. YOLOv2 [5] and YOLOv3 [6].

Deep convolutional backend network, along with techniques

like residual skip connections, residual blocks and upsampling,

it is still one of the fastest object detection techniques, while

achieving very respectable accuracy. Recently, a thorough

refreshment of the YOLO architecture, named YOLOv5, was

presented by Jocher et al. [7].

In [8] Bhattarai and MartíNez-Ramón presented intelligent

system for real-time object detection and recognition for

firefighters during an emergency response. They trained deep

Convolutional Neural Network (CNN) to improve situational

awareness by identifying objects of interest from thermal

imagery in real-time.

In an article from 2020, Gong et al. [9] employed thermal

camera for vehicle detection task. In order to achieve faster

detection time, the modified YOLOv3-tiny architecture, by

recalculating anchor box priors as well as deepening the

network structure.

Thermal images are also used to enhance other modalities.

Zhou et al. in [10] presented feature fusion network for

salient object detection (SOD) task, merging foreground and

background information from RGB camera and thermal sensor.

Proposed architecture outperforms 12 state-of-the-art methods

under different evaluation indicators.

Some researchers propose custom network architectures,

designed specifically for infrared images, like Dai et al. in

[11]. They proposed TIRNet architecture, which consist of

lightweight feature extractor as well as residual branch for

regression and classification.

B. Thermal imaging and datasets

One of the biggest problems of thermal imaging is low res-

olution. To mitigate this problem, Rivadeneira et al. presented

novel super-resolution architecture for thermal images based

on CycleGAN network [12]. Authors created they own dataset

for network training.

Yeduri et al. presented novel low resolution thermal images

dataset in [13]. Containing 3200 images of sign language digits

captured with very low-res thermal sensor can be used to build

human input devices for people with disabilities.

Kristo et al. [2] compared night vision to thermal imaging

in their paper and emphasized benefits of using infrared

thermal imaging approach over standard RGB. Their research

was focused on difficult weather conditions, as described,

their dataset was captured during winter in different weather

conditions, such as rain, fog or clear weather, during the night.

In their paper, YOLOv3 model was trained on custom dataset

to detect objects (people) even from far away (up to 215m).

System proposed by Knapik and Cyganek in [14] proved

that thermal imaging can be successfully applied to driver’s

fatigue detection task based on yawn detection. Face alignment

is done by detection of eye corners. Then, yawns are detected

based on the proposed yawning thermal model.

Thermal imaging was proposed by Farooq et al. [15] to

support Advanced Driver-Assistance Systems (ADAS). In their

research, thermal imaging was used to capture different objects

that are likely to be met on road, such as person, dog, bicycle,

car, bike, etc. They also proposed YOLOv5 model trained on

their custom dataset. In their work, also a comparison between

several available YOLOv5 models was made.

III. EXPERIMENTAL PART

A. Data acquisition

The data provided with this article was collected using the

thermal imaging camera FLIR® A35. Acquisition took place

in the afternoon, between 3.30 PM and 4 PM with cloudy

weather and temperature around -3°C. Videos contain real-life

traffic with cars, trucks, buses and people. Camera was placed

at elevated footbridge above the street, our setup is shown in

Figure 1/ Figure 2 shows RGB image of field of view the setup

had. It also depicts exact weather conditions and approximate

time of the day.

Figure 1: Acquisition setup

Figure 2: Camera’s field of view

Images were manually labeled to provide ground-truth data

which is used for training and evaluation. Sample images from

the dataset are presented in Figure 3.
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(a)

(b)

(c)

(d)

Figure 3: Sample images from the dataset

B. Dataset description

Dataset contains over 6000 annotated images with more than

30000 object instances. Within dataset, 4 classes are annotated,

as shown in Table I. Frames were annotated using DarkLabel

[16] software. To maintain consistency with COCO dataset,

we used the same class IDs. Figure 4 presents number of the

instances per class.

Table I: Class IDs

Number Name

0 person
2 car
5 bus
7 truck

Images in the dataset are in .jpg and .bmp format. The

resolution of single image is 320x256 pixels with 8-bit

grayscale values. Annotation files are stored in text files with

.txt extension in YOLO format [7].

Figure 4: Number of instances in each class.

Classes: 0 - person, 2 - car, 5 - bus, 7 - truck

Dataset is publicly available for all researchers to down-

load from our website: https://home.agh.edu.pl/~cyganek/

AutomotiveThermo.zip.

C. Data structure

Dateset contains images and labels as well as trained

YOLOv5 object detector. Images are divided into train, vali-

date and test subsets, each stored in a separate folders.

D. Object detection model training

To evaluate the dataset, we decided to train and test object

detection model based on YOLO architecture. We chose open-

source implementation provided by Ultralytics company [7].

This architecture was chosen due to its availability and ease

of use and high quality of code. Due to dataset size and

computation speed we decided to use YOLOv5m variant out

of other available models (Figure 5). Training was executed

in several runs, each with slightly different variables, such as
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e.g. epochs number. Finally, after comparing results of all runs,

model was trained for 50 epochs, to observe if this would lead

to model overfitting. Training results are presented in Figure 6.

These results contain graphs of loss subfunctions: box loss,

objects loss and classification loss as well as precision, recall

and mean average precision (mAP). It is clearly visible, that

the more epochs pass by, the more accurate the model is.

Figures 7a - 7d show precision, recall and overall score of the

model’s accuracy. After being trained, model was later tested

on new, unseen but labeled images. Figure 8 shows predictions

of labeled objects on test data. A closer look of a predictions

made by trained model and the confidence levels of detected

objects are shown in Figure 9.

Figure 5: Family of YOLOv5 models

Source: [7]

IV. VEHICLE SPEED MEASUREMENT

Presented dataset might be used for vehicle speed measure-

ment. This can be achieved by calculating distance travelled by

a vehicle within some portion of time. It’s relatively easy to get

the timestamps, as images come with exact date with minutes

and seconds in their name. When it comes to getting distance

out of collected data, let’s take into consideration 2 photos

(Figure 10). Timestamp provided with left image is 15:50:44,

and timestamp provided with right image is 15:50:45, which

means, that exactly one second passed between taking those

two images. Let’s also consider car marked in yellow circle.

Now, to measure the distance the vehicle has travelled

within this time, we need to have some reference. This can

be done in several ways, but for our sample application we

decided to use the line marks between right and middle lane.

Although they are not clearly visible, they still can act as a

reference in this experiment. Based on knowledge where the

recordings took place and the standards according to which

the stripes are painted [17], we can conclude that stripe itself

is 2m long, and the gap between 2 stripes is 4m long.

In Figure 11 red lines show there the stripes are, and

blue lines represent car’s front in regard to the stripes. Now,

distance can finally be measured. In Figure 11, considered

vehicle travelled 3 gaps and 2.5 stripes, which is equal to

3 · 4m+ 2.5 · 2m = 17m (1)

All necessary data to calculate the velocity is now available,

(a) Training box loss (b) Training object loss

(c) Training class loss (d) Validation box loss

(e) Validation object loss (f) Validation class loss

(g) Metrics mAP_0.5 (h) Metrics mAP_0.5:0.95

Figure 6: YOLO model train results

thus

17m

1s
·

3600
s

h

1000
m

km

= 61.2
km

h
(2)

Although no radar data was acquired to back up this

calculation, the result is believable and within allowed speed

limit on this road, which leads to conclusion, that velocity can

be measured by calculating distance travelled within certain

timestamped frames.
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(a) F1 score

(b) Precision vs confidence

(c) Precision vs Recall

(d) Recall vs confidence

Figure 7: Training results.

(a) Labels

(b) Predictions

Figure 8: Detection results on test data

Figure 9: Sample detections
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Figure 10: Two pictures, right taken exactly

1 second after left

Figure 11: Highlighted stripes (red) and car’s front bumper

position in regard to the stripes (blue)

V. FUTURE POSSIBILITIES

Dataset presented in this paper can be used to develop

computer vision systems for numerous applications, like traffic

monitoring, traffic management for smart cities as well as

surveillance and advanced driver assistance systems. Thanks

to usage of long-wave infrared imaging, such systems will be

immune to even the harshest lighting conditions, providing the

same level of accuracy in day and night.

VI. CONCLUSION

Main contribution of this paper is novel thermal imaging

dataset with automotive scenes. It contains several thousands

images with hand annotated objects. Second contribution

of this paper is trained object detector based on YOLOv5

architecture that shows high accuracy in small object de-

tection alongside with the high speed of operation. Both,

the automotive thermal database, as well as the pretrained

automotive thermal object detection model, are available free

for further research on our website. Moreover, we present

sample application of our model for car speed measurement

based on thermal images. Clear advantages of such approach

are also presented. Finally, in the future we plan to further

extend our database, as well as develop more resilient trackers

that can reliably operate in dense road conditions and with

thermal images.
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