
Integrated Checklist for Architecture Design

of Critical Software Systems

Adela Bierska, Barbora Buhnova and Hind Bangui

Faculty of Informatics, Masaryk University

Brno, Czech Republic

{bierska, buhnova, hind.bangui}@mail.muni.cz

Abstract—With the advancement of digitalization, critical in-
formation infrastructures, such as intelligent energy distribution,
transportation, or healthcare, have opened themselves towards
intelligent technological opportunities, including automation of
previously manual decision making. As a side effect, the dig-
italization of these infrastructures gives rise to new challenges,
especially linked to the complexity of architecture design of these
infrastructures, to later support necessary software quality and
safeguard the systems against attacks and other harm. To support
software architects in the design of these critical software systems,
well structure architectural knowledge would be of great help to
prevent the architects from missing some of the crucial concerns
that need to be reflected with built-in architectural mechanisms,
early during architecture design.

Given the narrow scope of existing guidelines, with the need
of browsing and combining multiple sources, this paper proposes
an integrated checklist to cover the breath of architectural
concerns for the design of critical software systems, covering the
need for built-in mechanisms to prevent, detect, stop, recover
from and analyse intentional as well as unintentional threats
to system dependability. Contrary to existing guidelines that
typically focus on runtime incident handling, our checklist is to
be used during architecture design to ensure that the system has
built-in mechanisms to either handle the incidents automatically
or include the right mechanisms to support the runtime incident
handling.

Index Terms—Software architecture, design checklist, critical
information infrastructure, dependability

I. INTRODUCTION

C
RITICAL information infrastructures could be under-

stood as digital and vital systems that require immediate

attention and protection in modern cities (e.g., intelligent

transportation) because they contribute in the improvement of

the quality of life and sustainable development of our society.

Over the past decades, critical infrastructures in various do-

mains of human life have become largely digitized, stressing

achievement of system security, resilience, reliability and other

characteristics of failure-free and dependable operation [1],

[2]. However, although these systems have become highly

software intensive, software architecture experts have often not

been involved in the design of these systems, which is why the

operators of these systems are seeking software architecture

expertise ex-post to evaluate and improve software architecture

design of these systems.

This research was supported by ERDF "CyberSecurity, CyberCrime
and Critical Information Infrastructures Center of Excellence" (No.
CZ.02.1.01/0.0/0.0/16_019/0000822).

While software architects have access to numerous stan-

dards and guidelines for system design and auditing in con-

crete domains of critical infrastructures, e.g., CIPSEC [3] or

Cybersecurity Certification [4], there is no general overview

of design guidelines they shall consider, which is leaving

them with substantial risk that they might miss some crucial

consideration. More so that existing standards and guidelines

disproportionately more focus on hardware considerations,

which might make it even more likely for software architect

that they miss some software-architecture related aspects.

To address this gap, the aim of this paper is to propose

the creation of an integrated checklist supporting software

architects in the design of critical software systems. The

checklist is meant to cover guidelines that help the architect

to design buit-in mechanisms to improve the dependability

of the designed system. Given the existence of various low-

level tactics and patterns, e.g. for availability, reliability or

security in specific types of systems [5], [6], the suggested

critical infrastructure design guidance shall be high-level and

integrative, emphasizing the specifics of critical information

infrastructures that might otherwise be missed. This paper

introduces the reader to the context of critical infrastructures

and software incidents and explains the checklist creation

process and its usage, with additional supplementary material

available for download at [7].

The structure of the paper is as follows. After the intro-

duction, the context of the topic together with the state of

the art and related work is presented in Section II. Section

III lays down the design considerations guiding the design

of the checklist. Section IV details the methodology used

to create the checklist, after which the resulting checklist is

presented in Section V. Additionally, supplementary material

is available at [7], containing the full guidelines classification

data, detailed guidelines descriptions, and a demonstration of

the checklist in a real-life context.

II. CRITICAL SYSTEMS AND INFRASTRUCTURES

There are numerous definitions of the term critical (in-

formation) infrastructure (CI)1 in the literature from legal,

political, technical, economical, geographical or social per-

spectives [8]. The German Federal Ministry of the Interior,

1The word information within critical information infrastructures is being
used to emphasize reference to ICT enhanced critical infrastructures.

Position Papers of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 133–140

DOI: 10.15439/2022F287

ISSN 2300-5963 ACSIS, Vol. 31

©2022, PTI 133



for instance, defines critical infrastructures as: "organizational

and physical structures and facilities of such vital importance

to a nation’s society and economy that their failure or degra-

dation would result in sustained supply shortages, significant

disruption of public safety and security, or other dramatic

consequences" [9]. Overall, there is an agreement that critical

infrastructure is an infrastructure that is needed to keep other

major technical and/or social systems running or which is

needed to provide goods or services that are considered vital

to the functioning of modern society [8].

1) Challenges in Architecture Design of CIs: Quality engi-

neering is an inherent goal of software architecture design in

any domain, driving the main software architecture activities,

such as encapsulation, partitioning, or legacy components

integration, using techniques such as isolation, redundancy

allocation, or distribution [5], [10].

While in more wide-spread and popular domains, such as

enterprise systems and web applications, many architectural

patterns and styles exist [11], [12], integrated guidance for

critical infrastructures is so far missing.

Obviously, various low level recommendations exist for spe-

cific infrastructures and quality attributes to be optimized [5],

[6], where the infrastructures differ according to the local con-

text of each nation, and the quality attributes differ according

to the infrastructure, with many specific attributes not covered

in existing software architecture literature (e.g. absorbtion as

the ability to absorb the effects of system failures and thus

minimize the consequences, or preparedness as the ability

to withstand the expected crisis situations). This guidance,

besides being isolated and localised, is moreover scarce and

often provided in terms of answers rather than questions to be

asked, which makes the critical infrastructure design process

highly error-prone.

2) SW Architecture Design Checklist: Simple checklists can

help reduce human error dramatically. As emphasized by Ivar

Jacobson when advocating for software project checklists [13],

"Neil Armstrong had a checklist printed on the back of his

glove to ensure he remembered the important things as he

made history as the first person to walk on the moon, so why

not utilize them to keep software projects on track." Checklists

in software engineering are not a new concept, being employed

to facilitate software development processes by efficiently

guiding industry experts and professional developers.

III. DESIGN CONSIDERATIONS FOR DEPENDABLE CIS

Critical infrastructures are by definition safety-critical and

often handle sensitive, secret, or in other way valuable

data [14]. Consequently, they are an attractive target for

attackers and need more robust protection.

Software-intensive critical infrastructures are highly com-

plex as they operate with various technologies and have to

be highly reliable. While designing the system, an architect

may forget numerous basic features and cause vulnerabilities.

This could endanger people or cost money. Our checklist is

designed for these infrastructures to help its architects to meet

the crucial safety and security standards and meet their high

reliability expectations.

In this section, we set the foundations for the checklist,

discussing its scope and analysing the types of incidents it

shall cover, supporting the software architecture mechanisms

to prevent, detect and handle them.

A. Domains

The most common CIs around the world, according to

CIPSEC [15] are in the domains of health, energy, transporta-

tion, finance, food, water, and civil administration. Each of

these CIs faces a different set of threats and safety concerns,

but in their essence, the infrastructures need to meet very high

standards that are very similar among them. In the presented

version of the checklist, we thus focus on the design concerns

that need to be reflected by all of them.

CI domains are usually interdependent [16]. For example,

all of those mentioned above depend on the energy sector as

they use software systems and machines for their operations.

The energy sector relies on water supply used for cooling,

which is impossible without transporting material within the

infrastructure [15]. This can cause a domino effect throughout

the whole system [17]. That is why it is necessary to stop an

error as soon as possible and ensure the functioning of the

most critical parts.

B. Types of Incidents

A software incident is an event that brings the system

to an unwanted, anomalous state [18]. Incidents in CIs can

be catastrophic and endanger human lives or the economy.

Therefore software should be prepared to prevent and stop

them.

We can classify incident causes in different ways. They can

be intentional or unintentional, man-made or caused by natural

disasters, caused by an error in code or hardware [19].

One of the most significant challenges of software depend-

ability is, for the time being, unknown threats and attacks.

New types of vulnerabilities are discovered every day [20],

and natural disasters are often also unpredictable. Due to this,

the software architect may not be aware of perils that will be

ordinary for the system in a few years, months, or even days.

Therefore we should prepare the system universally and not

rely on a concrete list of possible threats.

1) Natural-Disaster Causes: Natural incidents are caused

by natural disasters like floods, tornados, earthquakes, etc. [21]

They can cause damage to the system hardware and therefore

impact the correct functioning of the software. From the

software point of view, we can also include in this category

the incidents triggered by hardware errors (i. e., outage of

parts) or by other damage to the hardware (i. e., incompetent

manipulation or militarized attack). Natural disasters can be

unpredictable, devastating, and cause a domino effect on

other domains of CIs [21]. This enormously complicates the

possibilities of testing the system’s behavior during these

incidents [22].

134 POSITION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



2) Man-Made Causes: By man-made incidents, we mean

inadvertent mistakes made by a user or a premeditated attack

from an attacker. In contrast to natural incidents, we can

prevent many of these.

a) Accidental Errors: There are many reasons why users

can make mistakes while using the system. For example, they

may not know how to use the system, they can be tired

and careless, or the system may be confusing [23]. In any

case, this inappropriate usage should not endanger the correct

functioning of the system.

b) Deliberate Attacks: Deliberate attacks on CIs occur

increasingly often [24]. Main objectives of attackers are [25]:

• Corruption of information: Attackers try to change or

damage data stored in the system or corrupt communica-

tion.

• Denial of service: Attackers try to overload or disrupt

the system to become unavailable for authorized users.

• Disclosure of information: Attackers try to obtain pri-

vate data or publish them to unauthorized entities.

• Theft of resources: Attackers try to access and misuse

the system resources or provide them to unauthorized

entities.

• Physical destruction: Attackers try to cause physical

damage using the system.

The software should be prepared for all kinds of attacks,

prevent them, and ensure safety in case of malicious usage. In

contrast to accidental errors, deliberate attacks may last longer

and be more complex. Attackers systematically conceal their

activity, so detecting such incidents can be tricky.

C. The Role of Checklists

A checklist is a structured list of requirements or steps

needed to achieve the given goal. It can have various struc-

tures [26] but should be brief and synoptical to minimalize the

cognitive load of its usage [27]. When designing a software

system, we can come across checklists, for example, in chosen

standards. Checklists usually contain a list of conditionals that

need to be fulfilled to meet the given standard [26].

In this work, we were inspired by checklists used by experts

to facilitate their decision-making, e.g., in healthcare. Here, it

can help us on two different levels – to make our decision

(or diagnosis) or to check the correctness of our already-made

decision [27]. Experts often tend to evaluate the system based

on experienced patterns, which, however, may be superficial.

In this case, the checklist reminds them of essential points that

they should consider [28].

IV. METHODOLOGY

To ensure the comprehensiveness and completeness of the

checklist, we had to collect guideline sources to base the

checklist on. First, we gathered 32 standards related to soft-

ware or software-intensive CIs based on criteria in Section

IV-A, filtered them to select the representatives with complete

coverage of the others, prioritizing freely available sources

so that the architect can be pointed to them from the check-

list [29], [30], [31], [32], [33], [34], [35], [36]. We collected

all requirements meeting our inclusion and exclusion criteria

(see section IV-B) from these standards and extracted the

most common categories (i.e., Authorization, Authentication,

Data protection, Logging, Input and Output, Network, Safety

Ensuring, Backups, Encryption, and Third-Party Components).

We added categories to cover incident phases described

in Section IV-C, i.e., Access Control, Anomaly Detection,

Phenomenon Evaluation, Stopping from Propagating, Self-

Adaptiveness, and Evidence. For each category, we went

through existing studies and other sources [37], [38], [39],

[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50],

[51], [52], [53], [54], [55], [56], [57] to examine the com-

pleteness of the coverage by the standards and complement

the missing pieces. All these recommendations were again

validated against our inclusion and exclusion criteria.

Finally, we revised categories, some of them were merged

or removed, but we also added some to facilitate orientation

within the checklist.

A. Sources of Guidelines

The checklist is based on two categories of sources: stan-

dards and other recommendations. Each has slightly different

conditions for inclusion, but both must be primarily software-

related.

Standards must be official and published by an approved

organization, government department or peer-reviewed pub-

lisher. They should contain a set of rules and aims which

ensure software security or safety. They can be designed for

critical infrastructure in general, but they have to include a

part aimed concretely at software.

When choosing standards, we primarily focused on their

domain subsumption to critical infrastructures. Some of them

are universal to all software. In that case, they should mention

critical systems in their scope or focus on technology com-

monly used in our target domains.

By recommendations, we mean the research studies and

books that software architect can study and abide by to

accomplish system security and reliability. It is out of the

scope of the checklist to go in a fine detail, it shall rather

focus on a general guidance with great coverage in terms of

the breath, not depth.

B. Scope

To fully utilize the advantages of the checklist form (e.g.,

briefness, coverage), we have to set strict inclusion and exclu-

sion criteria of guidelines. The checklist should be compact

but cover all identified categories.

1) Inclusion Criteria: Every guideline should be generally

usable within CI systems. There may be exceptions for par-

ticular systems, but in general, all guidelines should focus on

the design of dependable (safe, reliable and secure) critical

systems. All guidelines must be relevant to the software ar-

chitect and propose design improvement to software systems.

The included guidelines shall reflect that not only do we try

to prevent problems or incidents, but we are also designing

systems to be able to operate safely in presence of such

ADELA BIERSKA ET AL.: AN INTEGRATED CHECKLIST FOR ARCHITECTURE DESIGN OF CRITICAL SOFTWARE SYSTEMS 135



problems and incidents, i.e. we have to prepare the system to

withstand accidents that have penetrated. Even with the robust,

firmly secure architecture, we cannot presume that incidents

are impossible [58].

2) Exclusion Criteria: (a) Human Resources: Many cyber-

attack related studies support our incident handling phases

division but aim more at management and incident plan-

ning [59], [60], [61]. Human resources and management

are also excluded from the checklist scope. (b) Hardware:

Considering that our guidelines focus on software, we exclude

all purely-hardware related items. Hardware solutions are

often irrelevant for software designers and strongly depend on

their domain and chosen technologies. (c) Coding Practices:

The choice of the programming language [62], frameworks

and libraries can significantly affect the complexity of the

development process. However, that shall is the task of the

software architect to set constraints on such low level of detail.

Therefore purely coding practices are excluded from the scope.

C. Incident-Handling Phases

The process of incident handling, which needs to be sup-

ported by the architecture design checklist, can be structured

in multiple phases. In this work, we use the phases inspired by

the Computer Security Incident Handling Guide [18], which

sets them for handling already running incidents. In our case

instead, we employ the phases to structure the guidelines to

design software architectures towards preparedness for these

phases making systems more robust and dependable (reliable

and secure). The phases are:

• Prevention: The prevention of incidents strongly depends

on the overall environment of the system. To specify

guidelines for this phase, we have to consider all poten-

tial sources of failure and use appropriate architectural

guidelines to safeguard all the possible entry points for

the incidents to enter the system, taking both external and

insider attacks, as well as events such as natural disasters

into consideration.

• Detection: The primary aim of this phase is to design

the system with built-in mechanisms to detect a running

incident. That is to detect anomalies in the behaviour and

discover intruders who might steal data without changing

system behaviour. With the correct Detection in place, the

system can switch on time to the Containment phase. The

secondary (not less important) purpose of the Detection

phase is to classify the fault and find its source. These

are essential for stopping the fault from propagating and

its following elimination.

• Containment: This phase covers tactics prepared for

an immediate reaction to the detected incident, mainly

stopping the problem from propagating and ensuring

safety. While sometimes we need to stop the fault as soon

as possible, in other cases we may only consider slowing

down the attacker or using sandboxing. In any case, it is

essential to bypass critical parts of software, especially

those responsible for ensuring safety. Furthermore, the

checklist shall motivate the architects to identify the must-

work functionalities, on which the safety depends, and

ensuring these parts work.

• Recovery: Right after getting the fault under control, the

system shall have the right mechanisms to start the recov-

ery process. It should be able to isolate and remove all

infected and suspicious parts, as damaged system is more

vulnerable to recurrent failures and attacks. Pre-incident

preparation is fundamental as we need to compare states

before and after and restore backup data.

• Post-Incident Analysis: An essential part of the post-

incident analysis is forensic investigation, so the system

should be designed and prepared for it before the incident

occurs. Pieces of evidence that the system stores should

be admissible at court of law and comply with local

constraints to data monitoring and storing (e.g., GDPR).

The phases are not strictly separated, some guidelines can

support multiple phases. For example, prevention must remain

stable during the incident to impede collateral attack. Col-

lection of evidence starts with recognizing the incident [63].

This classification of phases ensures its clear coverage of the

security and reliability of the designed system. It also provides

better possibilities for synoptical structure.

V. INTEGRATED CHECKLIST FOR DESIGNING CIS

The primary purpose of checklists, in general, is to keep

track of particular processes or units. They remind us of

all steps we have to fulfill to complete the task and record

every subtask we have already accomplished. If well designed,

we can use them for self-evaluating without a checkup from

another entity.

Our checklist provides this feature of self-evaluation of soft-

ware systems by listing the must-haves for handling particular

phases of security incidents and offering relevant standards and

sources. After going through all of the provided guidelines,

the software architect should be able to make sure that the

architecture contains buit-in mechanisms to reflect all the given

concerns.

All systems are unique and struggle with various issues.

The checklist should cover the plentifullest amount of them

and stay adaptive and concrete. Therefore it offers the available

guidelines fulfilling our scope, in its breath, and also allows

the architect to choose which are relevant.

Last but not least profitable feature of the checklist is

facilitating communication in the development team. It should

be readable by all team members independently on whether

they are creators.

A. Structure

The structure has to observe typical qualities of checklists:

briefness and clarity. Its main aim is to classify, sort external

sources, and show only short descriptions and references. Any

user should be able to browse all offered guidelines without

previous knowledge of the checklist.

The form of the checklist is variable. Initially, the designer

gets all the sources categorized by incident phases and tags.

136 POSITION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



TABLE I
PHASE 1: PREVENTION

GUIDELINE TAGS SOURCES

Data Protection

Saved data are secured. Data Protec-
tion, Encryp-
tion, Network

[32], [37],
[38]

Network communication (internal too) is
secured.

Data
Protection,
Network, Au-
thentication

[32], [29],
[33], [37],
[36], [38]

Authorization

Each entity has a specific role within the
system with minimal necessary rights.

Authorization,
Access
Control

[32], [33],
[39], [36]

Authorities can assign features to roles or
concrete entities.

Authorization,
Access
Control

[40], [32],
[29], [33],
[36]

Each entity has access to the minimal
amount of data possible.

Authorization,
Access
Control

[32], [29],
[33], [38],
[36]

There is an access timeout (or other con-
trol) set up and automatically disconnects
the entity in case of inactivity.

Authorization,
Access
Control

[32], [33],
[41], [36]

Authentication

All (both local and remote) access should
be protected by a unique entity identifica-
tion and password, token, biometrics, or
multi-factor authentication.

Access Con-
trol, Authen-
tication

[32], [29],
[33], [42],
[37], [36]

Unsuccessful login attempts are logged
and limited.

Access Con-
trol, Authen-
tication, Log-
ging

[32], [33],
[36], [39],
[44]

Used third-party technologies and com-
ponents are certified that do not circum-
vent set IDs or passwords.

Access
Control, Au-
thentication,
Third-party
components

[32]

Used third-party configurations, updates,
or other provided data use digital signa-
tures.

Authentication,
Third-party
components

[32], [36]

Each guideline has one main phase and one main tag to be

classified by. First-level classification is based on the incident

phase, and is presented in Tables I–V. Inside these categories,

guidelines are sorted by their main tag. This checklist view

contains every guideline only once and is destined for the first

walk-through to get to know all included recommendations.

During incident planning, the architect should use it to make

sure they reflect all the essential concerns and consider their

properties. The phase-tags tree here may be a little more

important than the recommendations themselves.

The architect should use the checklist either to guide the

design process or at the end of the designing process to check

that all the mentioned concerns are reflected. In fact, instead

of ticking boxes, it is recommended to briefly describe the

planned or realized extent to which the concern is reflected

within the designed system. This can also improve commu-

nication within the development team or with stakeholders.

Furthermore, when used to inspect the designed architecture,

we recommend to annotate each concern with strengths and

weaknesses of the designed solution with respect to the specific

concern.

TABLE II
PHASE 2: DETECTION

GUIDELINE TAGS SOURCES

Logging

All key events are logged. Logging, Evi-
dence

[46], [32],
[47], [36]

Logs contain all important identification
and classification.

Logging, Evi-
dence

[32], [33],
[36], [47]

Logs have various priority levels. Logging [32], [47]

There is a supervisory system that mon-
itors logs and highlights alarms and
anomalies.

Logging,
Anomaly
Detection

[32], [47],
[48]

There is a mechanism that monitors if the
logging system works.

Logging,
Anomaly
Detection

[32], [36]

Anomaly Detection

The system recognizes distinct changes
in configuration.

Anomaly De-
tection

[34], [29],
[36]

The system recognizes unexpected or in-
complete resets.

Anomaly De-
tection

[34]

The system recognizes memory failures. Anomaly De-
tection

[34]

The system recognizes suspicious in-
structions.

Anomaly De-
tection

[34]

Anomalies in system performance are
recognized and reacted to.

Anomaly De-
tection

[46], [48]

Anomalies in process behavior are recog-
nized and reacted to.

Anomaly De-
tection

[46], [48]

File and directory changes are recognized
and reacted to.

Anomaly De-
tection, Data
Protection

[36], [46]

Input and Output

User inputs and commands are validated
and tested for sanity.

Input and
Output

[49], [35]

External data are validated on entry. Input and
Output, Au-
thentication,
Third-party
Components

[35]

The system controls all data before pro-
cessing.

Input and
Output

[34]

Phenomenon Evaluation

Fault severity is classified into multiple
levels.

Phenomenon
Evaluation,
Logging

[36], [48]

The system has a precisely defined failure
tolerance threshold.

Phenomenon
Evaluation

[32], [48]

Before launching a critical mode, the
system checks if the trigger is valid.

Phenomenon
Evaluation,
Safety
Ensuring

[32], [48]

Network

Network data are collected. Network, Ev-
idence

[46]

All network alerts and error reports are
checked.

Network,
Anomaly
Detection

[46]

The system recognizes unexpected, un-
usual, or suspicious traffic.

Network,
Anomaly
Detection

[46], [37]

Unauthorized entities connected to the
system’s network are recognized and re-
stricted.

Network,
Anomaly
Detection,
Autho-
rization,
Third-party
Components

[29], [33],
[36], [46]

ADELA BIERSKA ET AL.: AN INTEGRATED CHECKLIST FOR ARCHITECTURE DESIGN OF CRITICAL SOFTWARE SYSTEMS 137



TABLE III
PHASE 3: CONTAINMENT

GUIDELINE TAGS SOURCES

Stopping from Propagating

The system is divided into independent
parts with the possibility of a partial
shutdown.

Stopping
from
Propagating

[34]

Safety-critical functions are isolated from
non-safety-critical.

Stopping
from
Propagating

[46]

The system uses sandboxing to encapsu-
late high-risk parts.

Stopping
from
Propagating

[50]

Safety Ensuring

The system is tolerant of an unstable or
missing power source.

Safety Ensur-
ing

[34]

Safety-critical software requirements are
precisely identified and described.

Safety Ensur-
ing

[30], [46]

There are must-work functions identified
within the system.

Safety
Ensuring,
Self-
Adaptiveness

[34], [51]

Must-work functions are redundant. Safety
Ensuring,
Self-
Adaptiveness

[34], [36],
[51], [52]

Each of the must-work functions has at
least two independent ways to control
them.

Safety Ensur-
ing

[34], [36]

TABLE IV
PHASE 4: RECOVERY

GUIDELINE TAGS SOURCES

Backups

Critical data have a backup. Backups [29], [37]

Backups are off-site to be protected from
local disasters (e.g., fire, flood, ...).

Backups [36], [53]

Backup time intervals vary based on the
frequency of changes.

Backups [53]

Backups are protected from unauthorized
access.

Backups, Ac-
cess Control

[53]

Every backup process is checked to see
if it was successful.

Backups [29]

Before recovery from backup, data are
preserved for further analysis of the in-
cident.

Backups,
Post-Incident
Analysis

[29]

Self-Adaptiveness

Must-work functions have a self-healing
mechanism.

Self-
Adaptiveness

[51]

System is prepared to adapt to operating
without damaged parts.

Self-
Adaptiveness,
Safety
Ensuring

[51]

B. Tags

Tags serve for a more detailed classification of the guide-

lines. Overall, they are based on system procedures, features,

possibly used technologies, or specify parts of the incident

phase more accurately. The tags, selected based on our

methodology in Section IV, were also validated against the 20

common security requirements defined by CIPSEC [15]. They

cover all these requirements except one requirement (number

15) that is management-oriented and thus out of the checklist

scope, and add some requirements that were not covered by

CIPSEC.

TABLE V
PHASE 5: POST-INCIDENT ANALYSIS

GUIDELINE TAGS SOURCES

Logging

Logs are archived. Logging, Evi-
dence

[46]

Logs are secured. Logging, En-
cryption

[46]

Old or useless logs are disposed of. Logging [46]

Evidence

All possible evidence sources are identi-
fied.

Evidence [54]

Evidence contains all necessary informa-
tion to be classified as complete and
valid.

Evidence [33], [54]

All evidence data are secured. Evidence, En-
cryption

[56], [57]

Evidence storage is reliable. Evidence [55]

a) Access Control: Access control ensures that data

cannot be changed or read by unauthorized entities. This

enhances their confidentiality and integrity, which are essential

for software security [64].

b) Authentication: Authentication is a process of ded-

ication and confirmation of the true identity of an external

entity [42]. CI systems work with sensitive data, and their

functionalities are safety-critical; therefore, access to them

should be limited to trusted people and components.

c) Authorization: Authorization is deciding if a concrete

authenticated entity is allowed to execute or make a specific

action. Users and devices should have various roles based on

their permission and have minimal possible rights [65], [39].

d) Data Protection: Data are often the main target of cy-

berattacks. They have to be protected from theft, unauthorized

changes, or corruption [37].

e) Logging: Logging is the fundamental method to con-

trol and collect information about the program’s behavior. It

can help us detect an ongoing attack, gather evidence, improve

the development process, etc. Therefore the whole mechanism

is quite complex and should not be underestimated [47], [66].

f) Anomaly Detection: Anomaly detection means search-

ing for deviations from the expected behavior of the system.

All found anomalies should be inspected because they could

signify an incident or danger. Correct detection can be tricky;

possible false positives and negatives can be disastrous [48].

g) Input and Output (I/O): I/O vulnerabilities are not

only frequent targets of attacks but also weak points vulnerable

to inadequate usage by ordinary users. Operating a system

without proper I/O handling is like leaving a house with doors

and windows open [49].

h) Phenomenon Evaluation: This category covers a thin

layer between anomaly detection and reaction to the incident.

The reaction should not be reckless and hasty and must be

evaluated adequately to the severity of the detected anomaly.

i) Network: With availability improvement and new tech-

nologies it is not imaginable to operate a CI system without

any network connection anymore [67]. That brings up a variety

of potential problems and vulnerabilities [68].

138 POSITION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



j) Stopping from Propagating: There can be many weak

points across the software, and attackers may want to gain

control of the entire system from them. Therefore we have to

stop the spreading of any incident so it will not be possible

for a localised fault to endanger distant parts of the system.

k) Safety Ensuring: Safety is an essential property of CI

systems. As it strongly depends on the CI domain, we provide

only an abstract solution to its ensuring within the system. This

tag also indicates guidelines in other categories that may affect

system safety.

l) Backups: System recovery depends directly on back-

ups. Without proper backup, we may not be able to repair the

system, and data will be lost. We must plan backups while

designing the system because it would be too late to save data

when an incident is detected. We also have to protect backups

so they will not be damaged together with the system during

the incident [69].

m) Evidence: Evidence is a cornerstone of forensic

readiness. Identifying and collecting pieces of evidence should

be taken into account already during the design of the system,

not during the incident [70]. Evidence does not come by itself;

we must be prepared to collect it and maximize its quality

to facilitate the investigation [54], i.e. to ensure its integrity,

prevent leaks, and protect contained sensitive data.

n) Third-Party Components: Third-party components of-

ten do not have as strict quality requirements as CI systems.

Due to this, they may have safety issues that can propagate

to our system. Therefore third-party components should be

observed and not trusted by default [71].

o) Encryption: Encryption helps us preserve the integrity

and confidentiality of the data within the system [72]. Similar

to Network, this tag is mainly intended to identify encryption-

related guidelines. Choice of concrete encryption techniques

is out of the scope of architectural considerations.

p) Self-Adaptivness: CI systems may be too complex

to be managed entirely by humans. Self-adaptive software

monitors itself and its environment and reacts appropriately

to detected changes. Therefore, such a system will be easier

to maintain, and its responses to incidents will be faster [73].

VI. CONCLUSION

In this paper, we have presented a vision of an integrated

checklist guiding the design of critical software systems, and

presented first version of such a checklist. To this end, we did

research to collect relevant standards and sources, all covering

the scope only partially, and proposed a set of guidelines in

the form of a checklist to enhance its straightforward usability

during the software design. Guidelines were classified and

sorted out to meet our defined checklist scope. Additionally,

supplementary material is available at [7], containing the full

guidelines classification data, detailed guidelines descriptions,

and a demonstration of the checklist in a real-life context.

In the future, we would like to validate the checklist with

industrial experts and refining it with further views and layers

of detail.

REFERENCES

[1] I. Meedeniya, A. Aleti, and B. Buhnova, “Redundancy allocation in
automotive systems using multi-objective optimisation,” in Symposium

of Avionics/Automotive Systems Engineering (SAASE’09), San Diego,

CA, 2009.
[2] S. Chren, B. Rossi, B. Bühnova, and T. Pitner, “Reliability data for smart

grids: Where the real data can be found,” in 2018 smart city symposium

prague (scsp). IEEE, 2018, pp. 1–6.
[3] J. Rodríguez, A. Galán, A. Alvarez, R. Díaz, and C. Consortium, D2.1,

CIPSEC System Design WP 2, Development of the CIPSEC security

framework for Critical Infrastructure environments CIPSEC Enhancing

Critical Infrastructure Protection with innovative SECurity framework,
Jan 2017.

[4] E. The European Union Agency for Cybersecurity, “Eu cybersecurity
certification framework,” Dec 2020. [Online]. Available: https:
//www.enisa.europa.eu/topics/standards/certification

[5] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,

3rd edition. Addison-Wesley Professional, 2013.
[6] E. Fernandez-Buglioni, Security patterns in practice: designing secure

architectures using software patterns. John Wiley & Sons, 2013.
[7] A. Bierska, B. Buhnova, and H. Bangui, “Supplementary mate-

rial for the integrated checklist,” https://drive.google.com/drive/folders/
1DNjQdBmVTR7Z_JYZYpQS_QaohdFboIkC?usp=sharing, 2022.

[8] K. Lukitsch, M. Müller, and C. Stahlhut, “Criticality,” in Key Concepts

for Critical Infrastructure Research. Springer, 2018, pp. 11–20.
[9] “Federal ministry of the interior, national strategy for critical infrastruc-

ture protection, berlin, germany (www.bmi.bund.de, 2009.”
[10] N. Medvidovic and R. N. Taylor, Software architecture: foundations,

theory, and practice. John Wiley & Sons, 2010.
[11] G. Fairbanks, Just enough software architecture: a risk-driven approach.

Marshall & Brainerd, 2010.
[12] M. Fowler, Patterns of enterprise application architecture. Addison-

Wesley Longman Publishing Co., Inc., 2002.
[13] I. Jacobson, “The immense power of simple check-lists for

monitoring projects,” https://www.ivarjacobson.com/publications/blog/
power-checklists, 2020.

[14] Z. A. Baig, “Multi-agent systems for protecting critical infrastructures: A
survey,” Journal of Network and Computer Applications, vol. 35, no. 3,
pp. 1151–1161, 2012.

[15] C. Consortium, “D1.3, report on taxonomy of the ci environments,”
Feb 2018. [Online]. Available: https://www.cipsec.eu/sites/default/
files/cipsec/public/content-files/deliverables/D1.3%20Report%20on%
20Taxonomy%20of%20the%20CI%20environments.pdf

[16] B. Buhnova, T. Kazickova, M. Ge, L. Walletzky, F. Caputo, and
L. Carrubbo, “A cross-domain landscape of ict services in smart cities,”
in Artificial Intelligence, Machine Learning, and Optimization Tools for

Smart Cities. Springer, 2022, pp. 63–95.
[17] B. Robert, R. De Calan, and L. Morabito, “Modelling interdependencies

among critical infrastructures,” International Journal of Critical Infras-

tructures, vol. 4, no. 4, pp. 392–408, 2008.
[18] P. Cichonski, T. Millar, T. Grance, and K. Scarfone,

“Computer security incident handling guide : Recommendations
of the national institute of standards and technology,”
Computer Security Incident Handling Guide, vol. 2, Aug
2012. doi: 10.6028/nist.sp.800-61r2. [Online]. Available: https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

[19] C. M. Machuca, S. Secci, P. Vizarreta, F. Kuipers, A. Gouglidis,
D. Hutchison, S. Jouet, D. Pezaros, A. Elmokashfi, P. Heegaard et al.,
“Technology-related disasters: A survey towards disaster-resilient soft-
ware defined networks,” in 2016 8th International Workshop on Resilient

Networks Design and Modeling (RNDM). IEEE, 2016, pp. 35–42.
[20] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and A. B. Bener, “Mining

trends and patterns of software vulnerabilities,” Journal of Systems and

Software, vol. 117, pp. 218–228, 2016.
[21] F. Kadri, B. Birregah, and E. Châtelet, “The impact of natural disasters

on critical infrastructures: A domino effect-based study,” Journal of

Homeland Security and Emergency Management, vol. 11, no. 2, pp.
217–241, 2014.

[22] G. Kirov, P. Zlateva, and D. Velev, “Software architecture for rapid
development of hla-integrated simulations for critical infrastructure
elements under natural disasters,” International Journal of Innovation,

Management and Technology, vol. 6, no. 4, p. 244, 2015.
[23] L. N. Alrawi and T. Pusatli, “Investigating end user errors in oil and gas

critical control systems,” in Proceedings of the 2020 6th International

Conference on Computer and Technology Applications, 2020, pp. 41–45.

ADELA BIERSKA ET AL.: AN INTEGRATED CHECKLIST FOR ARCHITECTURE DESIGN OF CRITICAL SOFTWARE SYSTEMS 139



[24] T. Plėta, M. Tvaronavičienė, S. D. Casa, and K. Agafonov, “Cyber-
attacks to critical energy infrastructure and management issues:
Overview of selected cases,” 2020.

[25] T. Limba, T. Plėta, K. Agafonov, and M. Damkus, “Cyber security
management model for critical infrastructure,” 2019.

[26] P. J. G. Seoane, “Use and limitations of checklists. other strategies for
audits and inspections,” The Quality Assurance Journal: The Quality

Assurance Journal for Pharmaceutical, Health and Environmental Pro-

fessionals, vol. 5, no. 3, pp. 133–136, 2001.
[27] M. Sibbald, A. B. de Bruin, and J. J. van Merrienboer, “Checklists

improve experts’ diagnostic decisions,” Medical education, vol. 47,
no. 3, pp. 301–308, 2013.

[28] E. Verdaasdonk, L. Stassen, P. P. Widhiasmara, and J. Dankelman,
“Requirements for the design and implementation of checklists for
surgical processes,” Surgical endoscopy, vol. 23, no. 4, pp. 715–726,
2009.

[29] North American Electric Reliability Corporation - NERC, “Critical
infrastructure protection standards,” 2011.

[30] “IEEE standard for software safety plans,” IEEE Std 1228-1994, pp.
1–24, 1993. doi: 10.1109/IEEESTD.1993.9097571

[31] D. G. Photovoltaics and E. Storage, “IEEE standard for interconnection
and interoperability of distributed energy resources with associated
electric power systems interfaces,” IEEE Std, pp. 1547–2018, 2018.

[32] “IEEE standard for intelligent electronic devices cyber security capabili-
ties,” IEEE Std 1686-2013 (Revision of IEEE Std 1686-2007), pp. 1–29,
2014. doi: 10.1109/IEEESTD.2014.6704702

[33] “IEEE standard cybersecurity requirements for substation automation,
protection, and control systems,” IEEE Std C37.240-2014, pp. 1–38,
2015. doi: 10.1109/IEEESTD.2015.7024885

[34] N. Aeronautics and S. Administration, “Nasa-std-8719.13 software
safety standard,” 2020.

[35] National Aeronautics and Space Administration, “Nasa-std-8739.8 soft-
ware assurance and software safety standard,” 2020.

[36] N. I. of Standards and Technology, “Nistir 7628 revision 1 – guidelines
for smart grid cybersecurity,” The Smart Grid Interoperability Panel –

Smart Grid Cybersecurity Committee, 2014.
[37] O. Tayan, “Concepts and tools for protecting sensitive data in the

it industry: a review of trends, challenges and mechanisms for data-
protection,” International Journal of Advanced Computer Science and

Applications, vol. 8, no. 2, pp. 46–52, 2017.
[38] M. Papaioannou, M. Karageorgou, G. Mantas, V. Sucasas, I. Essop,

J. Rodriguez, and D. Lymberopoulos, “A survey on security threats and
countermeasures in internet of medical things (iomt),” Transactions on

Emerging Telecommunications Technologies, p. e4049, 2020.
[39] B. W. Lampson, “Computer security in the real world,” Computer,

vol. 37, no. 6, pp. 37–46, 2004.
[40] E. B. Fernandez and J. Hawkins, “Determining role rights from use

cases,” in Proceedings of the second ACM workshop on Role-based

access control, 1997, pp. 121–125.
[41] S. Mare, A. M. Markham, C. Cornelius, R. Peterson, and D. Kotz,

“Zebra: Zero-effort bilateral recurring authentication,” in 2014 IEEE

Symposium on Security and Privacy. IEEE, 2014, pp. 705–720.
[42] T. Nandy, M. Y. I. B. Idris, R. M. Noor, L. M. Kiah, L. S. Lun, N. B. A.

Juma’at, I. Ahmedy, N. A. Ghani, and S. Bhattacharyya, “Review on
security of internet of things authentication mechanism,” IEEE Access,
vol. 7, pp. 151 054–151 089, 2019.

[43] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,
and M. Smith, “Why do developers get password storage wrong? a
qualitative usability study,” in Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, 2017, pp. 311–
328.

[44] M. Alsaleh, M. Mannan, and P. C. Van Oorschot, “Revisiting defenses
against large-scale online password guessing attacks,” IEEE Transac-

tions on dependable and secure computing, vol. 9, no. 1, pp. 128–141,
2011.

[45] J. R. de Almeida, J. B. Camargo, B. A. Basseto, and S. M. Paz, “Best
practices in code inspection for safety-critical software,” IEEE software,
vol. 20, no. 3, pp. 56–63, 2003.

[46] M. E. Whitman and H. J. Mattord, Principles of incident response and

disaster recovery. Cengage Learning, 2021.
[47] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo, “Industry prac-

tices and event logging: Assessment of a critical software development
process,” in 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, vol. 2. IEEE, 2015, pp. 169–178.

[48] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[49] J. K. Teto, R. Bearden, and D. C.-T. Lo, “The impact of defensive pro-
gramming on i/o cybersecurity attacks,” in Proceedings of the SouthEast

Conference, 2017, pp. 102–111.
[50] M. Maass, A. Sales, B. Chung, and J. Sunshine, “A systematic analysis

of the science of sandboxing,” PeerJ Computer Science, vol. 2, p. e43,
2016.

[51] A. Tarinejad, H. Izadkhah, M. M. Ardakani, and K. Mirzaie, “Metrics
for assessing reliability of self-healing software systems,” Computers &

Electrical Engineering, vol. 90, p. 106952, 2021.
[52] A. Mattavelli, “Software redundancy: what, where, how,” Ph.D. disser-

tation, Università della Svizzera italiana, 2016.
[53] E. Nemeth, G. Snyder, S. Seebass, and T. Hein, UNIX system adminis-

tration handbook. Pearson Education, 2000.
[54] R. Rowlingson et al., “A ten step process for forensic readiness,”

International Journal of Digital Evidence, vol. 2, no. 3, pp. 1–28, 2004.
[55] L. Pasquale, D. Alrajeh, C. Peersman, T. Tun, B. Nuseibeh, and

A. Rashid, “Towards forensic-ready software systems,” in 2018

IEEE/ACM 40th International Conference on Software Engineering:

New Ideas and Emerging Technologies Results (ICSE-NIER). IEEE,
2018, pp. 9–12.

[56] J. McQuaid, “Forensic considerations for cloud data storage -
forensic focus,” 2021. [Online]. Available: https://www.forensicfocus.
com/webinars/forensic-considerations-for-cloud-data-storage/

[57] A. Singh, R. A. Ikuesan, and H. Venter, “Secure storage model for digital
forensic readiness,” IEEE Access, vol. 10, pp. 19 469–19 480, 2022.

[58] M. Hollick and S. Katzenbeisser, “Resilient critical infrastructures,” in
Information Technology for Peace and Security. Springer, 2019, pp.
305–318.

[59] M.-D. McLaughlin and J. Gogan, “Challenges and best practices in
information security management,” MIS Quarterly Executive, vol. 17,
no. 3, p. 12, 2018.

[60] F. C. Freiling and B. Schwittay, “A common process model for incident
response and computer forensics,” IMF 2007: IT-Incident Management

& IT-Forensics, 2007.
[61] E. C. Thompson, Cybersecurity incident response: How to contain,

eradicate, and recover from incidents. Apress, 2018.
[62] R. Fateman, “Software fault prevention by language choice: Why c is

not my favorite language,” in Advances in Computers. Elsevier, 2002,
vol. 56, pp. 167–188.

[63] A. Valjarevic and H. S. Venter, “Harmonised digital forensic investi-
gation process model,” in 2012 Information Security for South Africa.
IEEE, 2012, pp. 1–10.

[64] Q. He and A. I. Antón, “Requirements-based access control analysis
and policy specification (recaps),” Information and Software Technology,
vol. 51, no. 6, pp. 993–1009, 2009.

[65] K. Walsh, “Authorization and trust in software systems,” 2012.
[66] G. Rong, Q. Zhang, X. Liu, and S. Gu, “A systematic review of logging

practice in software engineering,” in 2017 24th Asia-Pacific Software

Engineering Conference (APSEC). IEEE, 2017, pp. 534–539.
[67] L. A. Maglaras, K.-H. Kim, H. Janicke, M. A. Ferrag, S. Rallis,

P. Fragkou, A. Maglaras, and T. J. Cruz, “Cyber security of critical
infrastructures,” Ict Express, vol. 4, no. 1, pp. 42–45, 2018.

[68] G. Tzokatziou, L. Maglaras, and H. Janicke, “Insecure by design: Using
human interface devices to exploit scada systems,” in 3rd International

Symposium for ICS & SCADA Cyber Security Research 2015 (ICS-CSR

2015) 3, 2015, pp. 103–106.
[69] M. M. Howell, “Data backups and disaster recovery planning,” 2003.
[70] L. Daubner, M. Macak, B. Buhnova, and T. Pitner, “Verification of

forensic readiness in software development: A roadmap,” in Proceedings

of the 35th Annual ACM Symposium on Applied Computing, 2020, pp.
1658–1661.

[71] D. E. Rico and M. Hann, “A combined dependability and security
approach for third party software in space systems,” arXiv preprint

arXiv:1608.06133, 2016.
[72] J. Obert, P. Cordeiro, J. T. Johnson, G. Lum, T. Tansy, N. Pala, and

R. Ih, “Recommendations for trust and encryption in der interoperability
standards,” Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States); Kitu Systems, Tech. Rep., 2019.

[73] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM transactions on autonomous and adaptive

systems (TAAS), vol. 4, no. 2, pp. 1–42, 2009.

140 POSITION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022


