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Abstract—Cancerous region detection in the prostate is per-
formed using different imaging sequences by multiparametric
magnetic resonance imaging. One of those modalities is dynamic
contrast enhancement. The authors of this paper are testing
possible modifications of workflow which use this modality for
more accurate cancerous region detection in the prostate. The
introduced changes are timestamp mapping in the segmentation
step, proportionate Simple Linear Iterative Clustering region
number to prostate region size in each slice, a new definition
of labels and new extracted features. Furthermore, experiments
are performed for segmentation in a single timestamp only. The
experiments test the effect of modification on curve classifica-
tion by using XGBoost classification and flat neural network
approaches. Lastly, the authors perform hyper-parameter tuning
of both approaches and evaluates obtained results statistically.

I. INTRODUCTION

One of the most lethal cancer globally is prostate cancer.

According to the research by Bray et al. in paper [6], it has

the second highest incidence rate among males after lung

cancer. Successful prostate cancer treatment requires early

diagnosis. Preliminary identification of cancer is related to a

higher concentration of a protein produced by the prostate

called Prostate-Specific Antigen (PSA), as it is described in

paper [17] by Hayes and Barry. However, PSA testing has a

high level of false-positive and false-negative cases. Therefore,

in addition to PSA testing, many biopsies are taken, which

is a highly invasive testing method. As an alternative to this

method, PI-RADS is introduced in paper [2]. It is a structured

reporting scheme for multiparametric (mp) prostate Magnetic

Resonance Imaging (MRI). Literature evidence of the same

paper and the expert opinion consensus indicate better inter-

pretation and performance of prostate cancer evaluation when

using PI-RADS rather than PSA testing. Examples of MRI

modalities used for cancer evaluation are T2 weighted images

(T2W), Diffusion Weighted Images (DWI), Apparent Dif-

This work was not supported by any organization

fusion Coefficients (ADC), and Dynamic Contrast-Enhanced

(DCE) images.

Vaitulevicius et al. introduce in paper [27] the workflow

for detecting cancerous regions in the prostate by using DCE

sequences together with preliminary research. This modality

is acquired by capturing a sequence of MRI scans during

intravenous injection of a contrast agent. Typically gadolinium

is used, and the scans are performed every few seconds

for several minutes. As described by Low et al. in paper

[23], during this period, tumours attract a higher amount

of contrast medium due to their typically higher vascular

permeability and density caused by angiogenesis. This data

can detect, characterize, and monitor tumours using Functional

Data Analysis (FDA) and machine learning methods. The

approach tested in the experiments described by Vaitulevičius

et al. in paper [27] performs the following steps. Firstly,

these DCE sequences’ cross-sectional images are segmented

using image segmentation algorithms such as the Simple

Linear Iterative Clustering (SLIC) algorithm. Secondly, the

regions are aggregated to values representative of regions by

calculating such metrics as mean or median. Thirdly, for each

region x function fx : T → I are created by fitting aggregated

values of region x. In the definition of these functions T is the

set of timestamps while I is the set of aggregated values at the

timestamps T . Finally, the preliminary research is performed

on the K-nearest neighbours algorithm (KNN) using functional

data and the support vector machine (SVM) algorithm using

extracted features from functional data.

In this paper, several adjustments to the workflow are tested.

Firstly, instead of a fixed number of SLIC regions, using

a proportionate number of SLIC regions in each slice is

proposed and compared to the workflow described in paper

[27]. Secondly, the experiments are done to determine if

using landmark registration on data improves or worsens the

classification accuracy metrics. Moreover, the experiments

are repeated on thirteen patients separately instead of one.

Communication Papers of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 23–30

DOI: 10.15439/2022F128

ISSN 2300-5963 ACSIS, Vol. 32

©2022, PTI 23



Furthermore, this paper focuses entirely on segmenting each

timestamp individually and does not introduce any experi-

ments on the temporal variance matrix calculated between all

timestamps. This paper chooses only a single timestamp for

each patient for segmentation. Finally, two new algorithms,

flat neural network and XGBoost classification introduced in

paper [11], are tested using features extracted from functional

data as these algorithms are more advanced and highly tunable.

Therefore, the hyperparameters of those algorithms are tuned.

The data used for experiments is the same as in the experi-

ments introduced in paper [27]. The data for the investigation,

under the terms of the bioethical agreement, was provided by

Lithuanian National Cancer Institute.

A lot of prostate cancer research with MRI data is already

done. Many examples of machine learning applications on

MRI modalities are given in paper [13]. Papers [19] and

[1] conducted research tests the possibility of using T2W

sequences for cancer localization. Another examples are usage

of DWI sequences to solve prostate cancer segmentation and

severity evaluation problems presented in papers [26], [18],

[29] and [4]. Moreover, in paper [14] research was conducted

which tested the capability of various adaptations of U-net to

detect and grade cancerous tissue by using T2-weighted and

DWI modalities. Lastly, technological improvements such as

the ones presented in paper [10] in DCE MRI modality data

acquisition creates a demand to research DCE MRI sequences.

One of the research on DCE MRI sequences was performed in

paper [20]. However, the paper [20] focuses purely on machine

learning and does not use FDA approach.

To summarize, authors of this paper introduced and tested

adjustments to the workflow described in article [27] by

Vaitulevičius et al. The changes are segmentation timestamp

mapping, using a proportionate number of SLIC regions to

prostate size in each slice, label definition, extracted features

and new classification models.

II. EXPERIMENT SETUP

As mentioned in the introduction, several adjustments to

the workflow described in paper [27] was introduced. The

experiments are performed according to a new workflow. Data

used in the experiments is the same as in the experiment of

previously published author’s investigation. However, investi-

gations of this paper, differently from the experiment described

in article [27], are performed on 13 patients instead of one

by performing model training and validation for each patient

separately. The example of a single patient’s single slice in 3

different timestamps is visualized in Fig. 1. The left shows the

DCE image taken at the timestamp at which the contrast agent

has not yet reached the prostate region. The middle shows

the DCE image is taken at the timestamp the contrast agent

is flowing through arteries, and the right DCE MRI image is

taken at the timestamp when the contrast agent is accumulating

in the prostate. Meanwhile, in Fig. 2 cancerous and prostate

masks are displayed. Lastly, each patient’s data is split into a

training set of 70% of the patient’s dataset and a validation set

Fig. 1. Example of the DCE images of a single slice at 3 different timestamps.

of 30% of the patient’s dataset. The ratio of classes in training

and validation data sets is equal.

Flat neural network and XGBoost algorithms are tested in

the experiments presented in this paper. Authors test only

the simple flat neural network, consisting of only dense

layers and compare it to another machine learning algorithm

- XGBoost. Flat neural network is chosen as a baseline as

deep neural networks are highly scalable group of machine

learning methods and flat neural network is the most simple

one. Meanwhile, XGBoost is a relatively new algorithm which

has already proven to be effective in solving various tasks in

the medical field. For example, the experiment provided in

paper [9] indicates that XGBoost achieves the most accurate

results when predicting the outcome of hypertension. The other

example is the experiment provided in article [16]. Authors

show that XGBoost excels in the pathway analysis, which

is used to determine the role of the tested protein task. One

more example is the experiment provided in paper [21], which

indicates that XGBoost accurately predicts mortality from

acute kidney injury.

A. Chose of timestamps for each patient

Each patient’s data is acquired at different timestamps and

do not correspond to each other. For example, if patient

A has 31 timestamps while patient B has 20 timestamps,

then the patient’s A timestamp five will not conform to

patient’s B timestamp five. Meanwhile, chosen timestamp for

segmentation for each patient has to be conforming in order to

not introduce the effect of the timestamp choice. To overcome

this problem, each patient’s timestamps are mapped to 25

timestamps. An illustrative scheme of mapping is displayed

in Fig. 3 where columns Patient A timestamps and Patient

B timestamps correspond to original timestamps. Firstly, the

timestamps of the patients are normalized to the interval

Fig. 2. The left image is a cancerous region mask and the right image is the
prostate mask of a single slice.
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Fig. 3. Example of the timestamp mapping for Patient A data having 31
timestamps and Patient B data having 20 timestamps.

[0, 24]. Secondly, normalized timestamps are rounded to the

whole numbers. The resulting new timestamps are displayed in

the column New timestamps. However, after this step, patients

with more than 25 timestamps have multiple DCE images at a

single timestamp, while patients with less than 25 timestamps

have none at specific timestamps. Therefore, if more than one

patient’s timestamp is mapped to a new timestamp, then the

latest timestamp of those timestamps is selected for a new

timestamp. Suppose none of the patient’s timestamps gets

mapped to a new timestamp. In that case, patient’s normalized

rounded timestamp, which has a minor absolute difference

with a new timestamp, is mapped to a new timestamp. If

more than one of such timestamps exists, then the earliest

timestamp is mapped to a new timestamp. As mentioned in

the introduction, a single timestamp is used for experiments

when performing segmentation. The chosen timestamp was the

5th.

B. Segmentation

In the original segmentation described in article [27], each

patient’s slice is segmented into a fixed number of zones, 50.

However, it seems it is biased towards SLIC regions of slices

in which prostate regions are smaller as they have a smaller

area, but the number of regions produced from them is the

same.

This paper investigates the ability to select the number of

SLIC regions proportionate to the size of the slice. Firstly, the

slice with the largest prostate region is chosen. For that slice,

50 of SLIC regions are obtained. Secondly, number of SLIC

regions in other slices are calculated by using formula ni =
nmax×si/max(S) where nmax is number of SLIC regions to

which the slice with largest prostate region is segmented, si -

Fig. 4. Example of the slice segmentation. On the left the result of modified
segmentation approach, on the right - the original segmentation is displayed.

prostate size in the slice, S - list of prostate region sizes across

slices. The results are rounded to whole numbers. These results

are the amount of SLIC regions for each slice. The difference

between the original and modified approaches is illustrated in

Fig. 4.

C. SLIC region labels

In paper [27], positive class was assigned to the SLIC

regions, which had an overlap of ≥ 50% with cancer mask

and with malignant biopsy mask. However, this definition

resulted in a very small amount of samples of regions with

positive class labels resulting in an imbalanced class problem.

Therefore in this paper, a new description of positive class

label is applied, which results in less accurate labels, but it

increased the data sample amount for positive class labels.

In the research described in this paper, positive class is

assigned to SLIC regions with the overlap of ≥ 50% with

cancer mask, which has overlap with at least one malignant

biopsy mask and no overlap with benign biopsy masks. SLIC

regions to which negative label 0 is assigned remain the same

as in paper [27]. The rest of the SLIC regions are not used

in training or validation. These SLIC regions include regions

that either have:

• Overlap of < 50% with cancer masks, which overlap with

at least one malignant biopsy mask and has no overlap

with benign biopsy masks.

• Overlap with cancer mask, which has no overlap with

malignant biopsy mask.

The example of SLIC region labels defined in this paper is

displayed in Fig. 5.

D. Features from functional data

A different set of features are chosen for the training and

validation in the experiments described in this paper than

in the experiments described by Vaitulevičius et al. in paper

[27]. Firstly, the number of uniformly spaced discrete values

is increased from 10 to 100. Such adjustment results in the

longer training process and increased accuracy of functional

data representation. Secondly, the maximal value’s timestamp

normalized to the interval [0, 1] is not used for the experiments

as it is the same for the registered functional data. After

registering the data, this feature becomes equal for all regions.

Therefore, it does not carry any valuable information for

experiments conducted with functional data registration. Thus,

extracted features in the investigations of this paper are:
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• uniformly spaced discrete values - f(xi) where f is a

single function from functional data and xi ∈ [0, 1], xi−

xi−1 = xj − xj−1 with i ∈ [0, 100] and j ∈ [0, 100].
• max value of the function - supx∈[0,1] f(x).
• modified band depth - functional depth described in paper

[22].

• integral depth - functional depth described in paper [15].

Lastly, two types of experiments are conducted. First exper-

iment uses only discrete FDA values. Second - discrete values

obtained from FDA and the features such as: modified band

depth, integral depth and max value of the function. If the

second experiment will not bear significant results, then that

would indicate that no additional information is needed than

the discrete values of the functional data itself

E. Software used for experiments

All experiments are performed by using Python 3.8 pro-

gramming language with latest packages:

• scikit-fda - smoothing time series into functional data and

functional data transformations.

• xgboost - XGBoost classification model training. The

library is introduced in paper [11]

• hyperopt - XGBoost classification model’s hyperparame-

ter tuning. The library is introduced in paper [8].

• keras - flat neural network model’s training with tensor-

flow framework. The library is published in [12].

• keras_tuner - flat neural network model’s hyperparameter

tuning. The library is published in [24].

• scikit-learn - data splitting and metric calculation. The

library is introduced in paper [25].

• scipy - statistical tests.

III. HYPERPARAMETER TUNING

Hyperparameter tuning of both algorithms is performed

using each patient’s data separately. Tuning allows the investi-

gation of possible hyperparameters for a more general model.

Persistent values of hyperparameters indicate that those values

can be used in a more general model. However, non-persistent

values suggest that the model is too simple and hardly can

Fig. 5. Example of SLIC region labels. The regions with a red contour
are regions representing the positive class label. The regions with a green
outline are regions representing the negative class label. The labels with white
contours are not used in the training or validation. The purple contour is the
cancerous region mask which has overlap with malignant biopsy mask and
no overlap with benign biopsy masks

be generalized.The dataset is split into stratified training and

validation sets for hyperparameter tuning. The validation set

contains 30% of the dataset while the training set - 70%.

Each feature of the training set is scaled by normalizing it

to the interval [0, 1], while validation set features are scaled

by dividing each by the maximum value of the training set.

Moreover, due to the high class imbalance, additional class

weights are assigned. For positive class weight is calculated

by using formula wp = 1 − (np/na) and for negative class -

wn = 1 − (nn/na) where np is the number of SLIC regions

with a positive class in the training set, nn is the number of

SLIC regions with a negative class in the training set, na -

size of the training set.

Lastly, early stopping is used for XGBoost classification

and flat neural network algorithms to avoid overfitting. For

XGBoost, if after iterating through the training set ten times F1

score of the validation set does not improve, then the training

is stopped. For a flat neural network, if after ten epochs F1

score of the validation set does not improve, then the training

is stopped, and the model with the highest F1 score of the

validation set is chosen.

A. XGBoost algorithm hyperparameter tuning

Hyperparameters of the XGBoost classification algorithm

are tuned by using Tree of Parzen Estimators (TPE) described

by Bergstra et al. in paper [7]. The training for each patient

is repeated at least 400 times in hyper-parameter tuning.

Hyperparameters are tuned by maximizing the F1 score on

the validation data set. The space of tuned hyperparameters

is taken from Kagle competition [3]. Tuned hyperparameters

are:

• Subsample ratio of columns when constructing each tree.

The search space of this hyperparameter is in interval

[0.4, 0.8].

• Minimum loss reduction required to make a further

partition on a leaf node of the tree. The search space

of this hyperparameter is in interval [0, 1].

• Maximal depth of the XGBoost ensemble tree. The search

space of this hyperparameter is in an interval of natural

numbers [3, 18].

• Minimum sum of instance weight (Hessian) needed in a

child. The search space of this hyperparameter is in an

interval of natural numbers [0, 10].

• L1 regularization term on weights. The search space of

this hyperparameter is in interval [0, 1].

Number of gradient boosted trees. This hyperparameter is a

constant and set to 180 and each training is performed by

minimizing the logistic regression loss function.

B. Flat neural network algorithm hyperparameter tuning

Hyperparameters of the flat neural network algorithm are

tuned by using the Bayesian tuning algorithm described by

Barsce et al. in paper [5]. The training for each patient is

repeated at least 25 times. Each training is performed in 100

epochs or less (if the early stop is triggered). Due to the

non-deterministic behaviour of the flat neural network training
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algorithm, each hyperparameter tuning procedure has been

repeated ten times. Hyperparameters are tuned by maximizing

the mean of the F1 score on the validation data set. The

architecture of the tuned flat neural network is:

• Input layer

• First hidden layer is a dense layer with a ReLU activation

function and the number of neurons equal to a number

of input dimensions.

• Search the number of hidden dense layers (depth of neural

network). The search space of this hyperparameter is in an

interval of natural numbers [1, 10]. Each layer’s activation

function is ReLU. A number of neurons are also tuned

and is set to repetitive numbers of 32 in the interval of

natural numbers [32, 1024].

• Last layer of the neural network contains only a single

neuron. The activation function of this layer is tuned by

testing activation functions - sigmoid, softmax and ReLU.

IV. RESULTS

In the experiments provided in this paper, hyperparameter

tuning and training are done on each patient’s data separately.

The collected accuracy metrics of the resulting models are

calculated on the validation set. Accuracy metrics are preci-

sion, recall, F1, balanced accuracy and specificity. Experiments

with the flat neural network are repeated ten times with each

patient’s dataset. Collected accuracy metrics of flat neural

network’s model are aggregated on a patient and configuration

basis by calculating the mean and the standard deviation.

Those metrics can be used to choose a more stable model

as mean is heavily affected by outliers and standard deviation

indicates how much do the outliers affect the mean. Lastly,

the median value of each accuracy metric is calculated on

configuration basis as median have lesser effect of outliers

and represent the sample distribution better than mean. Those

configurations are registered, unregistered functional data, only

discrete and not only discrete extracted features from func-

tional data, proportionate and fixed number of SLIC regions

in the slice and lastly selected model - XGBoost or flat neural

network.

Tables I and III contain medians of validation dataset classi-

fication accuracy metrics of flat neural network and XGBoost

model respectively. Tables II and III contain hyperparameters

acquired by hyperparameter tuning on dataset of single patient

for flat neural network and XGBoost model respectively.

The shown hyperparameter tuning result is acquired from the

patient’s validation dataset, which is classified with the highest

balanced accuracy.

In the tables I, II, and III is registered column denotes if

functional data in the experiments is registered (registered) or

not (unregistered). Column extracted features denotes if only

discrete values of functional data are used (only discrete) or

discrete values, maximal values, integral depth, or modified

band depth (not only discrete). Column number of SLIC

regions denotes if, in the experiments, segmentations in each

slice are performed with a fixed number of SLIC regions (fixed

SLIC) or not (proportionate SLIC).

Table III indicates that the highest median of balanced

accuracy - 0.855 is achieved by using non-registered functional

data, a proportionate number of SLIC regions to prostate size

and extracted features: discrete values, modified band depth,

integrated depth and maximal values. For this configuration,

tuned hyperparameters on the patient’s dataset with the best

balanced accuracy were achieved is:

• Subsample ratio of columns when constructing each tree

- 0.412 (column colsample bytree)

• Minimum loss reduction required to make a further

partition on a leaf node of the tree - 0.005 (column

gamma)

• Maximum tree depth for base learners - 6 (column max

depth)

• Minimum sum of instance weight(hessian) needed in a

child - 0 (column min child weight)

• L1 regularization term on weights - 0.53 (column reg

alpha)

Table I indicates that the highest median of mean balanced

accuracy - 0.831 is achieved using non-registered functional

data, a fixed number of SLIC regions and extracted features:

discrete values, modified band depth, integrated depth and

TABLE I
MEDIANS OF FLAT NEURAL NETWORK MODEL’S CLASSIFICATION ACCURACY METRICS ON VALIDATION DATASET

is registered
extracted
features

number
of SLIC
regions

precision
mean

precision

std
recall
mean

recall
std f1 mean f1 std

balanced
accuracy

mean

balanced
accuracy

std
specificity

mean

specificity

std

unregistered

not only

discrete

proportionate

SLIC 0.369 0.061 0.650 0.071 0.442 0.046 0.772 0.031 0.923 0.036
fixed SLIC 0.279 0.052 0.733 0.084 0.391 0.040 0.831 0.037 0.943 0.028

only

discrete

proportionate

SLIC 0.353 0.074 0.633 0.091 0.413 0.059 0.784 0.044 0.936 0.037
fixed SLIC 0.332 0.041 0.738 0.114 0.395 0.043 0.812 0.056 0.942 0.016

registered

not only

discrete

proportionate

SLIC 0.332 0.087 0.642 0.145 0.393 0.077 0.775 0.060 0.928 0.030
fixed SLIC 0.181 0.061 0.660 0.141 0.270 0.044 0.772 0.067 0.935 0.036

only

discrete

proportionate

SLIC 0.282 0.078 0.686 0.113 0.364 0.077 0.782 0.052 0.911 0.036
fixed SLIC 0.186 0.047 0.667 0.076 0.268 0.038 0.801 0.021 0.933 0.017
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TABLE II
RESULTS OF FLAT NEURAL NETWORK MODEL’S TUNING (DISPLAYED HYPERPARAMETERS ARE ONLY OF ONE PATIENT FOR WHICH BALANCED

ACCURACY ON THE VALIDATION SET IS THE HIGHEST)

is registered
extracted
features

number
of SLIC
regions

activation
function 0 1 2 3 4 5 6 7 8 9 10

unregistered
not only discrete

proportionate SLIC sigmoid 864 416
fixed SLIC sigmoid 1024

only discrete
proportionate SLIC sigmoid 1024

fixed SLIC sigmoid 1024

registered
not only discrete

proportionate SLIC sigmoid 1024 384 320
fixed SLIC sigmoid 1024

only discrete
proportionate SLIC sigmoid 1024 32 32 32 32 32 32 32 480 32 1024

fixed SLIC sigmoid 672 32 32 32 32 32 32 32 32

maximal values. Table II indicates that for this configuration,

tuned hyperparameters on the patient’s dataset with the best

balanced accuracy were achieved using the activation function

of the last layer - Sigmoid (column activation function) and

one layer with 1024 neurons.

The table IV accuracy metrics are aggregated to a single

configuration basis by calculating medians. Those configura-

tions are:

• if functional data used in the experiment is registered

(registered) or not (unregistered).

• if only discrete values extracted from functional data are

used (only discrete), or the addition of discrete values

such as modified band depth, integral depth and max

values (not only discrete) increases accuracy.

• if in the experiments, segmentations in each slice are per-

formed with a fixed number of SLIC regions (fixed SLIC)

or proportionate number of SLIC regions to prostate size

(proportional SLIC).

• if the experiments are performed with XGBoost clas-

sification (XGBoost) or flat neural network (flat neural

network).

Table IV indicates that using unregistered function data

(balanced accuracy - 0.804) gives more accurate results than

using registered functional data (balanced accuracy - 0.773).

Furthermore, it also indicates that using only extracted discrete

values from functional data (balanced accuracy - 0.789) gives

slightly more accurate results than using maximal values,

integrated depth and modified band depth (balanced accuracy

- 0.78). However, that contradicts the one made from tables I

and III. This contradiction indicates that other configurations

have effect on how well do extracted features perform or

that the effect of this configuration is very small. Moreover,

table IV indicates that using a fixed number of SLIC regions

(balanced accuracy - 0.792) gives more accurate results than

using a proportionate number of SLIC regions to prostate size

(balanced accuracy - 0.783). However, tables I and III indicate

that this configuration is dependent on which machine learning

algorithm is used. Lastly, the table IV indicates that XGBoost

classification algorithm (balanced accuracy - 0.792) is better

than Flat neural network (balanced accuracy - 0.785).

Finally, statistical tests are performed on acquired balanced

accuracy values. A single sample is formed for each config-

uration by taking all balanced accuracies that use that exact

configuration. Further paired statistical tests are performed on

sample pairs of configurations which are compared in the

experiments of this paper. As samples are relatively small,

the chosen tests are Wilcoxon tests introduced in paper [28].

The resulting p-values acquired by performing statistical tests

on samples of balanced accuracies are as follows:

• Using a flat neural network and using XGBoost model -

TABLE III
MEDIANS OF XGBOOST MODEL’S CLASSIFICATION ACCURACY METRICS ON VALIDATION DATASET AND RESULTS OF XGBOOST MODEL’S TUNING

(DISPLAYED HYPERPARAMETERS ARE ONLY OF ONE PATIENT FOR WHICH BALANCED ACCURACY ON THE VALIDATION SET IS THE HIGHEST

is registered
extracted
features

number
of SLIC
regions precision recall f1

balanced
accuracy specificity

colsample

bytree gamma
max
depth

min
child

weight

reg

alpha

unregistered
not only discrete

proportionate

SLIC 0.400 0.750 0.471 0.855 0.959 0.412 0.005 6 0 0.530
fixed SLIC 0.500 0.600 0.540 0.794 0.985 0.458 0.002 15 0 0.636

only discrete

proportionate

SLIC 0.455 0.667 0.462 0.810 0.964 0.420 0.000 8 0 0.596
fixed SLIC 0.500 0.640 0.514 0.793 0.971 0.457 0.247 13 0 0.008

registered
not only discrete

proportionate

SLIC 0.571 0.650 0.533 0.780 0.971 0.727 0.019 16 0 0.825
fixed SLIC 0.450 0.560 0.483 0.748 0.976 0.665 0.080 13 1 0.446

only discrete

proportionate

SLIC 0.500 0.625 0.429 0.752 0.977 0.586 0.020 6 0 0.046
fixed SLIC 0.500 0.667 0.465 0.750 0.980 0.698 0.007 10 0 0.505

28 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



TABLE IV
MEDIANS OF ACCURACY METRICS OBTAINED ON THE VALIDATION DATASET. THIS AGGREGATION IS PERFORMED ON CONFIGURATION BASIS (THE

CONFIGURATION IS DENOTED WITH COLUMN EXPERIMENTS DONE WITH)

configuration precision recall f1 balanced accuracy specificity

unregistered 0.382 0.675 0.446 0.804 0.951
registered 0.361 0.657 0.431 0.773 0.948

not only discrete 0.389 0.667 0.457 0.780 0.948
only discrete 0.356 0.667 0.426 0.789 0.951

proportionate SLIC 0.394 0.667 0.450 0.783 0.948
fixed SLIC 0.355 0.667 0.431 0.792 0.953

XGBoost 0.500 0.652 0.502 0.792 0.973
flat NN 0.303 0.675 0.366 0.785 0.934

0.289765.

• Using registered functional data and unregistered func-

tional data - 0.000007.

• Using additional extracted features and using discrete

values only - 0.203341.

• Using a fixed number of SLIC regions and a proportionate

number of SLIC regions - 0.502053.

To summarize the obtained results, the following compar-

isons are performed:

• XGboost model’s results are compared to flat neural

network’s results:

– Median of all validation dataset classification bal-

anced accuracy metrics by using XGBoost classifi-

cation algorithm is 0.792, while using a flat neural

network - 0.785.

– The highest median of validation dataset balanced

accuracy calculated for each configuration separately

with XGBoost classification algorithm is 0.855 while

with the flat neural network - 0.831.

– P-value of statistical test performed between these

balanced accuracies is 0.289765.

• Using unregistered functional data is compared with

registered functional data usage:

– Median of all validation dataset classification bal-

anced accuracy metrics using non-registered func-

tional data is 0.804, while registered functional data

is 0.773.

– The highest median of validation dataset balanced

accuracy calculated for each configuration separately

with non-registered functional data is 0.855 while

with registered functional data - 0.801.

– P-value of statistical test performed between these

balanced accuracies is 0.000007.

• Using additional extracted features from functional data

is compared with using a dataset which represents func-

tional data itself only:

– Median of all validation dataset classification bal-

anced accuracy metrics by using additional extracted

features from functional data is 0.780, while dataset

which represents functional data itself only - 0.789.

– The highest median of validation dataset balanced

accuracy calculated for each configuration separately

with additional extracted features from functional

data is 0.855 while with a dataset representing func-

tional data itself only - 0.812.

– P-value of statistical test performed between these

balanced accuracies is 0.203341.

• Using a proportionate number of SLIC regions to prostate

size is compared with using a fixed number of SLIC

regions:

– The highest median of validation dataset balanced

accuracy calculated for each configuration separately

by using a proportionate number of SLIC zones to

prostate size is 0.855 while a fixed number of SLIC

zones - 0.794.

– Using flat neural network algorithm as the highest

median of validation dataset balanced accuracy cal-

culated for each configuration separately by using a

proportionate number of SLIC zones to prostate size

is 0.784 while a fixed number of SLIC zones - 0.831.

– P-value of statistical test performed between these

balanced accuracies is 0.502053.

V. CONCLUSION

The results obtained by this research that:

• XGBoost classification algorithm gives slightly more

accurate results (in configuration investigation as well)

than the flat neural network. However, the obtained

better performance is insignificant as the p-value of the

statistical test performed between obtained results is 0.29.

• Unregistered functional data gives significantly more ac-

curate results than registered (in configuration investi-

gation as well). The median of classification balanced

accuracy metrics using non-registered functional data

is 0.804, while registered functional data - 0.773. The

result difference is statistically significant as the p-value

of the statistical test performed between these balanced

accuracies is less than 0.05.

• There is no significant difference in classification results

between using additional extracted features from func-

tional data and using a dataset which represents functional

data only (in configuration investigation as well). The

median of classification balanced accuracy metrics using

additional extracted features from functional data is 0.78,

while dataset which represents functional data only -

0.789. However, this comparison is insignificant as the
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p-value of the statistical test performed between these

balanced accuracies is 0.203.

• Application of proportionate number of SLIC zones to

prostate size gives more accurate results than a fixed

number of SLIC zones when using XGBoost classifica-

tion algorithm. The highest median of balanced accuracy

calculated for each configuration by using a proportionate

number of SLIC zones to prostate size is 0.855 while

a fixed number of SLIC zones - 0.794. In opposite,

the flat neural network algorithm performs better with

fixed number of SLIC zones - 0.831, that proportionate

- 0.784 (in terms of balanced accuracy and configuration

investigation). This comparison is insignificant as the

p-value of the statistical test performed between these

balanced accuracies is 0.502.

Results obtained indicate further research directions:

• The experiments should be repeated on higher data vari-

ability from more patients. The data variability could be

used to explain the proportionate number SLIC zones

performance with flat neural networks.

• The search of ensemble classifier that merge the proposed

scheme of processing DCE modality with processing

other prostate MRI modalities could improve the results.
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