
Type System of Anemone Functional Language

Paweł Batko, Marcin Kuta

AGH University of Science and Technology,

Al. Mickiewicza 30, 30-059 Krakow, Poland,

Institute of Computer Science,

Faculty of Computer Science, Electronics and Telecommunications

Email: mkuta@agh.edu.pl

Abstract—Anemone is a functional language, which provides
an actor system as its model of concurrency. This paper describes
type system of the Anemone language. The type system is the
strong point of Anemone. In comparison to a dynamic type
system, the static type system of Anemone guarantees more exact
error detection. The full type inference disposes the programmer
from explicit specification of type labels. As the type system of
Anemone is polymorphic, code conciseness, rich data structures
and pattern matching are provided in Anemone.

I. INTRODUCTION

A
NEMONE language is a functional language [1], [2]

inspired by Scala, Erlang, Haskell, and ML. It supports

a wide range of features including actors communicating

via messages, tight integration with the LLVM infrastructure,

interoperability with the C language, and automatic memory

management with garbage collector.

Anemone language is equipped with a static, polymor-

phic type system, with full type inference based on let-

polymorphism. The static type system guarantees that more

errors are detected than using a dynamic type system. Error

detection is also performed earlier – at the compile time

rather than the run time. The full type inference disposes

the programmer from explicit specification of type labels in

a program. As the type system of Anemone is polymorphic,

the code is concise and algebraic data types enable rich data

structures and pattern matching.

In this paper, we show the design and implementation

of the type system adopted in Anemone and the inference

algorithm. Type inference has been based on the Hindley-

Milner algorithm. The Hindley-Milner inference has been

implemented with algorithm W. In particular, we present the

extension of algorithm W introduced for the purpose of the

Anemone language. We also show data structures which are

the basis for above algorithms, including representations of

type variables and type schemes.

II. TYPE SYSTEMS IN FUNCTIONAL LANGUAGES

The choice of a type system is an important decision which

determines many aspects of compiler architecture. The two

main options are dynamic typing and static typing.

Contrary to no typing, with dynamic typing each value is

ascribed a particular type. The type correctness of a program

is performed during the run time. Dynamic typing offers the

programmer flexibility because he does not have to adjust his

program to a static type system. The drawback of this approach

is the reduced amount of static information about a compiled

program. This reduces the range of applicable optimisations

and imposes a generation of the additional code which verifies

the program correctness with respect to its types. Dynamic

typing introduces an additional overhead during the run time.

Scheme and Clojure are examples of functional languages

which use this approach. Anemone is not typed dynamically

as lack of accurate error detection at the compile time is an

important drawback of this approach.

Static typing associates a label denoting its type with each

variable. The current type systems originate from the simply

typed lambda-calculus [3]. The set of operations that may

be performed on a given variable are limited by the type of

variable that it is. Static typing offers several advantages:

" an early and exact error detection,

" increased opportunities for code optimizations due to

additional static information,

" type information is a form of code documentation,

" better support for programming environments.

Type systems based on dependent typing can express types

which depend not only on other types, but also on values

of variables. For example, they can guarantee that a function

taking number n will return a list of length n. Epigram [4]

and Agda [5] implement such a type system.

III. POLYMORPHIC TYPE SYSTEMS

The core concept of a polymorphic type system is to create

within a language abstractions of values which are independent

from type. Functions and data types are examples of such ab-

stractions. Parametric polymorphism enables generic code typ-

ing and uses type variables, which are replaced with concrete

types when needed. Other kinds of polymorphism include:

" ad-hoc polymorphism, which associates many imple-

mentations with a single function identifier. The proper

function is chosen on the basis of passed parameters.

" subtype polymorphism, the examples of which are sub-

types present in object-oriented languages.

In Figure 1, the function map can take a list of elements

of type int as well as a list of elements of type string. In a

polymorphic type system, the function only needs to be de-

fined once. In languages which do not support polymorphism,

the programmer would have to implement a distinct function

Communication Papers of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 131–138

DOI: 10.15439/2022F135

ISSN 2300-5963 ACSIS, Vol. 32

©2022, PTI 131

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

map id ["1", "2"]

map id [1, 2]

Fig. 1: Example of a polymorphic type system

The function map takes two parameters. The first parameter is
function f mapping any type a to any type b. The second

parameter is a list of elements of type a. The function map returns
a list of elements of type b. Example from Haskell

for each of types or would have to typecast to void* type,

sacrificing type safety, as is usually done in C.

Parametric polymorphic type systems further divide

into predicative polymorphism and impredicative polymor-

phism [6].

Predicative polymorphism distinguishes monotypes from

polytypes. A monotype does not have type variables, e.g., int,

int �³ bool. A polytype can be parametrised with a type vari-

able, e.g. "a.a, where a is a type variable rather than a concrete

type. A type variable can be substituted with any monotype.

Let us temporarily assume that a constructor of function

type, ³, is the only available constructor of type. In rank-1

(prenex) polymorphism, a polytype may contain a universal

quantifier located only at the leftmost position. This means

that the quantified variable can be only substituted with

a monotype, and a polytype containing universal quantifier

cannot be on the left hand side of ³ constructor, provided

that the given type is encoded as a tree.

Rank-2 polymorphism forbids the presence of a universal

quantifier in the encoding of a type as a tree at positions

passing through two arrows. This rule can be applied to define

polymorphisms of higher ranks. For example, "a.a ³ a is

both rank-1 and rank-2 type (and higher), while ("a.a ³ a) ³
bool is only rank-2 type (and higher). The crucial caveat of

rank-3 polymorphism (or higher) is undecidability of its full

type reconstruction [7].

Impredicative polymorphism is the strongest form of para-

metric polymorphism. It can express types where a type

variable can be substituted with any type or type variable.

For example, given type z = "a list[a], type variable, a, can

by substituted with z. Haskell is a prominent example of a

language implementing such a type system.

An example of a rank-1 polymorphic type system is let-

polymorphism – this is characterised by its restriction of type

generalisation to the syntactic let construct. Let-polymorphism

is used in some versions of ML, and it has been implemented

in Anemone. An advantage of languages which implement

rank-1 polymorphism is the possibility of performing global

type inference without type annotations in the source code.

Anemone language is equipped with a static type system

with let-polymorphism and global type inference. This solution

is much more complicated than dynamic typing. This has been

chosen due to additional static guarantees of program correct-

ness, avoiding overhead linked to type annotations (achieved

with type inference) and flexibility in creating abstractions

which use the polymorphism mechanism.

Table I summarizes type systems of few functional lan-

guages.

TABLE I: Type systems of different functional languages

Type system Language

Dynamic typing Scheme, Closure
Impredicative polymorphism Haskell
Dependent typing Epigram, Agda
Let-polymorphism ML, Anemone

IV. IMPLEMENTATION OF THE TYPE SYSTEM

Implementation of the static, polymorphic type system is

based on the unification algorithm and algorithm W [8].

A. Unification algorithm

The type inference algorithm in Anemone applies the unifi-

cation algorithm [9]. Unification searches for substitutions of

values for variables, such that two unified expressions become

equal.

Let us consider expressions f(a, x) and f(y, f(y, b)), where

a and b denote values, and x and y are variables. To unify

them, substitution S = [a/y, f(a, b)/x] should be applied,

which denotes that y should be substituted with a, and x
should be substituted with f(a, b). The application of a substi-

tution to an expression is written as: [a/y, f(a, b)/x]f(a, x).
Substitution S is a composition of two substitutions, S =
[f(y, b)/x]ç [a/y]. Substitution S is called a unifier of f(a, x)
and f(y, f(y, b)), because after its application, these expres-

sions become equal. In the context of the implemented type

inference, variables refer to type variables, values refer to

types, and functions refer to type constructors.

The idea of the unification algorithm is to find the principal

unifier (the most general unifier) of two expressions. This is

such a unifier U , that any unifier S of two expressions can

be constructed by the composition of some unifier T with the

principal unifier U , written as S = U ç T .

The Anemone compiler implements the unification algo-

rithm (Fig. 2) which operates on type variables and types.

Figure 3 presents data types which are defined in the Anemone

compiler and are needed by the unification algorithm. Type

TypeVar represents type variables, and type TypeApp repre-

sents simple and complex types. For example, variable x
would be represented as TypeVar("x"), and type con-

structor f(x, a) (where a is a type) as TypeApp("f",

TypeVar("x"), TypeApp("a")).

B. Hindley-Milner type inference

Hindley-Milner type inference [8] [10] is defined for two

languages: the language of expressions Le and the language

of types Lt. The language of expressions, defined with gram-

mar in Fig. 4a, contains variables x, expressions e, function

definitions, function calls and let expressions.

The language of types, generated by grammar in Fig. 4b,

defines types of these expressions. It defines primitive types ι,

132 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

function Unify(s, t):

if t = x and s = y then
[x/y]

else if s = x and not Occurs (x, t) then
[t/x]

else if t = x and not Occurs (x, s) then
[s/x]

else if s = f(p1, p2, .., pn) and t = f(p21, p
2
2, .., p

2
n) then

U1 = Unify(p1, p21)
Unify(f(U1p2, .., U1pn), f(U1p

2
2, .., U1p

2
n)) ç U1

else
Fail

end

function Occurs(x, t):

if t = f(p1, p2, .., pn) then

if #i. x = pi then
true

else
#i. Occurs(x,pi)

end

else
false

end

Fig. 2: Unification algorithm presented with function Unify

Function Unify takes two type schemes, s, t, (i.e., types, which may
contain a universal quantifier) as its parameters and returns their
principal unifier, if it exists. Function Occurs takes type variable x

and type scheme t as its parameters, and checks, whether variable x
occurs in the definition of type scheme t.

sealed trait TypeTerm

case class TypeVar(name: String)

extends TypeTerm

case class TypeApp(name: String,

typeTerms: Seq[TypeTerm]

= Seq.empty)

extends TypeTerm

Fig. 3: Implementation of variables and types values in the

Anemone compiler

type variables α, type expressions τ , and type schemes σ. Type

expressions τ describe types without a universal quantifier,

whereas type scheme σ also describes types with a universal

quantifier. Universally quantified type variables are referred to

as generic type variables. The remaining type variables are

free variables.

Inference rules are written as:

A ¢ e : σ ,

which means that under assumption A, expression e has a

type defined with type scheme σ. Symbol Ax denotes the set

of hypotheses concerning types from A without hypotheses

concerning x.

e ::= x | ee2 | λx.e | let x = e in e2

(a) Grammar of the language of expressions Le

σ ::= τ | "ασ

τ ::= α | ι | τ ³ τ

(b) Grammar of the language of types Lt

e ::= x

| e(e1, e2, .., en)

| λ(x1, x2, .., xn).e

| let x = e in e2

| fix (x, e)

| noarg(e)

(c) Grammar of the language of expressions used in the

compiler of Anemone

Fig. 4: Grammar of languages used in the Hindley-Milner

inference

Type schemes can be ordered w.r.t. their generality. For

example, type σ1 = "x.(y ³ x) ³ x is more general

than type σ2 = "x.(x ³ x) ³ x, because type σ1

can be transformed to type σ2 with substitution [x/y]. Type

σ0 = "x.z ³ x is even more general than σ1 and σ2. With

respect to generality, type schemes can be ordered from the

most specific type to the most general type with relation <
(more general), denoted as σ2 < σ1 < σ0.

Figure 5 presents the implementation of type schemes

in the Anemone compiler, realised with classes Forall and

Type. Polymorphic type "a.a would be implemented as

Forall("a", TypeApp("a")).

Hindley-Milner type inference is performed with six infer-

ence rules:

TAUT :
A ¢ e : σ

(x : σ * A) (R1)

INST :
A ¢ e : σ

A ¢ e : σ2
(σ > σ

2) (R2)

GEN :
A ¢ e : σ

A ¢ e : "ασ
(α is not free in A) (R3)

COMB :
A ¢ e : τ 2 ³ τ A ¢ e2 : τ 2

A ¢ (ee2) : τ
(R4)

ABS :
Ax * {x : τ 2} ¢ e : τ

A ¢ (λx.e) : τ 2 ³ τ
(R5)

LET :
A ¢ e : σ Ax * {x : σ} ¢ e2 : τ

A ¢ (let x = e in e2) : τ
(R6)

PAWEL BATKO, MARCIN KUTA: TYPE SYSTEM OF ANEMONE FUNCTIONAL LANGUAGE 133

Rule (R1) is a tautology which attributes type to an ex-

pression. Rule (R2) defines instantiating of a more specific

type scheme. Rule (R3) enables type generalization w.r.t. a

generic type variable. Rules (R4) and (R5) determine the type

of function application and the type of function definition,

respectively. Rule (R6) enables the typing of expressions

wherever an introduced variable has been used.

According to the above rules, the only available types are

simple types ι and function types, constructed with operator

³. In addition to simple types and function types, Anemone

offers complex types (introduced with a type constructor,

i.e., a function returning a new type). For example, a type

representing a pair of values Pair: a× b can be defined with

the following type constructors:

1) PairConstructor : "ab. a ³ b ³ a× b
2) GetFirst : "ab. a× b ³ a
3) GetSecond : "ab. a× b ³ b

This approach is used in the compiler of Anemone. It in-

troduces appropriate type constructors for each data structure

defined in Anemone.

sealed trait TypeScheme

case class Forall(name: String,

typeScheme: TypeScheme)

extends TypeScheme

case class Type(typeTerm: TypeTerm)

extends TypeScheme

Fig. 5: Implementation of type schemes in the compiler of

Anemone

C. Algorithm W

Algorithm W [8] implements Hindley-Milner type inference

and is the basis for type reconstruction performed by the

Anemone compiler. Algorithm W works according to formula

W (A, e) = (S, τ), where A is a set of variables with known

types and e is an expression, the type of which is reconstructed.

The result of the algorithm is a pair (S, τ), where S is the

principal unifier needed to find the type of expression e, and

τ is the reconstructed type of expression e.

Within the algorithm W a closure A(τ) of type τ at

assumptions A is defined as

A(τ) = "α1, α2, .., αn. τ ,

where α1, α2, .., αn are free type variables in τ and do not

occur in A.

Algorithm 1 presents the original form of algorithm W,

which consists of four rules. Each rule corresponds to one

of four production rules of grammar in Fig. 4a and inference

rules (R1)–(R6).

" The first rule of algorithm W corresponds to inference

rules INST preceded by rule TAUT;

" the second rule of algoritm W corresponds to inference

rule COMB;

" the third rule corresponds to rule ABS;

" the fourth rule corresponds to rules LET and GEN.

1) if e is identifier x and hypothesis about its type

belongs to the set of known hypotheses

x : "δ1, δ2, .., δn. τ
2 then

S = [] τ = [γi/δi]τ
2 ,

where γi is a new type variable.

2) if e is function application e1e2 and:

W (A, e1) = (S1, τ1)

W (S1A, e2) = (S2, τ2)

Unify(S2τ1, τ2 ³ γ) = V ,

where γ is a new type variable then

S = V S2S1 τ = V γ .

3) if e is function abstraction λx.e1 and:

W (Ax * {x : γ}, e1) = (S1, τ1) ,

where γ is a new type variable then

S = S1 τ = S1γ ³ τ1 .

4) if e is expression let x = e1 in e2 and:

W (A, e1) = (S1, τ1)

W (S1Ax * {x : S1A(τ1)}, e2) = (S2, τ2) ,

then

S = S2S1 τ = τ2 .

Algorithm 1: Algorithm W

D. Implementation of algorithm W

Figure 4c presents the grammar of the language of expres-

sions used in the Anemone compiler. In comparison to the

grammar of Le (Fig. 4a), there are the following changes:

" replacing definitions and calls of a unary function with

definitions and calls of n-ary function (n > 0)

" introduction of fix operator, which enables definitions of

recursive functions

" introduction of noarg operator, representing definitions of

functions with no arguments

As Anemone enables n-ary functions, appropriate constructs

supporting n-ary functions have been introduced. Modelling

n-ary functions with operators acting on unary functions

would imply that a call of a binary function with only one

argument provided is correct as (from the point of view of

implementation of algorithm W) a function would always take

only one parameter. Such an implementation of algorithm

W was considered; however, it would impose implementa-

tion of partial parametrisation (currying) for each function

in Anemone. While interesting, this approach would require

significant modifications in the entire compiler. The solution

134 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

1) if e is identifier x then proceed according to the steps

in Algortihm 1.

2) if e is of the form λ(x1, x2, .., xn).e and:

W (Ax1x2..xn
*{x1 : γ1, x2 : γ2, .., xn : γn}, e) = (S1, τ1) ,

where γ1, γ2, .., γn are new type variables, then:

S = S1 τ = (S1γ1, S1γ2, .., S1γn) ³ τ1 .

3) if e is a operator of zero-argument function,

noarg(e1), and:

W (A, e) = (S1, τ1) ,

then:

S = S1 τ = unit ³ τ1 .

4) if e is a multiargument function call,

e1(e2, e3, .., en+1), and:

W (A, e1) = (S1, τ1) ,

"
2fifn+1

: W (S1A, ei) = (Si, τi) ,

Unify(Sn+1Sn..S2τ1, (τ2, τ3, .., τn+1) ³ γ) = V ,

where γ is a new type variable, then:

S = V Sn+1Sn..S1 τ = V γ .

5) if e is expression let x = e1 in e2 then proceed

according to the definition in Algorithm 1.

6) if e is a fixed point expression fix (x, e1) and:

W (Ax * {x : γ}, e1) = (S1, τ1) ,

Unify(S1γ, τ1) = V ,

where γ is a new type variable, then:

S = V S1 τ = V S1γ .

Algorithm 2: Extended version of algorithm W applied in

Anemone

chosen for implementation introduces constructs which sup-

port representations of n-ary functions at the level of the

algorithm W as it limits necessary reorganisations to the

module of type reconstruction.

Algorithm 2 presents the extended version of algorithm W

applied in Anemone, which takes into account new constructs

and changes in grammar of Le.

E. Implementation of let-polymorphism

Anemone is equipped with a kind of parametric poly-

morphism known as let-polymorphism. Its name stems from

the syntactic construct present in ML, where this kind of

polymorphism has been introduced. The let construct, also

present in the definition of algorithm W, introduces generically

typed expressions.

Anemone does not have keyword let which serves to intro-

duce polymorphic functions, as is done in ML. Moreover, AST

representing Anemone code is more extensive than the simple

language of expressions, Le (Fig. 4a), on which algorithm W

is based. Also, the grammar of type expressions, presented

in Fig. 4b, is much simpler than the set of types possible to

express in Anemone, due to the possibility to construct types

of structures.

When implementing algorithm W for Anemone, it was

possible to choose between two approaches. The first approach

extends the definition of algorithm W in Algorithm 1, in order

that the implementation also comprises constructs expressed

by particular AST nodes of Anemone. The second approach

transforms AST to a simpler form corresponding to the lan-

guage of expressions Le.

In the Anemone compiler, the second approach has been

chosen. In the phase of type reconstruction, AST is transformed

to a simpler form used in the implementation of algorithm

W, which we shall call WAST. The implemented version of

algorithm W uses a slightly richer grammar of expressions,

defined in Fig. 4c.

Usually, a structure containing many WAST nodes is created

from each AST node, and extension of algorithm W for

the purpose of Anemone facilitates this transformation with

moderate complication of implementation of algorithm W.

In particular, the algorithm of type reconstruction in the

Anemone compiler proceeds as follows:

1) Nodes introducing new types are separated from nodes

which are a subject to type reconstruction. Nodes intro-

ducing new types are declarations of new data types and

declarations of external functions.

2) Each external function and its type is added to the set

of known assumptions about types.

3) For each declaration introducing a new data type, the

new type and its name are added to the set of known

assumptions about types.

4) The set of known assumptions about types is comple-

mented with types corresponding to built-in operators

and primitive data types,

5) The set of known types is converted to the form in

Fig. 4b, i.e. type schemes, simple types and type con-

structors – similarly to type Pair in Sect. IV-B.

6) The remaining AST nodes are converted to subtrees of

WAST. It is recorded which AST node corresponds to a

given subtree of WAST.

7) Algorithm W is executed on WAST representation of a

program, with assumptions about types gathered from

structure declarations, external functions, and built-in

operators and types.

8) The obtained principal unifier is applied to all WAST

nodes in order to obtain the most general type for each

node.

9) For each WAST node corresponding to AST node, its

type is mapped to type representation used in AST.

As a result of using dedicated representation of WAST

code during type reconstruction, the entire process of type

reconstruction is independent from remaining modules of the

implemented compiler. Moreover, the unification algorithm

PAWEL BATKO, MARCIN KUTA: TYPE SYSTEM OF ANEMONE FUNCTIONAL LANGUAGE 135

and algorithm W, which are crucial for the process of type

reconstruction, operate on relatively simple, abstract data types

dedicated to this task. Above features guarantee strong resis-

tance of the entire module to changes implemented in other

modules of the compiler and enable its seamless extension in

the future.

F. Code generation for polymorphic functions

Polymorphic functions must be compatible at the binary

level. For example, mapping function map takes as its argu-

ments a list of elements and a function to be executed on each

element of the list. A parameter responsible for this function

receives type "x. x ³ y, where x and y are type variables.

Without knowing concrete values of variables x and y, their

representation for the target architecture should be chosen. Let

be given a memory pointer. Let us define minus function taking

a value of primitive type double and returning its negation.

Type of function minus will be instantiated as double ³
double. Assembly code of this function must be independent

from information, whether function argument is of floating-

point type. During a function call in a given architecture, an

argument of floating-point type may be passed differently (e.g.,

in a different register) than a value of a pointer. If we pass

to function map function minus, implementation of map will

call the passed function as if it would take a parameter being

a pointer, whilst function minus expects a floating-point type.

Such an incompatibility can easily lead to errors in a compiled

program.

f: # type::(’a, ’b) -> unit

...

movq %rdi, (%rsp)

movq %rsi, 8(%rsp)

movq %rdx, 16(%rsp)

...

g: # type::(double, ’b) -> unit

...

movq %rdi, (%rsp)

vmovsd %xmm0, 8(%rsp)

movq %rsi, 16(%rsp)

...

Fig. 6: Assembly code x86 64 generated for functions f and g

Functions f and g have similar signatures (given after # sign).
Consistently with the implemented in Anemone type system, usage

of function g can be replaced with usage of function f because
generic type variable ’a can be unified with type double. If

generated assembly code treats first argument of function g as a
floating-point number, then value of this argument is obtained from

register xmm0. In contrast, when first argument of function f is
treated as a pointer, its value is obtained from register rsi.

Figure 6 presents different assembly codes of two functions,

taking a pointer and a floating-point number, respectively, as

a parameter. To avoid the problem of binary incompatibil-

ity between functions, Anemone compiles all the function

parameters as pointers. This solution is known as boxed

representation [11]. The potential drawback of this solution is

reduced efficiency of generated code; however, it guarantees

correctness of programs with polymorphic functions. An alter-

native approach for compiling polymorphism uses intentional

type analysis [12].

V. CONCLUSIONS

The type system is one of the strongest points of the

Anemone language. Full type inference disposes the pro-

grammer from manual defining of type labels. Moreover, let-

polymorphism enables function definitions with respect to

generic parameters of type. In this way, a separate function

implementation for each type becomes redundant and code

conciseness is promoted.

Support for algebraic data types and pattern matching

enables rich data structures, and easy implementation of lists,

trees or other data structures. The implemented type system

guarantees static correctness of a program while preserving

code conciseness and expressiveness.

APPENDIX

Figure 7 presents basic constructs of Anemone. The exam-

ple defines functions fib and factorial of type double

-> double which use conditional expressions if-else.

Function factorial defines nested function helper inside

its body.

type:: (double) -> double

fun fib(n) {

if(n == 0) {

1

} else {

if(n == 1) {

1

} else {

fib(n-1) + fib(n-2)

}

}

}

type:: (double) -> double

fun factorial(m) {

type:: (double, double) -> double

fun helper(ax, n) {

if(n == 0){

ax

} else {

var n2 = n - 1 in {

helper(ax*n, n2)

}

}

}

helper(1,m)

}

Fig. 7: Basic constructs of the Anemone language

Functions in Anemone are first-class citizens, as they can be:

assigned to a variable (Fig. 8), passed as function arguments

(Fig. 9), returned from a function (Fig. 10), and handled as a

closure with a non-empty environment (Fig. 11).

136 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

fun foo(){

fun bar(){

1

}

bar

}

Fig. 10: Returning function from a function

fun buildAdder(n){

fun adder(x){

x + n

}

adder

}

Fig. 11: Function being a closure with non-emtpy environment

data BoolList = BoolCons {

value :: boolean,

next :: BoolList

} | BoolNil { }

Fig. 12: Definition of new multi-variant data type

data List ’a = Cons ’a {

value :: ’a,

next :: List ’a

} | CNil { }

Fig. 13: Definition of polymorphic data type. Variable a is a

type variable

fun foo(l) {

match l {

| Cons(v, n) => {

bar(v, n)

}

| cnil :: CNil => {

baz()

}

}

}

Fig. 14: Usage of pattern matching mechanism

fun bar(x){

var f = foo in {

f(x)

}

}

Fig. 8: Assignment of a function foo to a variable

fun apply(f, x){

f(x)

}

Fig. 9: Passing a function as a parameter

Anemone defines three primitive types: boolean, double

and string. Examples in Figs. 12 and 13 define a multi-

variant data type BoolList and polymorphic data type

List.

Anemone also offers pattern matching, as shown in Fig. 14.

There are two kinds of patterns. Pattern | Cons(v, n) =>

is similar to deconstructive assignment, pattern | cnil ::

CNil => is similar to declaration of a variant field.

Concurrency in Anemone is implemented with actors [1],

[2]. Actor model of Anemone has the following features:

" asynchronous communication with message passing,

which is clearer and less error-prone than thread model

and makes manual synchronization redundant

" actors modelled as functions (similarly to Erlang) and

actor function called for each new message (similarly to

the Akka library).

" possibility of creating many actors in one thread

" possibility of dynamic creation of new actors

" identification of received messages through pattern

matching

" message passing model implemented with shared mem-

ory

" complete integration with the garbage collector

An example of creating an actor system with two actors

communicating with each other via messages is given in

Fig. 15.

ACKNOWLEDGMENTS

The research presented in this paper was supported by the

funds of Polish Ministry of Education and Science assigned

to AGH University of Science and Technology.

REFERENCES

[1] P. Batko and M. Kuta, “Actor Model of a New Functional Language
- Anemone,” in Proceedings of the 12th International Conference on

Parallel Processing and Applied Mathematics, PPAM 2017, ser. Lecture
Notes in Computer Science, vol. 10778, 2018. doi: 10.1007/978-3-319-
78054-2 20 pp. 213–223.

[2] ——, “Actor model of Anemone functional language,” Journal of Super-

computing, vol. 74, no. 4, pp. 1485–1496, 2018. doi: 10.1007/s11227-
017-2233-1

[3] A. Church, “A Formulation of the Simple Theory of Types,” Journal of

Symbolic Logic, vol. 5, no. 2, pp. 56–68, 1940. doi: 10.2307/2266170
[4] J. McKinna, “Why Dependent Types Matter,” SIGPLAN Notes, vol. 41,

no. 1, pp. 1–1, 2006. doi: 10.1145/1111320.1111038
[5] A. Bove, P. Dybjer, and U. Norell, “A Brief Overview of Agda —

A Functional Language with Dependent Types,” in 22nd International

Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009,
2009. doi: 10.1007/978-3-642-03359-9 6 pp. 73–78.

[6] B. C. Pierce, Types and Programming Languages. MIT Press, 2002.
ISBN 978-0-262-16209-8

[7] A. J. Kfoury and J. B. Wells, “Principality and Decidable Type Infer-
ence for Finite-Rank Intersection Types.” in Proceedings of the 26th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL’99, 1999. doi: 10.1145/292540.292556 pp. 161–174.
[8] L. Damas and R. Milner, “Principal Type-schemes for Functional

Programs,” in Proceedings of the 9th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL’82, 1982. doi:
10.1145/582153.582176 pp. 207–212.

[9] J. A. Robinson, “A Machine-Oriented Logic Based on the Resolution
Principle,” Journal of the ACM, vol. 12, no. 1, pp. 23–41, 1965. doi:
10.1145/321250.321253

[10] R. Hindley, “The principal type-scheme of an object in combinatory
logic,” Transactions of the American Mathematical Society, vol. 146,
pp. 29–60, 1969. doi: 10.2307/1995158

[11] M. Hicks, “Types and Intermediate Representations,” Department of
Computer and Information Science, University of Pennsylvania, Tech-
nical Report MS-CIS-98-05, 1998.

PAWEL BATKO, MARCIN KUTA: TYPE SYSTEM OF ANEMONE FUNCTIONAL LANGUAGE 137

fun ping(state, msg) {

var otherActorId = state in {

match msg {

| s :: String => {

printStr(s)

sendMsg(otherActorId, "fromPing")

nap(1)

state

}

| otherActorId :: ActorId => {

sendMsg(otherActorId, "fromPing - first")

otherActorId

} } } }

fun pong(state, msg) {

var otherActorId = state in {

match msg {

| s :: String => {

printStr(s)

sendMsg(otherActorId, "fromPong")

nap(1)

state

} } } }

fun main_fun() {

createActorSystem(2)

var pingActorRef = createActor(ping, 0),

pongActorRef = createActor(pong, pingActorRef) in {

sendFromOutside(pingActorRef, pongActorRef)

} }

Fig. 15: Creating and starting an actor system

[12] R. Harper and G. Morrisett, “Compiling polymorphism using intensional
type analysis,” in Proceedings of the 22nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL’95, 1995.
doi: 10.1145/199448.199475 pp. 130–141.

138 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

