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Abstract—In this paper we proposed an optimization technique
for improving the Monte Carlo approaches based on Halton and
Sobol algorithms. The proposed technique is novel in the sense
that the optimization of the Halton and Sobol sequences is applied
for the first time and essentially improves the results by the
original sequences. The results will be of great importance for
the environment protection and the trustability of forecasts.

I. INTRODUCTION

WHEN it comes to decision making, the reliability of

the large-scale mathematical models is questioned [9],

[10], [8], [18]. To improve the reliability, the sensitivity of

model outputs to variations of model inputs due to natural

variability is studied and analyzed. By definition [4], [15], [17]

sensitivity analysis is a procedure to measure how sensitive

are the mathematical model outputs are to some variations

of the input data. The input data in this paper for sensitivity

analysis is derived through runs of the large-scale mathemat-

ical model for large-distance transportation of air pollution –

Unified Danish Eulerian Model (UNI-DEM). The model is

created at the Danish National Environmental Research In-

stitute (http://www2.dmu.dk/AtmosphericEnvironment/DEM/,

[19], [20], [21]).

This model considers large geographical region (4800 ×
4800 km), including Europe and the Mediterranean in full

and Asia and Africa in part. It also describes the primary

chemical, photochemical and physical processes between the

considered species and the emissions in the environment of

rapidly changing meteorological conditions. It is that model

which is chosen for a case study in the paper since the

chemical processes are regarded with great precision amongst

the other atmospheric chemistry models [3].
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II. GLOBAL SENSITIVITY ANALYSIS – SOBOL APPROACH

The mathematical model is assumed to be represented by a

model function

u = f(x), (1)

where x = (x1, x2, . . . , xd) ∈ Ud ≡ [0; 1]d is the vector

of input parameters with a joint probability density function

(p.d.f.) p(x) = p(x1, . . . , xd).

The Sobol approach idea is based on a decomposition

of the integrable model function f into terms of increasing

dimensionality [15], [17]:

f(x) = f0 +

d
∑

ν=1

∑

l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν ), (2)

where f0 is some constant.

The representation (2) is called the ANOVA-representation

of the model function f(x) in case each term is chosen to

satisfy the following condition [16]:

∫ 1

0

fl1...lν (xl1 , xl2 , . . . , xlν )dxlk = 0, 1 ≤ k ≤ ν, ν = 1, . . . , d.

This condition guarantees that the functions in the right hand-

side of (2) are uniquely defined, and f0 =

∫

Ud

f(x)dx. The

quantities

D =

∫

Ud

f2(x)dx−f2
0 , Dl1 ... lν =

∫

f2
l1 ... lν

dxl1 . . . dxlν

(3)

are referred to as total and partial variances, respectively. An

analogous decomposition holds for the total variance which

is represented by the corresponding partial variances: D =
∑d

ν=1

∑

l1<...<lν
Dl1...lν . The primary sensitivity measures

following the Sobol approach are defined as Sobol global

sensitivity indices [16], [14]:

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , d}, (4)
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and the total sensitivity index (TSI) of an input parameter

xi, i∈{1, . . . , d} defined by [16], [14]:

Stot
i = Si+

∑

l1 �=i

Sil1+
∑

l1,l2 �=i,l1<l2

Sil1l2+. . .+Sil1...ld−1
, (5)

where Si is named the main effect (first-order sensitivity index)

of xi and Sil1...lj−1
is the jth order sensitivity index. The

higher-order terms characterize the interaction effects between

the unknown input parameters xi1 , . . . , xiν , ν ∈ {2, . . . , d}
on the output variance. It is obvious that the rigourous

mathematical treatment of the problem of supplying global

sensitivity analysis includes evaluating total sensitivity indices

(5) of corresponding order that, based on the formulae (3)-(4),

results in computing multidimensional integrals.

III. SOBOL AND HALTON SEQUENCES AND THEIR

OPTIMIZATIONS

Quasirandom or low discrepancy sequences, which vivid

representatives are the Halton and Sobol sequences, are “less

random” than a pseudorandom number sequence, but they are

much more useful for numerical calculation of integrals in

higher dimensions, since the low discrepancy sequences tend

to sample space “more uniformly” than random numbers [2].

Let xi = (x
(1)
i , x

(2)
i , . . . , x

(s)
i ) for i = 1, 2, . . . and n =

. . . a3(n), a2(n), a1(n) be the representation of n in base

b . The respective multidimensional quasirandom sequence is

defined as follows: Xn = (φb1(n), φb2 (n), . . . , φbs(n)), where

the bases bi are relatively prime numbers.

Halton sequence [5], [6] is defined as:

s(k)n =

>
∑

i=0

σ
(k)
i+1a

(k)
i+1(n)b

2(i+1)
k ,

where (b1, b2, . . . , bs) ≡ (2, 3, 5, . . . , ps), and pi designates

the i-th prime, and σ
(k)
i , i ≥ 1 denotes the set of permutations

on (0, 1, 2, . . . , pk − 1).

Sobol sequence [1], [7] is defined by:

xk ∈ σi
(k), k = 0, 1, 2, . . .

where σi
(k), i ≥ 1 are the set of permutations on every

2k, k = 0, 1, 2, . . . subsequent points of the Van der Cor-

put sequence, defined by n =
∑>

i=0 ai+1(n)b
i, φb(n) =

∑>
i=0 ai+1(n)b

2(i+1) when b = 2.

In binary for the Sobol sequence we have that: x
(k)
n =

⊕

ig0

ai+1(n)vi, where vi, i = 1, . . . , s is the set of direction

numbers [7].

IV. OPTIMIZATION BY SCRAMBLING

The fundamental motivation of optimization targets at

obtaining more uniform quasirandom sequences, especially

in high dimensions. The proved convergence rate for the

Scrambling Algorithms improves drastically the rate for the

unscrambled nets [13], which is n21(log n)d21. The idea of

scrambling is founded on randomization of a single digit at

each iteration. Let

x(i) = (xi,1, xi,2, . . . , xi,s), i = 1, . . . , n (6)

be quasirandom numbers in [0, 1)s, and let

z(i) = (zi,1, zi,2, . . . , zi,s) (7)

be the respecive scrambled version of the point x(i). Suppose

now that every xi,j could be represented in base b as

xi,j = (0.xi1,j xi2,j . . . xiK,j . . .)b (8)

with K being the number of digits for scrambling. To scramble

the Halton sequence, we use a permutation of the radical

inverse coefficients obtained by applying a reverse-radix op-

eration to each of the possible coefficient values [11]. To

scramble the Sobol sequence, we use random linear scramble

blended with a random digital shift [12].

V. SENSITIVITY STUDIES WITH RESPECT TO EMISSION

LEVELS

In this section we give the outcomes for the sensitivity of

UNI-DEM output (particularly the monthly ammonia mean

concentrations) with respect to the data variation of anthro-

pogenic emissions as input. The input itself comprises 4
different constituents

E = (EA,EN,ES,EC):

E
A − ammonia (NH3);

E
S − sulphur dioxide (SO2);

E
N − nitrogen oxides (NO + NO2);

E
C − anthropogenic hydrocarbons.

The domain into consideration is the 4-dimensional hypercube

[0.5, 1]4.

Results regarding the relative error estimation for the quan-

tities f0, the total variance D, the first-order (Si) and the

total (Stot
i ) sensitivity indices are presented in Tables I, II,

III, respectively. f0 is represented by a 4-dimensional integral,

while the rest of the above quantities are represented by 8-

dimensional integrals, following the ideas of the correlated

sampling technique to compute sensitivity measures in a robust

way (see [8], [17]). Four different stochastic approaches em-

ployed for numerical integration are given in separate columns

in the tables.

For n = 224 for the model function f0 the best algorithm

is the Halton scrambled sequence, followed by the Halton

sequence – see the results in Tables I for the maximum number

of samples. For number of samples n = 224 for the total

variance D the best algorithm is the Sobol sequence, followed

by the Halton scrambled sequence – see the results in Tables

II for the maximum number of samples. The performance of

te algorithms can be seen on Fig. 1.

It can be seen in Table III that the optimized SOBOPT and

HALOPT improve the results in most of the cases, and most

importantly for the small in value sensitivity indices S2, S4,

Stot
2 , Stot

4 . These are the most important cases because they

determine the reliability of the model results.
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Fig. 1. Relative errors for the calculation of f0 ≈ 0.048 (left) and D ≈

0.0002 (right)

TABLE I
RELATIVE ERROR FOR THE EVALUATION OF f0 ≈ 0.048.

SOBOL HALTON SOBOPT HALOPT

# Relative Relative Relative Relative
n error error error error

2
16 4.6585e-06 9.6538e-06 3.6422e-07 2.3992e-06

2
20 2.5234e-07 1.1020e-06 1.1501e-07 4.7965e-08

2
24 1.5669e-08 9.0096e-08 4.4868e-09 2.8637e-09

VI. SENSITIVITY STUDIES WITH RESPECT TO CHEMICAL

REACTIONS RATES

In this section we explore the sensitivity of the ozone con-

centration values in the air over Genova with respect to the rate

variation of some chemical reactions of the condensed CBM-

IV scheme ([19]), in particular: # 1, 3, 7, 22 (time-dependent)

and # 27, 28 (time independent). The reduced equations of the

TABLE II
RELATIVE ERROR FOR THE EVALUATION OF THE TOTAL VARIANCE

D ≈ 0.0002.

SOBOL HALTON SOBOPT HALOPT

# Relative Relative Relative Relative
n error error error error

2
16 1.1726e-04 6.8346e-04 3.3306e-06 1.2015e-04

2
20 8.4017e-06 4.7374e-05 1.7242e-05 8.9747e-06

2
24 3.2922e-08 3.1611e-06 8.2382e-07 1.5148e-07

TABLE III
RELATIVE ERROR FOR ESTIMATION OF SENSITIVITY INDICES OF INPUT

PARAMETERS USING DIFFERENT QUASI-MONTE CARLO APPROACHES

(n ≈ 2
16 ).

EQ RV SOBOL HALTON SOBOPT HALOPT

S1 9e-01 5.4870e-06 2.9981e-04 2.3006e-05 7.7156e-05
S2 2e-04 4.2469e-03 3.2104e-02 2.2210e-03 1.1998e-02
S3 1e-01 1.3725e-04 2.3291e-03 3.2724e-04 4.7869e-04
S4 4e-05 4.5620e-02 1.1969e-01 1.7836e-02 7.2187e-02

Stot

1
9e-01 1.8865e-05 2.9900e-04 4.2060e-05 6.1643e-05

Stot

2
2e-04 5.1886e-03 3.1544e-02 1.3834e-03 1.2575e-04

Stot

3
1e-01 1.5898e-05 2.2959e-03 1.8409e-04 6.2183e-04

Stot

4
5e-05 5.5960e-02 1.1911e-01 3.9446e-02 4.3995e-02

chemical reactions follow:

[#1] NO2 + hν =⇒ NO +O;
[#3] O3 +NO =⇒ NO2;
[#7] NO2 +O3 =⇒ NO3;
[#22] HO2 +NO =⇒ OH +NO2;
[#27] HO2 +HO2 =⇒ H2O2;
[#28] OH + CO =⇒ HO2.

The domain into consideration is the 6-dimensional hypercube

[0.6, 1.4]6).

The authors of [8] argue which formulation of

f2
0 =

(
∫

Ud

f(x)dx

)2

(9)

is better when expressing the total variance and the Sobol

global sensitivity measures. The first formula is

f2
0 ≈

1

n

n
∑

i=1

f(xi,1, . . . , xi,d) f(x
2
i,1, . . . , x

2
i,d) (10)

and the second one is

f2
0 ≈

{

1

n

n
∑

i=1

f(xi,1, . . . , xi,d)

}2

(11)

where x and x2 are two independent sample vectors. If one

estimates sensitivity indices of a fixed order, the expression

(10) is better (as it is recommended in [8]), and this is why

we apply it here as well.

The relative error estimation for the quantities f0, the total

variance D and a part of the sensitivity indices are provided

in Tables IV, V and VI, respectively.

The quantity f0 is represented by 6-dimensional integral,

while the rest are represented by 12-dimensional integrals,

following the concept of correlated sampling.
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Fig. 2. Relative errors for the calculation of f0 ≈ 0.27 (left) and D ≈ 0.0025
(right)

For n = 224 for the model function f0 the best algorithm is

the Sobol scrambled sequence, followed by the Sobol sequence

– see the results in Tables IV for the maximum number of

samples. For number of samples n = 224 for the total variance

D the best algorithm is again the Sobol scrambled sequence,

followed again by the Sobol sequence – see the results in

Tables V for the maximum number of samples. The behaviour

of the algorithms can be seen on Fig. 2.
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TABLE IV
RELATIVE ERROR FOR THE EVALUATION OF f0 ≈ 0.27.

SOBOL HALTON SOBOPT HALOPT
Relative Relative Relative Relative

n error error error error

216 2.2604e-06 3.6220e-06 1.2498e-06 5.3505e-06

220 3.5561e-07 6.0821e-07 1.0645e-07 3.2548e-07

224 1.8639e-09 4.9903e-08 1.1468e-09 1.8102e-08

TABLE V
RELATIVE ERROR FOR THE EVALUATION OF THE TOTAL VARIANCE

D ≈ 0.0025.

SOBOL HALTON SOBOPT HALOPT

Relative Relative Relative Relative
n error error error error

216 1.2418e-04 3.4838e-04 1.0328e-04 7.2396e-04

2
20 3.3461e-06 4.6222e-05 6.2125e-06 3.2061e-05

2
24 1.5526e-06 2.5678e-06 7.9422e-07 2.7586e-06

It can be seen in Table VI that the optimized SOBOPT

and HALOPT improve the results in most of the cases, and

for very important small in value sensitivity indices S5. The

basic algorithm is better for the two way interaction sensitivity

indices, but for the most important first order sensitivity

indices our optimization methods produce the best results.

TABLE VI
RELATIVE ERROR FOR ESTIMATION OF SENSITIVITY INDICES OF INPUT

PARAMETERS USING DIFFERENT QUASI-MONTE CARLO APPROACHES

(n ≈ 216 ).

EQ RV SOBOL HALTON SOBOPT HALOPT

S1 4e-01 3.2231e-04 2.8340e-03 9.5066e-05 4.0386e-04
S2 3e-01 3.8337e-04 3.7322e-03 2.2260e-04 4.6835e-04
S3 5e-02 6.5037e-04 7.5211e-03 9.6837e-04 8.1435e-04
S4 3e-01 4.3936e-04 2.2956e-03 3.3630e-04 2.3527e-04

S5 4e-07 9.8860e+00 4.5383e+01 9.4627e+00 6.9084e+01
S6 2e-02 1.7170e-03 1.3009e-02 2.3921e-04 1.4770e-04

Stot

1
4e-01 2.6837e-04 2.7466e-03 1.3978e-04 2.8687e-04

Stot

2
3e-01 5.6342e-04 3.2551e-03 6.7337e-05 5.6446e-04

Stot

3
5e-02 8.6595e-04 6.6357e-03 9.9762e-04 4.3254e-04

Stot

4
3e-01 2.1786e-04 2.1826e-03 5.9956e-04 9.0355e-05

Stot

5
2e-04 1.3627e-01 2.5437e-02 6.6954e-02 3.3439e-02

Stot

6
2e-02 2.5998e-03 1.0451e-02 5.3173e-04 3.0023e-03

S12 6e-03 1.4614e-03 7.5509e-03 6.6880e-03 6.2554e-03
S14 5e-03 1.3828e-03 9.7965e-03 3.3325e-03 8.0309e-03
S24 3e-03 3.3757e-03 1.6310e-02 1.8226e-02 7.6253e-03
S45 1e-05 4.3069e-01 8.2357e-01 6.2288e-01 5.1080e-01

VII. CONCLUSION

We have investigated the computational efficiency of several

stochastic algorithms for multidimensional numerical integra-

tion in terms of relative error and computational effort. The

case study is the sensitivity analysis of the UNI-DEM model

output to variation of the input emissions of the anthropogenic

pollutants and of the rates of a couple of chemical reactions. It

is considered the influence of emission levels over very impor-

tant air pollutants, in particular ammonia, ozone, ammonium

sulphate and ammonium nitrate.

The numerical experiments show that the obtained opti-

mization methods are one of the best available stochastic

approaches for computing sensitivity indices and especially the

most difficult task – the smallest in value sensitivity indices

which are very important for the model results reliability.

The results will be of great importance for the environment

protection and the trustability of forecasts.
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