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Abstract—Although code smells are not categorized as a bug,
the results can be long-lasting and decrease both maintainability
and scalability of software projects. This paper presents findings
from both former and current industry individuals, aiming
to gauge their familiarity with such violations. Based on the
feedback from these individuals, a collection of smells were
extracted from a sample size of 100 Java repositories in order to
validate some of the smells that are typically encountered. After
analyzing these repositories, the smells typically encountered are
Long Statement, Magic Number, and Unutilized Abstraction. The
results of this study are applicable for developers and researchers
who require insight on the frequencies of code smells within a
typical repository.

I. INTRODUCTION

T
HE term "code smell" dates back to the 1990s, where

Kent Beck first defined the term. Martin Fowler was

another individual responsible for popularizing the term within

his book Refactoring, which addressed code smells with the

application of Java examples [1]. Although many authors and

researchers have defined an abundant amount of code smells,

what is deemed to be a code smell or not is subjective and

abstract. This is due to the vast variations of smells that exist,

and what is considered to be a harmful and non-harmful smell.

An example of a code smell that this study and future work

aims to address is the God Class, as well as several other

smells. Alves et al. mention that God Classes can be up

to 13 times more likely to contain faults embedded within

the smell itself [2]. For this reason, it is imperative to dive

deeper within large classes and methods and examine their

occurrences since these smells are detrimental. Our goal is to

compare the frequencies of such smells compared to others

with our selected tool, which will be elaborated on in further

sections.

Evident in the works of Fontana et al., anti-patterns and code

smells have the potential to impact Technical Debt (TD) and

Architectural Degradation (AD) [3]. Their research suggested

that some code anomalies were more inclined to be better

indicators of TD than others. Because of instances such as

these, code smells can be detrimental to software systems

over the course of time. To resolve these conflicts, there are
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abundance of different static analyzers within the software

community that assist code smell identification.

For these reasons, it is important to further examine the

repercussions that code smells have, and what types of smells

are common in code bases. Within these next couple of

sections, we will be covering how we collected our data along

with the results found based on the repositories examined.

Before discussing our results, however, we want to highlight

other works that have impacted our approach to our case study

and rationale.

Through undertaking this study, there were many challenges

we encountered. Firstly, we were unsure what static analyzers

were available for Java that best fit our needs. Although there

are many add-ons and plugins that assist developers in refac-

toring their code in common IDEs (Integrated development

environment)s, we wanted to utilize a tool that was unrestricted

to a specific extension. As further discussed in later sections,

the accuracy of each tool can differ, which was why our

goal was to find a tool that could provide extensive feedback

on different smells. Thus, ensuring that false positives of

particular smells proved to be concerning and a challenge.

Our research challenge was to observe the frequency of the

Long Method and God classes, comparing this data to related

works that have highlighted the severity of smells such as

these. Furthermore, we sought to determine how often they

appear in repositories compared to other smells.

This paper is organized by discussing some similar studies

and works that have been conducted in more recent years.

We will then cover the prevalent smells we recorded out of

the repositories examined, highlighting the frequency of each

smells. These findings are beneficial to developers who are

interested in our selected tool and the common implemen-

tation, design, and architectural smells that exist in popular

Java libraries on GitHub. We also discuss potential validity

concerns, and how we minimized and reduced potential risks

while collecting and analyzing the data. Further studies need

to be conducted to gain knowledge on various tools, which we

will examine in our future work.

II. RELATED WORK

Many papers have aimed to better detect code smells within

software. Within the work of Paiva et al. [4], researchers

conducted comparison studies on various code smell tools.
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Their research suggests that each tool had a different amount

of accuracy when identifying code smells such as God Classes

or God Methods. The challenges of creating such tools with

minimal inaccuracy is difficult, as some code smells could be

erroneous or not be flagged properly.

Our selected code smell detection tool was DesigniteJava
1 [5]. Developed by Sharma et al., this particular tool is

newer and provides a detailed assessment report about ar-

chitectural, design, and implementation smells. Some of the

naming conventions for each smell slightly differ, such as

the terms God Class and Insufficient modularization, which

are interchangeable for describing a class that can be further

broken up to reduce complexity. These slightly differ from a

God Component, which is an architectural smell that denotes

an excessively large component (e.g., a package) that can be

reduced or further broken up.

Further details associated with the definitions of each term

(e.g. Unutilized abstraction, Deficient Encapsulation) can be

found the works of Sharma et al. [6]. Although Designite

supports the examination of C# code, we were most interested

in Java projects only. The tool also offers more features

and flexibility than other code smell detection tools such as

JDeodorant.

JDeodorant, an Eclipse plug-in developed by Tsantalis et

al. at Concordia University and the University of Macedonia

[7], currently supports detection of 5 types of code smells at

the time of this writing. Because of its dedication specifically

to Java, it was a tool that was considered to be used for our

selected repositories. However, the amount of time required

to operate the tool on hundreds of repositories would be

dramatically different due to DesigniteJava’s flexibility and

lack of limitations. This enables researchers the capability of

creating scripts or programs to enhance the overall automation

of collecting code smell results without the restriction and

usage of Eclipse.

Another tool that has been used for code analsyis is iPlasma,

which Marinescu et al. described [8]. This tool provides

analysis of various metrics and can detect violations such as

duplicate code. It is available in object-oriented languages such

as C++ and Java.

Prior to this study, we asked ourselves what the pitfalls

related to the current static analyzers and tools out there to

detect various metrics were. Samarthyam, Suryanarayana, and

Sharma mentioned some of the downsides to tools such as

Sonargraph [9]. A non-exhaustive list of some of these worries

were the following: lack of extensive support of architectural

smells, lack of contextual information related to each smell,

and limited availability of popular IDE (Integrated Develop-

ment Environment) support for refactoring architectural smells

[10]. While inspecting code smells, it is also important to

filter out harmful and less severe smells. Highlighted in

the upcoming sections, some of the uncertainties of these

static analyzers are the filtering methods used along with the

potential for false positive smells. In the works of Fontana et

1https://github.com/tushartushar/DesigniteJava

TABLE I
BRIEF OVERVIEW OF SOME OF THE SURVEY QUESTIONS ASKED

Question 2 On a scale from 1-5, how familiar are you with the
term “code smells”?

Question 3 On a scale from 1 to 10, how often do you encounter
violations within your software?

Question 6 Are you familiar with static code analyzers?

Question 7 If you answered "Yes" to the previous question, what
types (or name) of tool(s) did/do you use to monitor
violations (code smells) within your codebase/pro-
ject?

Question 8 At your company, did you measure / use any kind of
calculation to assess technical debt? (e.g., monthly
reports on developer/cloud-usage cost/performance
stats, etc.)

Question 9 At your company, did you use any visualization tool
to assess technical debt? If so, how did you visualize
it?

Question 10 Besides static code analyzers, how much time would
you say you spent manually observing and inspecting
code for violations per week?

Question 13 How much time did you typically spend refactoring
code at your company, per week?

al. [11], they devised strong and weak filters which can be used

to alleviate possible false positive instances. Furthermore, the

strong filters proved to increase overall precision on detecting

such smells.

Similar case studies have been done in the past, such as

in the writings of Sharma, Fragkoulis, and Spinellis, where

they examined C# repositories in order to inform the reader

about characteristics of code smells in C# code bases [6].

Their results showed that both the Unutilized Abstraction and

Magic Number were the most frequently occurring smells in

C# code [6]. Rather than selecting their repositories manually,

they utilized RepoReaper [12] to gather their repositories. The

overall findings are similar to our results, which will be further

discussed in later sections.

III. PRACTITIONER SURVEY

Before data collection, we sought to identify the typical

amount of time developers spend refactoring code and inspect-

ing it for violations. A survey was created in order to gain

insight from individual’s experiences with code violations.

This allowed us to attain an understanding on the currently

adopted tools and how familiar the respondents were of

code smells. A total of 14 questions were asked with initial

questions pertaining to a generalization of technical debt and

evaluating economical cost associated with it. Due to relevancy

of the paper, those questions were omitted from the first

table. The feedback was collected through google forms and

served primarily as a basis for determining what tools were

used to monitor code violations. A total of 14 individuals

were surveyed and their feedback will be discussed in further

sections.

Many surveys have been conducted in the past to accumu-

late feedback from software developers. An example of such

is in the work of Yamashita and Moonen, where 85 software

developers were surveyed to gain insight on their thoughts

of code smells [13]. The results from this study showed that
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32% of respondents had no prior knowledge of code smells.

Furthermore, the most mentioned smells that were familiar to

the developers were smells such as the Large Class and Long

Method.

Another survey that has been conducted is evident in the

works of Golubev et al. [14], where over 1100 individuals

were surveyed in order to determine how often they spent

refactoring code. Furthermore, they assessed how developers

refactored their code. Their findings suggested that two-thirds

of developers spent longer than an hour refactoring code for

every instance spent working. They also found that 40.6% of

developers refactored code almost every day [14].

Based on the tiny sample we collected from our survey,

almost all respondents that are currently in the industry said

that they spent less than 5 hours a week refactoring code. On

the contrary, 70% of the respondents for the Graduate survey

stated that they spent 5 hours of more a week refactoring code

while they were in industry. Although further studies would

need to be conducted, a possibility for this differentiation is

that the Graduate students who opted to participate in the

survey are newer developers or have not spent a lot of time in

industry. Furthermore, these individuals could be a younger

demographic that has not had an immense exposure as a

software developer compared to their peers. As a result, it

could take more time for those individuals to refactor code due

to the lack of experience. Based on this minuscule sample-size

however, much more research would need to be conducted

for further evaluation and verification of the possibilities

mentioned.

From the individuals surveyed, some tools utilized for

code quality were SonarQube, JavaParser, and Jacoco. Others

mentioned linters such as ESLint and golint to help improve

the quality of production-based code while working with

continuous integration pipelines. When asked whether or not

there was any visualization tool used for assessing technical

debt, all respondents from both surveys stated that they were

unfamiliar such tools or did not employ any. For this reason,

we sought tools that can be beneficial to developers, which

are discussed in prior sections.

Code smells can take a lot of time to evaluate and iden-

tify. Because of the immense amount of allocated resources

spent, researchers have attempted to alleviate the time spent

refactoring by developing tools that can minimize the amount

of time in identifying the smells to fix. This can impact the

cost of the company as funds would be used for refactoring

and fixing rather than innovation and enhancements, impacting

profits over a long period of time.

IV. PROPOSED METHOD

A. Methodology

For this study, we gathered 100 repositories that were as

close as possible to being fully written in Java due to the

uncertainty of how DesigniteJava would perform. Another

requirement we decided upon was that each repository con-

tains at least 3000 lines of code for it to be considered.

As mentioned in further sections, this was due to alleviating

potential inconsistencies and ensuring that one particular smell

would not be disproportionate to other smells. This particular

minimum value was selected due to testing the tool with

smaller repositories and discovering this value to be suitable

and adequate for our sample size.

Most repositories examined were libraries and frameworks

that were highly active and recommended when searching

for repositories on GitHub. These repositories were chosen at

random to prevent any biases. Each repository would also be

thoroughly checked to ensure that no other languages would

be scanned in by our chosen tool.

B. Data Extraction

Once validated and identified, the repositories are down-

loaded and unzipped. DesigniteJava is then utilized to generate

an XML file, which can be read in by QScored [15]. Provided

by Sharma et al., QScored agent is readily available for

analyzing information from DesigniteJava and uploading it to

QScored for a visual representation along with computing a

raw score for the particular repository [15]. Our primary focus

was extracting the data returned by the DesigniteJava output

and parsing it to collect the summation of total smells within

that particular repository as well as examining the number

of instances of God Classes or God Components and Long

Methods detected. For this reason, QScored was only used

for initial testing to visualize some of the earlier repositories.

It was also used for pinpointing files within each repository

that had high levels of lines of code, which is beneficial for

our future work. We tested out the feature and modified the

sample python source code provided with a granted API key

to see how simplistic it is to convert the XML file to a visual

depiction on QScored.

To organize the data, a shell script was created for running

each repository selected against DesigniteJava. This script also

generated new sub-directories to store each file obtained by the

tool for every repository examined. For each repository, the

results were redirected from standard output and appended

to one large result file. The name of the repository would

also be appended subsequently after redirection occurred so

that the data would have proper association for future parsing.

After running the detection tool on all of the repositories, the

result file would be parsed and sorted into manageable data

using other programs. A majority of the original output data

would be discarded and only the total lines of code, top two

code smells recorded, and number of instances of particular

smells for each repository would remain for the final data

set. The smells that remained in our final data set were the

following: Long Method, Magic Number, Long Statement, God

Components, and Unutilized Abstraction. As further discussed

in our results section, these were ultimately chosen as the

remaining smells due to their popularity and sole focus of

our research.

The data collected would then be easily transferable and

converted to a readable format, such as an excel sheet or CSV

file. The results of the study are an open data source and
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Fig. 1. Flowchart of our process

accessible through GitHub2. Our process for collecting the

data is depicted in Figure 1, which entails each step conducted

to obtain the final data set.

V. CASE STUDY

A. Results

Prior studies have mentioned the prevalence of specific

smells within software projects, however, our findings sug-

gest that some smells such as the Long Method and God

Components are fairly uncommon. Based on our results, the

Long Method was documented for 0.144% of all methods

scanned. The Long Method also only accounted for 0.255%

of all smells collected, which is reasonably minuscule. This

number was heavily impacted due to other code smells that

seemed to be highly widespread. On the other hand, both the

Long Method and God Components contain significantly more

lines of code compared to others such as the Magic Number.

Although they are not as prevalent, both smells still make up

a significant portion of total lines of all smells. The Magic

Number smell was one of the more common smells detected

within the repositories, however, in most instances it can be

omitted in real-world practices as a potential smell. It made

up 48.357% of all code smells detected, making it substantial

compared to other smells. The second most common smell

was a Long Statement, which comprised of 21.425% of all

smells. Both the Magic Number and Long Statement together

appeared as the most common and second common code smell

for 70.0% of all repositories.

2https://bit.ly/39L0iIH

Fig. 2. Frequency of top two smells detected

TABLE II
OVERALL AVERAGES OF EACH REPOSITORY SELECTED

Attribute Average (AVG)

Number of Smells Detected 3924.04

Lines of Code (LoC) 59509.73

Number of Methods 6926

Some code smells are insignificant compared to others. To

clarify, a few smells such as a Magic Number could be seen as

appropriate or easily modifiable in specific instances compared

to other smells that can have long-lasting effects and degrade

the overall quality of the software. Because of instances where

there could be valid solutions that require code segments to be
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designed a particular way as well as many other factors, smells

like these can be discarded under most circumstances. Other

code smell that were flagged many times were Unutilized

Abstraction and Broken Hierarchy. For Unutilized Abstraction,

6.654% of total code smells were devised of this violation.

This particular smell was third most prevalent and relative

to the top two smells, the overall percentage is substantially

small. Out of the total lines of code analyzed, only 6.594% of

all repositories contained violations. This ratio was calculated

by computing the total number of smells in all 100 reposito-

ries, and divided by the total lines of code in each program.

This is only an estimate, as some of the code smells could take

several lines of code. The outcome was an expected result, as

these libraries are likely maintained by experienced developers

who practice good coding habits. Likewise, the developers are

likely to follow these standards to ensure high scalability and

to maintain their libraries efficiently.

From this study, we can confirm that similarly to C#

code analyzed in Sharma et. al [6], that Magic Number and

Unutilized Abstraction are both prevalent smells that are also

common in Java repositories. Furthermore, we can conclude

that the commonality between both Long Statement and Magic

Number frequencies are significantly higher than other smells,

which is depicted in Figure 2.

Fig. 3. Pie Chart displaying distribution percentages of particular smells out
of all 100 repositories examined

B. Threats to Validity

1) Internal Validity: Bias in regards to data extraction could

be a potential issue. Only Java projects were selected due to

the limitations of DesigniteJava. Because of the restriction,

different types of smells could potentially be more or less

common in other languages. Although the data was validated

through several automated checks, some of the smells were

manually checked and computed. Specifically, all smells in

our final data set were manually calculated.

To prevent any errors, these manual operations were com-

pared with programs to validate that the summations equalled

the summations calculated initially by hand and vice versa. In

order to alleviate any potential conflicts, popular repositories

from experienced developers that contained several thousands

of lines of code were primarily selected to be analyzed.

Because of the restrictions on the number of lines required,

this removes the possibility of special cases where there could

be an outlier of a particular code smell.

2) External Validity: A minor subset of individuals who

were surveyed haven’t been within the industry in the past

couple years. To reduce these biases, the survey data was

separated by those who are currently employed as a software

developer, and those who recently departed from the industry,

such as for Graduate School. Within the software field, new

tools and technologies are rapidly evolving, which allow devel-

opers to spend significantly less time refactoring their code. As

a result, these former developers could have potentially utilized

outdated tools even if they have only been out of the industry

for a few years, which could heavily impact the amount of

time it takes to refactor code.

In regards to the repositories collected, the data extracted

was reliant on the accuracy of the tool. Because of the tool

being recently developed and not as widely used overall, De-

signiteJava could pick up false positives of a particular smell.

Conducting the study again with different static analyzers or

other tools that detect code smells and comparing the results to

the current data set would lessen the probability of inaccurate

data. Furthermore, due to these popular repositories constantly

changing with updates, the number of code smells for each

repository could differ at the time of this writing.

VI. FUTURE WORK

As previously discussed, it would be beneficial to utilize

these exact same repositories but with many tools to compare

the rate of success and accuracy of each tool. A larger data set

expanding the use of other languages would be advantageous

to ensure that the most frequent smells identified within this

study is widespread in other languages besides Java. Although

Java and C# projects are compatible with our selected tool,

further identification of analyzers that support other object-

oriented languages such as Python or C++ need to be tested.

This will allow for identifying potential relationships between

different design, architectural, and implementation smells in

contrary projects.

Because of the programs created and utilized as a result of

this experiment, a data set with thousands of repositories can

be applied under the same circumstances as the small selection

of this case study at significant rate. The only limitation is the

manual selection of each repository, since criteria must be met

for every selected repository to ensure valid data collection.
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For our future work, we plan to devise or identify software

that will assist in fetching repositories, while adhering to our

criteria. Some static analyzers only support specific languages

and are potentially vulnerable to issues if conflicting files are

also embedded in the same repository.

Our future work entails examining the code that was as-

sociated with the Long Method and God Components for

the repositories selected, and running code smell detectors

and analyzers on these sections of code. The results could

potentially detect other embedded code smells within these

particular smells, as well as a correlation between the creation

of these oversized classes or methods. Furthermore, many tools

would be utilized, ensuring that a wide range of smells are

fetched from each repository.

VII. CONCLUSIONS

Based on the repositories examined, the Long Method, God

Components and other architectural and design smells are

typically not as detected in well-developed Java repositories

compared to other code smells. The most common smells

recorded were the Long Statement and Magic Number, ac-

counting for 69.782% of all smells recorded within the chosen

repositories. The Long Method was recorded for 0.144% of

all methods in the repositories selected. It also only accounted

for 0.255% of all total smells analyzed. Although insignificant

smells such as the Magic Number disproportionately impacted

other smells’ percentage weight, if this smell was omitted,

the Long Method would only slightly increase to 0.494%

of all detected smells. Future studies will be conducted to

gather a larger sample size and analyze the God Components

and Long Method segments of code within each repository

fetched. DesigniteJava is an extremely beneficial tool, which

both researchers and those in industry can utilize to further

evaluate production code and long-term maintainability.
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