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Abstract—In recent years, Cyber-Physical Systems (CPS) have
been studied in various application areas. Since there are many
robots that need to implement both physical and cyber sides,
interact with each other and the environment, and the system
has to cope with many faced difficulties, a warehouse system
for automated order-picking for online shopping seems to be
very suitable for being modeled and implemented as CPS. In
this study, the planning and control of mobile robots in a
store warehouse is defined from the perspectives of obstacle
avoidance, collision detection, and solving the shortest path
problem. Accordingly, a simulation environment is designed
and a layered CPS development model is proposed. In the
simulation environment, both object avoidance and collision
detection algorithms are introduced and implemented, different
shortest path-finding algorithms are adapted and implemented
and their performances are evaluated.

Index Terms—Online shopping, Mobile robot, Simulation,
Webots, Cyber-Physical systems

I. INTRODUCTION

Cyber-Physical Systems (CPS) are complex systems that
incorporate cyber and physical components that communicate
and interact with each other [5, 3]. They collect environmental
data through sensors and affect the environment via actuators.
CPS has pervasive applications in various fields such as health,
transportation, manufacturing, etc., making our lives easier by
automating many aspects.

In today’s world, online shopping is spreading everywhere
in society. [17]. Especially during the COVID-19 pandemic,
the increasing rate of online shopping [22] started to create
an extra workload for warehouses’ employees. In order to
reduce this workload, it’s necessary to automate the processes
in warehouses by using robots and smart systems. Robots
in warehouses are responsible for picking and delivering
packages from/to the right destination. The robots must take
the shortest possible path to collect/deliver the products to
avoid time loss and save energy[26]. Therefore, path-finding
algorithms such as Greedy [12] and A* [13] were used to find
the shortest path. Since CPS interact with the environment,

another problem that may be encountered is the possibility
of robots hitting any obstacle that may come their way in the
warehouse. During the movement, it is necessary to prevent the
robots from colliding not only with an obstacle, but also with
each other. For this, a master robot transmits the information it
receives from the environment to other robots, enabling them
to recognize the environment dynamically and direct their
movements.

The presented study identifies the planning and control
of mobile robots in a shop warehouse by deploying sev-
eral shortest path algorithms and comparing the performance
and efficiency of these algorithms regarding the number of
destinations or nodes in the simulation environment. Also,
the implementation focused on the autonomy of robots (i.e.,
obstacle decisions) and free mobility (i.e., navigation and
collision avoidance). Therefore, we try to examine and provide
answers to the following research questions:

• What does the simulation environment, specifically We-
bots, can provide for implementing CPS?

• What are the suitable shortest path algorithms for navi-
gation and controlling robots?

• How can the simulation environment be converted to
real CPS implementation and improve the design and
implementation phases?

This paper is organised as follows: Section 2 gives the
related works in this field. Section 3 describes the components
and technologies we used in this study. Layered CPS develop-
ment model is introduced in Section 4. Section 5 is about our
preliminary findings by early experimental simulation studies.
Section 6 gives information about future work and concludes
the paper.

II. RELATED WORK

In the era of massive online shopping, warehouse manage-
ment has become an essential and crucial factor for ensuring
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safe and timed delivery. The operations in a warehouse are
usually intensive and require significant effort, organization,
management, accuracy, and speed to deliver packages in a
reasonable time frame. Also, a warehouse requires a large
space to allow vehicles to maneuver around the racks [4]. In a
warehouse, autonomous robots can play a vital role in picking
and delivering goods while ensuring time constraints and
safety requirements (collision-free, obstacle detection, and en-
ergy efficiency). Thus, moving to partially-to-fully automated
operations has been considered a priority for warehouses and
big retailers in the last few years. However, implementing such
intelligent systems requires using appropriate technologies.
Several studies, approaches, and implementations for building
autonomous robots have been introduced. Also, simulations for
building such systems have been considered too. Simulation
studies can be helpful to get deep insights and estimations
of the requirements and performance before building and
implementing the system.

In the literature, there are many implementations for robots
in warehouses. For example, in the paper presented by [10],
they implemented an autonomous robot equipped with RFID.
The RFID reader is integrated with the PIC microcontroller as
the main component. Also, a servo-motor that has an infrared
sensor is used to follow the line. This project is aimed to
build an autonomous robot with an RFID application. The
implementation of the system used the Assembly languages.
As a result of the implementation, the robots read the tag
on the items to identify them, pick up those items, and then
navigate to the desired location to store the item.

For most warehouses, there are many orders to be fulfilled
in a given time constraint. As a result, task assignment for
robots in such systems becomes one of the most crucial corners
stone of the system. Thus, efficient algorithms for path-finding
can boost the system’s performance and achieve good results.
The algorithm presented in [6] gives us a feasible adaptive
task assignment algorithm for a real-time system to solve task
assignment problems. With the given algorithms, such systems
can be robust enough to meet the needs of huge order loads
dynamically while being flexible at the same time.

The authors of the study [18] focused on investigating
the robotic mobile fulfillment system (RMFS) in warehouses
where there is high-density storage due to the limited space
and high costs. The main focus was to assign tasks between
workstations and the storage area, and this process is com-
posed of three phases: task assignment, path planning, and
traffic control. A simulation environment was implemented to
evaluate the system requirements, and the results showed that
10% of storage space could be saved using the energy level.
The study presented in [7] focused on the order processing
problem in order to determine the time of picking and deliv-
ering the packages by the mobile robot. The topic of improving
the throughput performance of Automated guided vehicles
(AGV) was studied in the [24], and to achieve this, they
introduced a mathematical model. The model was designed
with genetic algorithm, and the main aim of this model is to
achieve the shortest order completion.

Simulation of real warehouse or manufacturing environment
systems has also been taken into account in the literature. For
example, A simulation framework designed with ROS Gazebo
simulator to simulate transport systems based on automated
guided vehicles (AGVs) has been built in [19]. This framework
is used for simulations by deploying algorithms and different
policies in the control system. The adaptation to the Just-in-
Time (JIT) concept was discussed in the [16]. In addition, a
simulation model in a job shop environment was developed to
improve transportation efficiency, and a dispatching algorithm
was deployed in vehicles that move through stations. The paper
[11], presents a strategic simulation model for comparing com-
mon fixed layouts that deploy the shortest path approach where
collision avoidance is the central focus. In terms of transport
capacity, the results of simulation experiments showed that
dynamic free-ranging has high potential. Anyhow, the use
of simulation environments have helped developers to build
more dynamic and error-prone cyber-physical system (CPS)
due to the favor of the valuable insights that have gained from
simulation experiments.

Some of the open source simulators that have been seen
in the previous works are like (Gazebo, Webots, Simbad,
USARSim, RoboDK, MRDS and MisionLab) [23]. In this
paper, the simulation environment has been designed and
developed with Webots. In addition, an layered CPS devel-
opment model is proposed to create a warehouse storage
system automated order-picking for online shopping in the
simulation environment. With the simulation environment and
proposed architecture, both object avoidance and collision
detection algorithms are introduced and implemented, as well
as different shortest path-finding algorithms are applied and
evaluated performances according to solving the traveling
salesman problem for picking items within the optimum time.

III. BACKGROUND

This section indicates the background information which
relates to the components in the scope of this study. The
section clarifies which algorithms such as Dijkstra, A-star,
Travelling Salesman Problem and which tools such as Webots,
e-Puck are used in the study.

A. Warehouse System and Order-picking for Online Shopping

Especially in the pandemic period, technical solutions to
improve the manual order picking process have gained more
and more importance. One of them is to do the order picking
process with robots. While the ultimate goal is real robotics, it
is often very beneficial to run simulations before researching
with real robots. This is because simulations are easier to set
up, cheaper, and more convenient to use than real robotics.

Webots: Webots is an open source robot simulator produced
by Cyberbotics[20]. It is written by the developers of the open
source program called Khepera Simulator, which is based on
Khepera Simulator. Any type of mobile robot can be simulated
using Webots. So it is really useful for the development of ad-
vanced robotics projects. The Webots library includes distance
sensors, light sensors, cameras, accelerometers, touch/pressure
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sensors, and GPS, and the user can process data from these
sensors.

e-Puck: The e-puck robot was designed by Francesco
Mondada and Michael Bonani at the Swiss Federal Institute of
Technology in 2006. It is an educational robot that has helped
generations of students learn about embedded systems and
robotics. It has a small differential wheel, 7.4 cm in diameter,
4.5 cm in length, and weighs 150 g. It has 8 infrared sensors
that measure near the light at a range of 4 cm and the proximity
of obstacles. It also contains a 3-axis accelerometer, three
microphones, a speaker, a 640x480-pixel color camera, and a
Bluetooth interface for communicating with a host computer.
The current version of the e-puck model includes distance
sensors, light sensors and many more features such as a camera
[21].

B. Shortest Path Algorithm

Throughout history, it has always been a question asked how
people can travel from one city to another in the shortest time.
This is a very simple question in everyday life that almost
everyone can easily understand and find a solution to. But
when the input data is large, solving the problem may not be
so easy. Machines can calculate this process more accurately
and faster for us. As a result, the shortest path problem is
considered a basic topic in the field of computer science.
The shortest path problem is defined as the shortest distance
movement from a given starting point to a given target point
in a given environment with obstacles at different locations.

Travelling Salesman Problem (TSP): The Traveling Sales-
man, which is one of the well-known NP-hard optimization
problems, was formally stated by Irish mathematician William
Rowan Hamilton and British mathematician Thomas Kirkman
in the nineteenth century. TSP is a problem in which the
distance between "n" cities is known, it is aimed to find the
optimal route in which the total distance traveled during the
tour is the shortest, based on the principle of returning to the
starting point, provided that each city is visited only once [14].
In short, the goal in TSP is to find the shortest path through
each city in a given set of cities.

Greedy Algorithm: When computer scientist and math-
ematician Edsger Dijkstra tried to calculate the minimum
spanning tree, he came up with the greedy approach. The
greedy approach means selecting the option or solution that
appears to be the greatest at the time. [12]. It merely means
selecting the option or solution that appears to be the greatest
at the time. To reach the optimum solution, the main purpose
of this is to find the best among the locally optimal solutions
for each sub-task. Thus, the optimal solutions found for each
sub-task will provide the optimal solution for the main task.

A-star Search Algorithm: The A* algorithm is a heuristic
search algorithm for finding the shortest path between two
targets. It is considered an expansion of the Dijkstra method,
however, it uses a heuristic to determine the best solution to
save runtime. The algorithm was first published in 1968 by
Peter Hart, Nils Nilsson, and Bertram Raphael. [13].

C. Cyber-Physical Systems (CPS):

Cyber-Physical Systems encompass any structures that fa-
cilitate communication and cooperation between the physical
and cyber worlds. The fundamental goal of CPS is to meet
the flexible and dynamic needs of production while also in-
creasing industrial efficiency and productivity. "Cyber-physical
systems" are defined as "the integration of physical processes
and computation." This gives the production process a whole
new level of control, monitoring, and efficiency [25].

IV. LAYERED CPS DEVELOPMENT MODEL FOR A

WAREHOUSE SYSTEM

Cyber-physical systems (CPS) are enabling technologies
that connect the virtual and physical worlds to create a gen-
uinely networked world in which intelligent objects communi-
cate and interact. They are also self-contained onboard systems
having sensors to sense their surroundings and actuators to
control physical processes. Because they can receive and
process data, they can control certain tasks themselves, so
CPS can enable communication between humans, robots or
even products. In the traditional warehouse system, many
processes such as product picking and delivery are done by
people. However, under the pandemic conditions that affected
the whole world, this has been even more costly in terms of
both resources and time. That’s why there is an understanding
of making smarter with robots in the emergence of this project.
This understanding also lies in the use of the CPS.

This section describes in sequence the steps of developing a
cyber-physical warehouse system for automated order picking
for online shopping. This study aims to collect the products
ordered by robots through online shopping in a warehouse
environment and to minimize the time and cost. For this,
some shortest path algorithms were produced and Java was
used as the programming language. Although this study is
intended to be implemented in the physical environment in
the future, it was carried out with the help of a simulator as it
would be much easier and more convenient to implement in
the simulation environment at the first stage. The architecture
of the proposed approach is shown in Figure 1.

A. Creation of The Simulation Environment on Webots and

Inclusion of e-Puck Robots

In this study, the Webots simulator is used to model the
robots and the environment. The Webots allows the creation
of obstacles of different shapes and sizes. It also consists of
a collection of robots, sensors, actuators, and objects. The
environment in Webots is called the "world" and robot or
object are created inside this "world". For this study, a 3x3
world was created, then The e-puck was added to this "world".

The e-puck robot is equipped with a wide variety of sensors
and actuators such as a camera, infrared sensors, GPS, and
LED sensors. It also has two wheels, each controlled by a
separate servo motor, enabling it to move. Each motor is
equipped with an encoder that counts the pulses sent to it.
Encoders are used to obtain the true motor rotation by counting
the number of ticks in a wheel. It has the ability to travel
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Fig. 1. The overview of the warehouse simulation architecture

forward, backward, and right or left. The wheels’ maximum
speed is 1000 steps per second, or one wheel revolution every
second [2].

Robots drive forward and backward if the values give for the
wheels are positive and negative respectively. The left wheel
speed must be lower than the right wheel speed for the e-puck
robot to turn left, and the right wheel speed must be lower than
the left wheel speed for the robot to turn right. Functions of a
derived class called RotationalMotor from Webots’ Robot
node are used to move the e-puck robot as mentioned above.

B. Implementing Obstacle Avoidance for e-puck

Obstacle avoidance can never be ignored when aiming to de-
velop a cyber-physical warehouse system for automated order
picking for online shopping. Because there are many obstacles
such as shelves, baskets, and objects that the robot can hit in
the warehouse environment. To create the obstacle avoidance
algorithm, we need to read the values of the 8 infrared
sensors of the e-puck robot and activate its two wheels. The
implementations for the movements of the wheels were explain
in the previous section. In this section, implementations for
obstacle avoidance are described.

The e-Puck has 8 IR sensors that measure the proximity
of obstacles or the intensity of infrared light at a distance
of 4 cm from the environment. These are named from ps0
to ps7. Figure 2 shows how the IR sensors are positioned
on the e-puck. It receives as input the IR sensor values.
The algorithm is created according to these input values. To
get these input values, import directives must be added for
the DistanceSensor to use the corresponding API to the
Controller.

When the 2 IR sensors ("ps1", "ps0") located on the right
front of the e-puck detect the obstacle, it turns their direction
to the left and continues towards the target when the obstacle
is out of the distance range. Likewise, when the 2 IR sensors

1e-puck: https://cyberbotics.com/doc/guide/epuck

Fig. 2. Sensors, LEDs and Camera of e-puck1

("ps7", "ps6") on the left front detect an obstacle, it turns right
and continues toward the target when the obstacle is out of the
distance range.

In this case, when the e-puck robot detects an obstacle, it
first stops, turns in the opposite direction, and takes action.
When it is more than 4 cm away from the obstacle it detects,
it adjusts its angle and continues to go towards the target again.
Although this does not seem like a waste of time for a single e-
puck robot and a single obstacle, it can cause a lot of wasted
time when considering multiple obstacles and robots in the
warehouse environment. For this reason, an obstacle avoidance
algorithm was designed gradually.

Algorithm 1 An algorithm of wheel speeds for obstacle
avoidance

1: base← 3
2: count← 0
3: total← 0
4: for iteration = 0, 1, 2, 3 do

5: if distance_sensors[iteration].getV alue() ≤ 1000
then

6: total← total + iteration
7: count← count+ 1
8: end if

9: end for

10: if count > 0 then

11: leftSpeed← base+ (total/count− 2) ∗ 3
12: rightSpeed← base− (total/count− 2) ∗ 3
13: setV elocity(leftSpeed)
14: setV elocity(rightSpeed)
15: else

16: setV elocity(base)
17: setV elocity(base)
18: end if

The "base" variable is used to store the base speed of the
robot. The "total" variable is used to save the sum of the
weights of the distance sensors that detect an object. The
"count" variable saves the number of distance sensors that
caught an object. The distance sensors of the e-puck robot can
take values between 0 and 10002. If the threshold sensor value

2https://cyberbotics.com/doc/reference/distancesensor
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rises above 1000, an obstacle has been detected. Conversely,
if the sensor’s value is 0, there is no obstacle detected.

The weights of the distance sensors which are assigned to
the indexes of a loop, when the total is divided by count give a
value between 0 and 4. The left-most object that the robot can
detect will give 0 and the right-most object that the robot can
detect will give 4. Now if we subtract 2 from the leftmost will
give -2 and the rightmost will give 2 giving us the possibility
of detecting which side the object is on concerning the robot.

Then we multiply this value by another weight. This weight
was found by trial and error with different values for this
the robots turning speed and reaction time will change. To
get the separate speeds for left speed and right speed the
values we get are subtracted from the base speed. The resulting
values are sent to the SetV elocity function of Webots’ Motor
library. SetV elocity is used to control the speed of the robot.
Thus, it provides a more effective working opportunity for
obstacle avoidance of the robot without slowing down. The
related demonstrating video can be found on https://youtu.be/
siQvDc7AbG4

C. Implementing Collision Avoidance for e-Puck

Collision avoidance is a critical feature that provides accu-
rate, fast, and dependable warnings before a collision occurs.
In particular, collision avoidance in the warehouse environ-
ment for order-picking for online shopping robots is an area
of work that should be considered. Because if more than
one robot does not communicate with each other, possible
conflicts may occur, resulting in loss of time and work. As
a result, a collision avoidance algorithm has been devised in
this study, allowing e-puck robots to reach their destinations
without colliding with each other or obstacles.

Improvements have been expressed in this section. The
improvement was initiated by adding two more e-pucks to
the "world" and controllers for them. The collision avoidance
algorithm introduced in the previous section was applied to
these two e-puck controllers.

Each e-puck used has a priority over the other. This situation
is used in this study with Webots’ "Supervisor" library. The
supervisor has omnipotent powers, including the ability to
change the environment and deliver messages to robots. In
Webots, it’s linked to a controller program. The Supervisor
controller, unlike a conventional robot controller, will have
access to advantaged operations. Any robot can be turned
into a supervisor when the "supervisor" field is set to TRUE
in Webots. In this way, it can provide access to other e-
puck robots. Considering this situation, the algorithm has been
developed.

To explain the algorithm; in the beginning, three e-puck
robots are moving toward their destination. The situation
of collision avoidance occurs when the Euclidean distance
between the e-puck robots is less than 5 cm. Any e-puck
robot, when there is a possibility of collision with another
e-puck robot, allows the passage of whichever has priority by
messaging between them. When the distance between them
eliminates the possibility of collision, the other e-puck robot

continues to go to its target. The algorithm continues until all
the e-puck robots reach their targets.

Algorithm 2 An algorithm of collision avoidance

1: function START

2: if CheckDistance then

3: MOVE(0, 0)
4: end if

5: end function

6: function MOVE(leftSpeed, rightSpeed)
7: setVelocity(leftSpeed)
8: setVelocity(rightSpeed)
9: end function

10: function BOOLEAN CHECKDISTANCE

11: if Distance(getPosition(Robot2), getPosition(Robot1)) <
5 then

return TRUE
12: else

return FALSE
13: end if

14: end function

Within the scope of this study, 3 e-puck robots were used as
mentioned in this section. However, in Webots, many robots
can be added to the "world", and controllers for these robots
can be added. Collision avoidance status can be implemented
for many robots by providing priority conditions in the con-
troller of each. The related demonstrating video can be found
on https://youtu.be/h03AbXaXYV4

D. Path Planning with Shortest Path Algorithm for Travelling

Salesman Problem

Finding the shortest path in the presence of obstacles, re-
ferred to as the shortest path problem, is one of the fundamen-
tal problems in path planning. As this problem occurs in many
industrial applications, it also plays an important role in the
warehouse ordering robot. Because in this way, order picking
for online shopping at a warehouse can effectively reduce
the cost and time. Therefore, improving the route planning
algorithm of the online ordering robot has a significant impact
on improving transportation efficiency.

The robot receives the coordinates of all ordered products,
then automatically starts moving from the starting position to
the first calculated product position to complete the loading
task. After all the products it needs to collect are finished,
it returns to its starting position and completes its process.
Therefore, this scenario can be considered a "Traveling Sales-
man Problem". The Traveling Salesman Problem defines a
salesman who must travel between a certain number of cities.
The order of the cities to be visited does not matter, as long
as it is visited in one go and ends in the starting city. Each
of the links between cities has one or more weights that can
represent distance, time or price cost. The real problem is to
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find the shortest path that starts at one point, travels through
all needed destinations, and ends at the point where it started
again. In the study, we test the robot’s path planning through
2 algorithms for Travelling Salesman Problem. These are
Greedy Algorithm and A* Algorithm. The related demonstrat-
ing videos can be found on https://youtu.be/hgCQA_o4QGs
and https://youtu.be/w-z1-IhCY68, respectively.

1) Input Data Set: Within the scope of this study, the
coordinates of the products that need to be collected in
the warehouse environment for order picking for the online
shopping robot are read from the file. The coordinates in this
file are randomly generated in Python. It takes the starting
position of the robot from Webots. This is also the final
position.

2) Greedy Approach Algorithm for Order Picking Robot:

The greedy algorithm is a strategy that contends that the best
choice should be chosen under present conditions, without
regard for the long-term consequences of solving a problem.
The algorithm’s main goal is to find the shortest path possible.
Starting with the initial node, only the one with the smallest
distance among the available nodes is chosen. After each
selection, the selected node is marked not to be re-selected.
As a result, the previously visited node is no longer visited.
When there are no more nodes to visit, that is, all nodes
have been visited, it returns to the starting point. This is the
greedy method’s idea for the Travelling Salesman Problem
(TSP) solution.

The way the algorithm works for this study is as follows:
The coordinates of the products that the order-picking for
online shopping robot needs to collect are read from the file
through the controls. Since there is a TSP problem, the start
point and end point of the robot must be the same. This start
and end position is automatically obtained from Webots. That
is, the start point and end point of the robot can be changed
dynamically. Since Greedy is an algorithm, it always chooses
the closest one among the nodes it can go to. The distance
was calculated with “Euclidean Distance”. The weight of each
node visited is changed to an "infinite" value since it will not
be visited again. When all the coordinates to be visited are
finished, that is, when all the ordered products are collected,
the order-picking for the online shopping robot returns to its
starting position and the algorithm ends.

3) A* Algorithm for Order Picking Robot: The A* algo-
rithm is a search algorithm that searches for the shortest path
between the starting and ending states. In the Greedy method,
we only consider our estimated distance to the target and move
in the direction where it is the least. The A* algorithm, unlike
the Greedy method, takes into account heuristic cost and actual
distance. This is accomplished by retaining a tree of paths that
originate from the initial node and extending those paths one
edge at a time until the termination requirement is fulfilled.
The A* algorithm must decide which of its paths to extend at
each iteration of its main loop. It does so based on the path’s
cost as well as an estimate of the cost of widening the way to
the goal.

“Manhattan Distance” and “Euclidean Distance” can be

used when calculating the cost of the road. In this study, both
methods were tried on the algorithm and the results were
examined. However, in [1], it has been seen that "Manhattan
Distance" is recommended in case of high-dimensional data,
and "Euclidean Distance" is recommended in case of lower
data, as in our study. Therefore, “Euclidean Distance” was
used while calculating the cost of the road [1, 9].

f(n) = g(n) + h(n)
f(n) = total estimated cost of the path through node n
g(n) = cost so far to reach node n
h(n) = estimated cost from n to goal. This is the heuristic
part of the cost function, so it is like a guess.

But the A* algorithm does not have a suitable scenario for
the Travelling Salesman Problem (TSP) solution. In this study,
the A* algorithm was adapted to TSP. For this, the robot went
from the starting position to a point and then the A* algorithm
was run. Thus, the scenario was made suitable for TSP. He
made several attempts to decide where he should go first from
his starting position. By making the robot go to the nearest
node from the starting point, the A* algorithm was run. Then,
on the contrary, this process made the robot go to the farthest
node from the starting point, and the A* algorithm was run.

When we compared the results, it was observed that going to
the farthest node from the starting point of the robot and then
running the A* algorithm gave better results. For this reason,
the warehouse ordering robot has been adapted to pick up the
product at the furthest node from the starting position, then
visit the nodes that need to be intuitively visited using the A*
algorithm, collect all the ordered products, and finally return
to the starting position.

V. PRELIMINARY FINDINGS BY EARLY EXPERIMENTAL

SIMULATION STUDIES

Fig. 3. Evulation of the algorithms with respect to time criteria

In this study, A* and Greedy Algorithm will be applied
in the path planning of a cyber-physical warehouse system
for automatic order selection for online shopping. We made
some changes to adapt these algorithms to our scenario for the
warehouse system. The results we obtained from the study of
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these two algorithms and the comparison of these results are
shown in Figure 3.

The bar chart provides information about the running times
of the simulations based on the number of nodes. The number
of nodes here represents the number of items to be retrieved
in sequence. The number of nodes was randomly generated
from 10 to 100, and the values in the graph were created
by running the simulation 20 times for both algorithms and
taking the average. The main reason for testing the number of
nodes between 10 and 100 here is to compare the two shortest
path algorithms based on the complexity of the scenario. In
both shortest path algorithms, the result has been reached, but
it is aimed to decide which is better in which situations. In
this section, it is explained which algorithm should be used in
which situations for the scenario according to the simulation
completion times of the two shortest path algorithms.

Overall, the Greedy Algorithm’s time to complete the
simulation initially performed better than the A* Algorithm.
However, at the end of the period, the A* algorithm worked
faster. The most significant finding is as the number of nodes
increases, the running time of the A* algorithm started to give
faster results compared to the Greedy algorithm. When the
number of nodes is 10, the greedy algorithm completed the
path in around 100 seconds, while the star algorithm’s running
time was just under 200 seconds. It can be clearly seen from
the bar chart that the running times of algorithms began to
approach each other with the increase in the number of nodes.
When the count of nodes reaches 80, the running time of the
A* algorithm was slightly above 400, giving a faster result
than the Greedy algorithm.

According to the result of the early experimental simulation
studies, when the robot receives the order, if the number of
products to be collected by the robot is less than 80, it is
more efficient to use the Greedy algorithm because it works
faster. When the number of products is more than 80, the A*
algorithm can be used since A* performs more successfully.
However, these findings have not been confirmed by any
statistical test. Therefore, in order to make these results more
reliable, the number of trials should be increased and the
results should be tested statistically. Although the findings
obtained in this state are guiding, it will not be appropriate
to make a definitive judgment.

VI. DISCUSSION

The robot travels through the points most shortly, following
a certain route. One of the first problems encountered while
trying to solve this step was the selection of the method used to
solve the shortest path problem. It was noticed that when using
the Greedy algorithm to find the shortest path, it often misses
the shortest distance on the overall route, as expected since
the algorithm always chooses to travel the local minimum
distance. So, trying the A* algorithm and the Greedy algorithm
was decided to evaluate them. Another problem encountered
at this stage was that the A* algorithm was not a completely
suitable method to solve the Travelling Salesman Problem, so
the algorithm was modified to made it suitable for the TSP

problem. After the robot went to the node with the shortest
distance from the starting point, the A* algorithm was ran.
With this method, it was realized that the algorithm did not
show the efficiency we expected.

When we ran the A* algorithm after going to the farthest
node from the starting point of the robot, more successful
results were got. When the results gathered from the Greedy
and A* algorithms were compared, it was observed that as the
number of nodes increases, the Greedy algorithm works faster
up to about 80 nodes, while adding more nodes gives slower
results. This may be because Greedy runs slower since its time
complexity is n2 as it travels through all the nodes. The data
structures used while implementing algorithms can also be a
factor that needs to be evaluated for speed. To find a better
route in the A* algorithm, prioritizing some nodes using the
cost function may have provided a faster solution to finding
the optimal route.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have designed and developed a simulation
implementation to simulate the real behaviors of Cyber Phys-
ical System (CPS) embodied as mobile robots that operate
in a warehouse or a shop. In the simulation implementation,
shortest path algorithms have been designed, deployed and
tested. According to the results of the early experimental
simulation studies, if the number of products to be collected
by the robot is less than 80, it seems more efficient to use
the Greedy algorithm. However, it has been observed that A*
performs more successfully when the number of products is
more than 80. Besides implementing and testing shortest path-
finding algorithms, object avoidance and collision detection
algorithms are introduced and implemented for appropriate to
the scenario and the simulation environment.

We plan to integrate the current simulation environment
with an agent-based paradigm to provide a simulation imple-
mentation with smart and autonomous behaviors. Agents can
provide the simulation with advanced capabilities as well as
make the system actors independent, interactive and proactive.
Agents can behave competitively or cooperatively in the simu-
lation environment to form Multi-Agent Systems (MASs). The
MASs may have different perspectives like a plan, interaction,
organization, role, environment etc. Thanks to these different
perspectives, MASs can consider the structure, behavior, in-
teraction and environment of complex systems such as CPSs.
Therefore, both agents and MASs can be an ideal alternative
in the modeling and development of CPSs [8]. This as future
work will be discussed and explored with a clear and obvious
case study that can show reliable results.

In addition, concerning providing digital twins with agent-
based simulation, we intend to extend the current simulation
and integrate it with the proposed agent-based Digital Twin
architecture [15]. The plan is to have a digital twin framework
where services such as simulation can be run by exploiting
the real-time and historical data collected from the physical
components to perform several tasks (prediction, maintenance,
and improvement).
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