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Abstract—In modern cities, poor air quality has contributed
to replacing motorized cars with active modes of transportation
such as cycling. However, when designing and building bike
infrastructure, officials neglect to consider air quality concerns
connected to cyclists, and most cycling lanes are developed next
to heavy-traffic roadways. This poses additional health risks to
cyclists, due to their increased ventilation rate. To preserve a
sustainable quality of life for a city’s residents, it’s critical to
understand how to detect and quantify PM exposure, especially
in potentially hazardous locations. This study offers a software
tool based on experimental data to optimize and evaluate cycling
routes by calculating the overall amount of particulate matter
intake in terms of the physiological response of cyclists.

I. INTRODUCTION

A
IR POLLUTION is a significant public health problem

that has long been a source of anxiety for citizens. An

air pollutant is described as any substance that can affect

humans, animals, plants, or materials. In the case of humans,

an air pollutant may cause or lead to an increase in mortality

or serious illness, as well as pose a current or potential

health risk [1]. Measurements of air emissions are critical

for epidemiology and air quality control, but the scope of

ground-based air pollution observations has limitations [2].

Somatic symptoms of asthma in adults and children have been

linked to moderate increases in vehicular exhaust such as fine

particulate matter (PM2.5), nitrogen dioxide (NO2), ozone,

carbon monoxide, and traffic-related air pollution (TRAP) [3].

The presence of PM (Particulate Matter) is one of the key

causes of increased morbidity and mortality in modern cities.

It is a suspended combination of solid and liquid particles

that vary in quantity, size, shape, surface area, chemical

composition, solubility, and origin. Total suspended particles

(TSPs) have a trimodal size distribution in the ambient air,

including coarse particles (PM10), fine particles (PM2.5), and

ultrafine particles (PM1) [4]. PM size-selective sampling refers

to the collection of particles that are below, above, or within

a defined aerodynamic range of sizes, which is commonly

chosen to be relevant to inhalation and deposition, causes, or

toxicity [5].

Poor air quality in large cities has contributed to the

substitution of motorized vehicles with an active means of

transportation, such as cycling [6]. This method has been

extensively adopted by multiple communities due to reduced

congestion [7] and the numerous health benefits of physical

exercise. Cycling infrastructure near roadways, on the other

hand, has been identified as a harmful scenario for cyclists

owing to air pollution exposure [8]. Although this has piqued

the scientific community’s interest [9], there have been few

studies conducted in European cities where many individuals

are continually exposed to PM from anthropogenic sources,

such as automobile traffic.

Estimates of air pollution exposure for research projects are

frequently based on measurements obtained by stationary reg-

ulatory monitors, such as those operated by the European En-

vironmental Agency (EEA). While these monitors are highly

precise and well-suited to assuring compliance with federal

air quality requirements, their utility for recording individual-

level pollution exposure is limited for many reasons: 1) Firstly

because monitor locations rarely coincide with exposure loca-

tions (e.g., home, work, or school), an individual’s exposure to

air pollution can only be measured indirectly through spatial

interpolation techniques such as inverse distance weighted

interpolation and kriging, or statistical methods such as land-

use regression modeling. [10] 2) Secondly, regulatory monitors

offer limited temporal resolution (e.g., hourly averages in the

case of particulate matter monitors), which may lead them to

miss transient spikes in pollution levels; 3) Thirdly, indirect

methods of exposure assessment typically estimate exposure

for a single location per individual, such as their location of

residence, place of work [11], or school [12], which does

not capture exposures that occur while people are at different

locations or during regular activities like commuting and

errands.

The majority of dedicated bicycle lanes in cities are close

to heavy-traffic roadways, this can lead to a substantial health

risk to cyclists due to their high pollutant intake via higher

ventilation rates [13], [14] and high levels of physical ac-

tivity [8], [15]. Researchers have concentrated on assessing

actual exposure levels of cyclists on pre-selected routes using

personal samplers [16] or inferring personal exposure from

measurements of street-level pollution using mobile labs or
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fixed-site ambient air monitoring stations [17]. Many studies

have also sought to connect particular physiological responses

with cyclists’ exposure to air pollution and discovered evi-

dence that short-term exposure can result in harmful health

effects [18]. One research even found that cyclists absorbed

a greater proportion of fine PM2.5 particles and black carbon

than drivers of motorized forms of transportation [19].

Despite the discussed findings, municipal authorities in

Sofia and other Bulgarian cities fail to take air quality concerns

into account when developing and building bike infrastructure.

Most of the dedicated cycling lanes in the cities are built on

heavy traffic roadways. As a result, more scientific information

is needed to describe the air pollution exposure on cyclists

and optimize bike routes. This study reviews the development

and the evaluation of a tool that proposes optimized cycling

routes by calculating the intake dosage of ambient PM. We

also emphasized the effects of transportation on air quality and

that bike paths should be prioritized on small streets instead

of building cycling infrastructure near high-traffic roadways.

After the introduction the rest of the paper is designed

as follows. In section 2 we give a brief overview of the

methodology used in this study. There is discussed how the

software is built, how study routes are selected, who are the

participants of this study and how mobile and fixed sensors

are used. In addition, it is shown how the inhalation rate and

the intake dosage are calculated. In Section 3 we introduce

the computational results, analysis, and discussion. Finally,

Section 4 presents the conclusions and recommendations for

future research.

II. METHODOLOGY AND INSTRUMENTS

Cities are notorious for their high levels of air pollution

and sickness. Transportation, household heating, and industry

are considered to be the main sources of air pollution in urban

areas. Sofia is situated in a valley, where the two main sources

of air pollution are household heating and transportation. The

city is one of the most polluted ones in the European Union

with high concentrations of particulate matter, especially dur-

ing the winter season due to household heating during low

temperatures and low ventilation as a result of temperature

inversions.

Sofia is the capital of Bulgaria with nearly 1.5 million in-

habitants. The city has a relatively small bicycle infrastructure

with nearly 60 km of cycling paths. This paper describes the

development of a software tool that optimizes biking routes

by evaluating cyclist air pollution exposure.

A. Study design

An increase in morbidity in Sofia after days of high air

pollution was investigated in recent research [20], [21]. On fig.

1 is illustrated the exposure-health effect model on which this

study is based. Air pollution concentrations lead to different

doses of inhaled polluted air. The doze leads to different health

effects. Generally speaking, the higher the dose - the bigger

the risk for health effects.

Fig. 1. Exposure - Health effect development

This study discusses the creation of a software tool that

aims to select an optimized cycling route that provides the

least PM inhalation dose for a cyclist trying to go from point

A to point B.

Inhalation Dose (ID) depends on pollutant concentrations,

the time, and the Ventilation Rate (VR) [min]. We calculate

the inhalation dose by incorporating into the model the PM

exposure for each cyclist with biomarkers such as heart rate,

and time needed to take each route. The next subsection will

provide more depth into the formulas used in the calculation

model.

B. Method for calculating ventilation rate and inhalation dose

To calculate cyclist’s VR (in L/min), we utilize [22]’s model

equation that is based on the Heart Rate (HR) [min] (Eq. (1)).

V R = 0.00070724×HR2.17008537 (1)

To determine the amounts of particular matter that are

impacting cyclists, we use Eq. (2) [22] to compute the PM

inhalation dose for each stretch:

PMinh = PMconc × V R× time (2)

where PMinh (µg) is the mass of pollutants entering cyclists’

respiratory tracts over the course of the journey (round trip);

PMconc (µg/m3) is the median pollutant exposure.

The following formulas (Eq. (1) and Eq. (2)) lead to the

following hypothesis: if we want to build a tool that reduces

the inhaled dose of PM it should select a track that is:

(1) Fast and short. The lesser the time, the lesser PMinh

(2) Requires less effort. HR is increased during ascending

and high speed. Looking for routes with denivelation.

(3) Go through less PM concentrations. Heavy-traffic roads

should be skipped. Small streets and parks are preferred.

These formulas (Eq. (1) and Eq. (2)) are also used in the

validation of the tool, which will be later discussed. In the

next section we examine the path finding algorithms.

C. Path finding algorithms

Path finding algorithms are built on top of graph search

algorithms and examine connections between nodes by starting

at one node and moving via relationships until they reach their

target. These algorithms determine the cheapest route in terms

of weight or hops. Weights may be everything that can be

measured, including capacity, cost, time, and distance.

As discussed in the previous section, for the purposes of this

software, it is required to not enough to compute the shortest

path in linear time [23], [24]. In addition, it should present
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options that are longer than the shortest way but have different

desired characteristics, such as less vehicle traffic and small

denivelation. The k-Shortest Paths problem is a straightforward

method for calculating alternative routes [25].

In this study, we use an alternative routing, and in particular

the k-Shortest Paths with Limited Overlap (k-SPwLO), previ-

ously introduced in [26]. The k-SPwLO query seeks paths that

are (a) sufficiently distinct from each other and (b) as short as

possible. Although the method performs better than a baseline

solution that lists pathways in order of increasing length,

OnePass is not useful even for medium-sized road networks

[27]. For this purpose, we use MultiPass, a more accurate

method that, by adding second pruning criteria, expands and

enhances OnePass. MultiPass travels the network k-1 times

but only evaluates and extends the most promising pathways,

in contrast to OnePass, which traverses the road network

once and expands only those paths that satisfy the similarity

criterion. Pruning is done on any path that cannot lead to a

solution.

Let P specifically be a collection of routes on a road network

G that connect nodes s and t. A path p’ (s→t) is referred to as

an "alternative" in P when p’ is enough dissimilar to every path

p ∈ P. Formally, the overlap ratio between p’ and p determines

how similar they are:

Sim(p2, p) =

�
(nx,ny)*p2+pwxy

l(p)
, (3)

where p2 ∩ p indicates the group of edges that both are shared

by p2 and p. Given the similarity threshold θ route p2 is

alternative to set P if Sim(p2, p) ≤ θ.

Given a source node s and a target node t, a k-SPwLO

query provides a collection of k routes from s to t, ordered

in increasing length order, such that:

(1) the shortest route p’(s→t) is always included,

(2) all k routes are pairwise dissimilar with regard to the

similarity threshold θ, and

(3) all k routes are as short as possible.

This paper uses a new approach to the k-SPwLO. Most of

the applications use alternative paths, leaving the final route

choice to the user. While in this software we add weights in

order to choose the shortest alternative route with the least

traffic and smallest denivelation. The following subsection is

revealing insights into the software’s development.

D. Development of the software tool

The software is developed on a cloud infrastructure and

for its development is used free software Python, Django,

and GraphQL (for the database). It is connected to gis data

providers such as Google maps, Strava, and the route is

rendered on Openstreet map.

Firstly, using the pathfinding algorithm described in the

previous section, the software is programmed to search for a

route that: (1) is the shortest; (2) has the smallest denivelation;

and (3) skips heavy-traffic roadways when possible. The

calculation model is based on previously mentioned formulas

(Eq. (1) and Eq. (2)), which were used for developing the

weights for the search algorithm.

After the calculation is done, the software renders the

optimized path. To evaluate the model and further improve

its search algorithms we designed a tool that combines air

quality data from fixed sensors and gis data from the Strava

app.

The software uses an aggregation tool that extracts air

quality data both from standard instruments and low-cost

sensor networks such as Luftdaten, Smog, Openaqi, and many

others. It receives, records, cleans, and calibrates the air quality

data from fixed low-cost sensors.

Traditionally, concentrations of air emissions have been

monitored by air monitoring stations equipped with stan-

dard equipment, allowing for highly reliable monitoring re-

sults. However, the high costs of equipment and servicing

make meeting the demands of high-resolution surveillance

and assessing the extent of personal exposure impossible

[28], [29]. As the need for more condensed monitoring is

gradually increasing, low-cost air quality sensors have been

widely used in air monitoring in recent years due to the

benefits of low cost, low power usage, quick operation, and

rapid response [30]. As a result, environmental monitoring

stations are often sparsely dispersed, resulting in observations

with inadequate geographical resolution. Low-cost air quality

monitors have recently been developed as an option that can

increase monitoring granularity. However, using low-cost air

quality monitors comes with a number of drawbacks: They

are impacted by cross-sensitivities between different ambient

contaminants, as well as external variables such as traffic,

weather fluctuations, and human activity, and their accuracy

declines with time.

To mitigate the above-mentioned drawbacks of fixed low-

cost sensors we calibrate the data from them. We examine

both the data from environmental monitoring stations and the

Luftdaten network of low-cost sensors. To calibrate the data

from low-cost sensors and increase its reliability we use the

[31]’s two-step calibration method that utilizes artificial neural

networks and anomaly detection.

After the selection, the two study routes are evaluated

through mobile and fixed sensors.

E. Study routes

The two study routes start from the national stadium Vasil

Levski and end up at Pette kiosheta, two spots in the center

of Sofia with active cycling flow.

The two study routes are in the center of Sofia and are

picked so they can meet the following criteria:

(1) should have the same start and end points;

(2) one of the routes to be on the dedicated bike lane,

while the other is the proposed from the software (short; low

denivelation; follows small streets);
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Fig. 2. Stretch A - suggested by our software as it searches the least inhalation
dose

Fig. 3. Stretch B - suggested by the majority of navigation softwares as it
is on a dedicated bike lane

(3) the routes should be actively used by cyclists;

(4) both routes pass nearby fixed sensors from the Luftdaten

network;

Stretch A (fig.2) is the optimized cycling route that is

suggested by the software tool and software point that goes on

the shortest path through small central streets and parks, while

Stretch B (fig.3) uses the developed cycling infrastructure (that

mainly includes cycling near heavy-traffic roadways), it is

longer in distance and is suggested by the navigation software

due to the dedicated bike lanes.

The tool also evaluates the routes using mobile and fixed

sensors for gathering air quality data. In the next section is

described the implication of mobile sensors.

F. Measuring PM exposure with wearable mobile devices

Low-cost wearable pollution sensors are inexpensive envi-

ronmental monitoring devices that people can carry or wear

while going about their daily activities. Because they detect

pollution levels directly and in real time, they may allow

health providers and researchers to monitor individual-level

exposures and empower citizens to manage their personal

exposure to pollutants beyond what regulatory monitors can

do [32].

For this study, PM1, PM2.5, temperature, and relative

humidity are measured by AirBeam2. To quantify particle

matter, AirBeam2 employs a light scattering approach. Light

from a laser scatters off particles in the airstream as air is

pulled through a sensor chamber. A detector registers the light

scatter and converts it into a value that estimates the number

of particles in the air. When recording a mobile session, these

measures are sent to the AirCasting Android app via Bluetooth

once per second.

The tests are conducted by 10 study participants. The mobile

equipment was connected to the front of each bicycle, allowing

the sampling lines to catch pollutants without being obstructed;

it was also braced at the bottom to reduce vibration. Round

trips were made on working days in the morning during High

Traffic (HT) hours (8:00–9:30 h) and Low Traffic (LT) hours

(10:30–12:00 h) and during the Non-Working Days (NWD):

weekends and holidays.

G. Participants

We recruited 10 people (ages 27–41) by word of mouth and

contact with a local cycling network (8 males and 2 females).

Prior to study enrolment, subjects completed a preliminary

screening survey. Exclusion criteria included respiratory (in-

cluding asthma), cardiovascular, or other chronic illnesses, as

well as smoking (current or recent). We only enrolled those

who were already frequent riders in Sofia.

These factors were utilized to reduce the risk of harm

from unfamiliarity with streets in Sofia or inexperience with

riding, as well as adverse acute health effects. Further, the

participants were asked to restraint from alcohol and caffeine

for 48 hours before the tests. The 10 participants performed

round trips on the two stretches during the HT, LT, and

NWD.A certified pulmonologist (one of the coauthors) taught

the project participants how to identify their Heart Rate (HR)

[HB]/min using a pulse oximeter. In addition, the HR was

tracked during cycling by a smart wrist.

III. RESULTS

A. PM1 and PM2.5 concentrations from Mobile measurements

Table 1 shows the minimum, maximum, and median of PM1

and PM2.5 concentrations for the two examined stretches on

working days during HT. The concentrations for ultrafine par-

ticles with a diameter below 1 micron (PM1) were measured

in a range between 8 and 24 µg /m3 (mean 11 µg /m3) for

Stretch A and between 8 and 41 µg /m3 (mean 14 µg /m3)

for Stretch B. The concentrations for fine particles under 2.5

microns (PM2.5) are between 12 and 29 µg /m3 (mean 15 µg

/m3) for Stretch A and between 12 and 45 µg /m3 (mean 19

µg /m3) for Stretch B.

Table 2 are presented the PM1 and PM2.5 concentrations

for Stretch A and B on working days during LT. Measurements

from Stretch A show lower concentration levels both for PM1

and PM2.5. The concentrations for ultrafine particles with

diameter below 1 micron (PM1) was measured between 6 and

19 µg /m3 (mean 10 µg /m3) for Stretch A and between 5 and

34 µg /m3 (mean 12 µg /m3) for Stretch B. The concentrations

for fine particles under 2.5 microns (PM2.5) are between 10

and 24 µg /m3 (mean 13 µg /m3) for Stretch A and between

9 and 38 µg /m3 (mean 15 µg /m3) for Stretch B.

Table 3 illustrates the minimum, maximum, and median of

PM1 and PM2.5 concentrations for the two examined stretches

during weekends and holidays. Measurements for Stretch A
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TABLE I
PM1 AND PM2.5 CONCENTRATIONS FROM MOBILE MEASUREMENTS ON WORKING DAYS DURING HT

Routes PM1 PM2.5

min max mean min max mean

Stretch A 8 24 11 12 29 15

Stretch B 8 41 14 12 45 19

TABLE II
PM1 AND PM2.5 CONCENTRATIONS FROM MOBILE MEASUREMENTS ON WORKING DAYS DURING LT

Routes PM1 PM2.5

min max mean min max mean

Stretch A 6 19 10 10 24 13

Stretch B 5 34 12 9 38 15

TABLE III
PM1 AND PM2.5 CONCENTRATIONS FROM MOBILE MEASUREMENTS DURING WEEKENDS AND HOLIDAYS

Routes PM1 PM2.5

min max mean min max mean

Stretch A 3 7 4 4 11 7

Stretch B 3 8 4 5 11 7

show nearly the same lower concentration levels for PM1 and

PM2.5. The concentrations for PM1 are between 3 and 7 µg

/m3 (mean 4 µg /m3) for Stretch A and between 3 and 8 µg

/m3 (mean 4 µg /m3) for Stretch B. The concentrations for

PM2.5 are between 4 and 11 µg /m3 (mean 7 µg /m3) for

Stretch A and between 5 and 11 µg /m3 (mean 7 µg /m3) for

Stretch B.

Despite the fact that the dedicated cycling route is rather

open, the high volume of cars, buses, and trucks in this corridor

is the primary cause of elevated pollution concentrations. As

a result, PM2.5 concentrations were similar during weekends,

but with nearly 20% higher concentrations between the two

routes during working days.

B. Ventilation rate

To measure the Ventilation Rate (VR), we took measure-

ments of the Heart Rate (HR), oxygen saturation (SpO2),

and Respiratory Rate (RR) of each project participant. Each

parameter’s mean has a modest level of variability and the

final results for the VR are presented in Table 4. There were

no differences observed in these three factors on whether the

route was taken on a working day or a non-working day, as

they are not affected directly by traffic or different levels of

short-term air pollution exposure. The speed and denivelation

data are shown in the table were taken from the developed

software tool thanks to the Strava API integration.

Despite the same start and end points different distances

and Stretch A was shorter 3.8 km compared to 4.4 km of

Stretch B and was faster 15:52 min compared to 18:04 of

Stretch B. The values were rather constant during working

and non-working days. The dedicated cycling route had longer

straight corridors with fewer intersections and crossroads that

lead to higher maximum and average speeds. Also, Stretch B

has a higher denivelation - 15m compared to 3m in Stretch

A. All these data findings lead to an increased the VR of

the cyclists on Stretch B - 11.06 L/min, compared to 10.14

L/min for Stretch A.

Table 5 are shown the results of the cyclists’ inhalation

doze for PM1 and PM2.5. They are calculated based on the

mean value of PM exposure during the round trip, measured

by mobile sensors, together with the time needed to take it

and the VR for each cyclist.

Stretch B shows an increased inhalation as it takes a

longer time to complete the round trip, takes more effort,

and the cyclist is exposed to higher PM concentrations due

to vehicle exhausts. Even during the weekends when PM

concentrations were similar on the two routes - Stretch B

showed higher inhalation dozes due to the prolonged time

and higher ventilation rate (higher denivelation, higher average

speed).

The measurements for SpO2 and RR did not show any

particular short-term health effects. This was expected as par-

ticipants in the study, due to safety reasons, were non-smokers,

without chronic illnesses, and regular cyclists. This does not

mean that people with chronic illnesses and sensitivity to air

pollution might not receive some symptoms or irritations as

some studies observe [2], [3].

C. Rendering cycling routes and incorporating data from fixed

sensors

To demonstrate the technology for our fixed sensors that we

developed, in this study we are using Luftdaten fixed low-cost

sensors. It is a citizen science project in which the air stations

are adopted and maintained by citizens and situated on their

balconies. Sofia has a dense mesh of over 300 low-cost air
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TABLE IV
FIELD MEASUREMENTS

Stretch A Stretch B

VR (L/min) 10.14 11.06

HR (beats/min) 82.30 85.66

Denivelation gained (m) 3 15

Avg. Speed (km/h) 14.3 14.7

TABLE V
PM1 AND PM2.5 INHALATION DOZE DURING THE ROUNDS

Period Pollutant Stretch A (optimized) Stretch B (cycling lanes)

High Traffic PM1inh 29.74 46.45 (↑56%)

PM2.5inh 40.56 63.04 (↑55%)

Low Traffic PM1inh 27.04 39.82 (↑47%)

PM2.5inh 35.15 49.77 (↑42%)

Non-Working Days PM1inh 10.82 13.27 (↑23%)

PM2.5inh 18.93 23.23 (↑23%)

Fig. 4. Cycling route exposure from fixed sensors

quality stations from the Luftdaten network providing spatial

and temporal resolution for PM2.5 and PM10 concentrations.

On fig.4 can be seen the concentrations for stretch B during

LT where measurements from fixed sensors in a vicinity of

200m or closer to the route are applied on the stretch. The

rendered route shows exactly where the participants in the

survey have passed thanks to the gis integration of Strava

and Openstreetmap APIs. The black colored line means that

there is no fixed sensor in this part of the route that is closer

than 200m, while the green and yellow colored lines represent

the concentrations measured by the fixed sensors nearby. For

concentration values of PM2.5 between 0 and 12 - green color

is used, while yellow color stands for values of PM2.5 between

12 and 35. These color categories are inspired by the EPA’s air

quality index and are the same for visualizing the Aircasting

routes measured with the wearable sensors.

Thanks to Sofia’s dense mesh of low-cost sensors, 5 fixed

sensors are used for stretch A and 6 sensors for stretch B as

they pass the selection criteria. By comparing data from mobile

sensors, we investigated that (1) Luftdaten’s fixed sensors,

especially if not located exactly on the route, cannot find

ultralocal peaks in PM and failed to identify the zone with the

most heavy-traffic and PM concentration; and (2) the sensors

also cannot identify temporal exposure such as passing next

to a bus, a truck, or a moped, while mobile sensors detect it

very successfully. The main reason for these two findings is

that Luftdaten’s sensors are situated on quiet streets and are

not transmitting air quality data every second.

The authors suggest a more dense mesh of air quality

sensors on heavy-traffic roads in cities to mitigate the above-

mentioned issues. They could be attached or integrated next

to traffic lights or street lamps. This will bring accuracy in

quantifying PM exposure, especially in potentially hazardous

locations.

The created tool can dynamically change values for air

pollution and can render the same route in different time

frames and respectively different air pollution concentrations.

The software can find implementation for selecting pedestrian

routes as well, yet it will have more impact on finding bike

routes due to cyclists’ higher ventilation and often proximity

to vehicle exhaust.

IV. CONCLUSION AND FUTURE RESEARCH

This study presented the development of a software tool

that optimizes cycling paths based on algorithms that predict

the least harmful air pollutants. The algorithm is a new imple-

mentation of alternative routing and in particular the k-Shortest

Paths with Limited Overlap. It is based on experimental data

and equations that calculate the total inhaled dose of pollutants

by a cyclist. Together with this, in the study was evaluated

through two cycling routes: Stretch A - suggested by the newly

developed software; that goes through small streets in Sofia,

and Stretch B - suggested by navigation apps; that goes along

a designated bicycle lane. Ten cyclists are making round trips

on the two routes during 3 periods: (1) high traffic and (2)

low traffic on working days and (3) during non-working days.

Based on the data gathered in the study are calculated the

cyclists’ exposure and potential inhalation dose to PM1 and

PM2.5 pollution on the two routes.
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Exposure concentrations on bicycle lanes happened to be

higher than the optimized track’s exposure levels, especially

on working days. Even in cases when the mean concentrations

were nearly equal, the inhalation dose for the cyclist was

always greater on the bike lane route as it is longer in time and

distance, with higher denivelation, and requires more intensive

cycling. By choosing the optimized cycle track, the inhalation

dose of PM1 is reduced with 23% on non-working days to

56% (55% for PM2.5) during high traffic on working days.

The results show that there is an enhanced risk to the health

of cyclists using the studied bicycle paths during working days

when traffic-related pollutants.

The outcomes of this study and the developed tool are

useful to medical experts, cyclists, and pedestrians. They prove

that optimization of mobility and taking data-driven decisions

can reduce air pollution exposure. In addition, the research

implications can be useful to policymakers and environmen-

tal specialists. The results of this study build on previous

findings [33] that suggest that redesigning streets for low-

speed multimodal traffic without barriers is a more sustainable

and pragmatic approach than building cycling infrastructure

on high-traffic roadways. In the studied bicycle lanes, cyclist

exposure to PM was closely linked to vehicular traffic because

the study is not performed during the heating season and there

is a significant difference between low-traffic and high-traffic

tests. Bicycle lanes with no physical barriers between the

bicycle route and the road have higher exposure, a conclusion

which is found in another study [34]. Our findings contribute

to a better understanding of Sofia’s traffic-related pollution

issues and emphasize the importance of taking air quality

into account when developing and constructing cycle paths

in Bulgarian cities.

This study focused on the most problematic urban polluters

- fine and ultrafine PM. Further studies will be beneficial

in including data for other vehicle-related pollutants such as

black carbon and NO2 emissions. In addition, it is useful to

analyze the particulate matter from automotive emissions with

chemical analysis and further detect the various metals in PM.

The integration of more mobile and fixed sensors on high-

traffic roadways and using of the software tool from this study

will further improve the understanding of transport-related air

pollution and reduce exposure.
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