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Abstract—This paper aims to present a method of designing the
behavior of robotic swarms, emphasizing swarms of unmanned
aerial vehicles using bigraphs. The method’s primary goal is to
define a set of actions to be performed in subsequent moments by
the members of a swarm that lead to the completion of the given
task. In addition to formal definitions, an example use case is also
included to demonstrate how utilizing our method allows over-
coming typical difficulties related to swarm robotics engineering.
The example covers verifying non-functional requirements and
scaling a task both horizontally and vertically.

I. INTRODUCTION

R
OBOTIC swarm (SR) is a special case of multi-agent

system [8] (MAS), and as such have been the subject

of study for many years[10][9]. Beyond attributes typically

associated with MAS, such as agent’s independence, de-

centralized control, and the lack of access to information

about the global state of a system, they can be attributed to

features of real-world swarms[11][13]. These can be features

of both individual members of the swarm and the swarm as

a whole. The former group consists of the ability to interact

with the environment or other members of the swarm, local

perception capabilities, and relatively low cognitive capacity.

On the other hand, the features attributed to the swarm are

robustness, scalability, and flexibility. Finally, one aspect of

robotic swarms that is often emphasized is that their emergent

behavior is more complex than its members’ behavior alone.

From now on, by swarm behavior, we shall understand the

behavior of its members.

Current research results on robotic swarms can be catego-

rized by how they fit on multiple different axes[16][12]. Most

common are the size of a swarm, ability to communicate (one-

to-one, one-to-all, etc.), communication bandwidth, computa-

tional capabilities, or whether the swarm is homogeneous or

heterogeneous. There are also classifications not by attributes

of the swarm itself but whether it was designed with a top-

down or bottom-up approach[17].

In the literature on robot swarms, there is a clear tendency to

consider the goal posed to the swarm as a variant of tasks from

a predefined set [11][14][15]. Tasks that exhibit the highest

potential for practical application include moving in formation,

area coverage, rendezvous, and foraging.

Main difficulties in designing swarms of robots arise from

expectations that we do not have of ordinary multi-agent

systems. In particular, the low capabilities of a single el-

ement of the swarm and, consequently, the problems with

communication and control of the whole swarm[18]. Another

issue will be to define a level of automation[4] of a swarm

element. The more autonomous the swarm is expected to be,

the more difficult it becomes to self-control itself in real-time,

or the given task has to be less unpredictable. For highly

autonomous swarms, there is also the problem of collective

decision-making [19]. On the other hand, swarms that are

highly dependent on an external operator may become useless

in practice due to difficulties described in [18].

Existing methods for designing the behavior of a robot

swarm can be divided into those that try to find similarities

in the behavior of the designed swarm to the operating

mechanisms of systems well understood within other areas

of science and those that try to be universal. The for-

mer group consists of bio-inspired methods[25][26], physics-

inspired ones [27][28][29] (with the strong emphasis on par-

ticles repulsion/attraction interactions), and those that con-

siders members of the swarm as a dynamical system with

their knowledge modeled with graph theory[30]. The latter

group of methods for designing tries not to use analogies

to well-studied phenomena and instead proposes its schemes,

often with multiple stages[20][21][22]. We would also include

in this group methods that use specially designed abstract

mathematical structures. The most important of these would

be amorphous[23] and aggregated[24] computing due to their

resemblance to the concept of swarms.

Bigraphs[3] are formal structures that allow to model sys-

tems, in which spatial arrangement and interconnection of

elements play an important role. It is also feasible to define

the dynamics of a system within bigraphs framework. So far

they have been found useful in designing Internet of Things

[31][32] and computer networks [33]. The applicability of

bigraphs in the process of designing behavior of a multi-agent

system’s elements requires further research. Most of existing

works [34][35] focus merely on utilizing bigraphs to represent

a system, without taking under consideration how its elements

should operate to accomplish a given goal. These works [36]
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that include also this aspect of the design process do so with

an additional level of abstraction.

This work aims to present a method for designing swarm

behavior using bigraphs. It is a summary of work previously

presented in [2] and [1] extended with a formal definition

of the schedule of actions. Section II defines all the formal

structures together with how they can be used to develop a

swarm behavior performing a designer-defined task. Section

III presents a minimal example of a problem that can be solved

using the proposed method. It covers alternative scenarios for

executing the given task, verifying non-function requirements,

and scaling the task both horizontally and vertically. Section

IV is devoted to further direction of work related to the

development of the presented method.

The design method described further on does not impose

restrictions on the designed swarm members. Later in this

paper, we will consider swarms whose members are small

unmanned aerial vehicles (UAVs), called drones.

II. DESIGNING UAV SWARM BEHAVIOR

A. Assumptions and limitations of designed swarms

The following will define, in a condensed form, a method

for designing the behavior of elements of a multi-agent system

[2]. It allows the development of a manner in which a designer-

defined task can be completed successfully.

Developing a swarm behavior is a process of constructing a

schedule of actions (defined formally later in this paper) for all

members of the swarm. A schedule can be interpreted as a set

of operations or activities to be carried out at specific moments.

A schedule also indicates a role played by each member of

the swarm participating in any action. The designing process

begins with defining a task and an initial state of a system.

By system, we will understand all elements of the real world

that are relevant to the specified task. It is also necessary

to define all kinds of activities that may happen within the

system. An example of an activity can be a movement of

drones between areas or picking up an object. Activities may

involve multiple members of the swarm or its single member.

Within each activity, each participant may play a different role.

Both the initial state and the activities are described in with

bigraph notation. The next step is to define all states of the

system that are reachable from the initial state by performing

any combination of activities from the set defined earlier.

Tracking transition systems are used to describe both states

and activities, along with roles played in each of them. The

next objective is to find a sequence of activities that, when

performed, allow to transform the system from being in its

initial state into the desired state. To do this, a structure called

state space has been proposed, where each state is reduced to

a vertex (forgetting its bigraphical representation) of a directed

multigraph, and arcs between vertices denote an activity en-

abling a change from one state to the other. Additionally, each

arc has assigned a mission progress function which describes

relations between swarm elements participating in the activity

in a computationally inexpensive manner. Within this structure,

searching for a sequence of actions that allows accomplishing

the given task can be considered a problem of finding a walk

(in graph theory meaning) between two vertices. A method

for finding all walks of specified length has been developed

to solve this problem. The last step is to transform one of

the founded walks into a schedule of actions. Having such

a schedule, we can verify whether executing the given task

meets the non-functional requirements.

If we consider designing UAV behavior as a decision

process, then designing with our method can be regarded as

a level 7 automatic process according to the scale proposed

in [4]. This level of automation means that the designer may

leave the designing process to a specialized tool after providing

initial parameters.

Components of systems for which behavior can be designed

using this method can be divided into three categories: ele-

ments of the environment, passive objects and active objects.

Environmental objects can not initiate any action, and time-

lapse is irrelevant to them. An example of such elements may

be areas between which drones can travel or an object that can

be lifted by at most one drone. Passive objects can not initiate

any action, but the passage of time has to be considered for

these kinds of objects. An example of such an object can be an

item multiple drones can possess during task execution. The

last kind of system components we recognize are active objects

which can both initialize actions and time relevant to them

during a mission. Drones are an example of such objects. It is

assumed that every active object in a system can be controlled.

It means there are no active objects in the system that may act

unexpectedly. The final limitation is that the number of objects

(both active and passive) is constant during task execution.

Knowing the above, we can classify swarms for which

the behavior we will try to design as “set & forget“. If we

consider the execution of a task as a decision process, where

the decisions regarding whether and, if so, how to perform

actions not included in a schedule, then this process is level 8

or 9 on the autonomy scale mentioned earlier. Level 8 means

that a swarm executes a given task and gives feedback when

the operator requests it. Level 9 means that feedback is at the

discretion of the swarm performing a task.

B. Bigraphs

The primary formal tool utilised in our method are bigraphs

[3]. They allow for modeling ubiquitous computing with just

graphical notation.

Below, we define the key concepts necessary to understand

later parts of the paper. For more in dept introduction we refer

to [5].

A (concrete) bigraph over the signature (K, ar : K ³ N) is

defined as:

B = (VB ,EB , ctrlB , G
P
B , G

L
B) : I ³ O

where:

" VB - is a set of vertex identifiers;

" EB - is a set of hyperedges identifiers;

" ctrlB : VB ³ K - is a function assigning controls to

vertices;
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" GP
B , G

L
B - is a place graph GP

B and a link graph GL
B

comprising the bigraph B:

– GP
B = ïVB , ctrlB , prntBð : m ³ n - is the place

graph of bigraph B with m sites and n roots. Both m

and n are finite ordinals of the form x{0, 1, . . . , x2
1}. A function prntB : m®VB ³ VB ®n defines a

hierarchical relationship between vertices, sites and

roots. It is important to emphasize that the map prnt

defines a set of rooted trees.

– GL
B = ïVB ,EB , ctrlB , linkBð : X ³ Y - is the link

graph of bigraph B, with inner names X and outer

names Y . A link map linkB : X ® PB ³ EB ® Y

defines connections from vertices and inner names

to hyperedges and outer names of the link graph. A

set PB = {(v, i) | i * ar(ctrlB(v))} is the set of

ports of GL
B . Its elements (v, i) shall be interpreted

as ith port of vertex v.

" I = ïm,Xð and O = ïn, Y ð are the inner and outer

interface of the bigraph B.

We use ® to denote a union of sets assumed to be disjoint.

Dynamics of systems modeled with bigraphs can be ex-

pressed with reaction rules. In this paper we will use linear

parametric reaction rules proposed in [6], extended with

tracking. Formally this kind of a reaction rule is defined as:

r = (R : ïm, 'ð ³ ïn,Xð, R2 : ïm, 'ð ³ ïn,Xð, τ)

where:

" R - is a bigraph called redex of reaction rule r;

" R2 - is a bigraph called reactum of reaction rule r;

" τ : VR2 ³ VR - is a tracking map indicating which

vertices in redex correspond to which vertices in reactum.

If this function is partial, or if it is not a surjection,

then it means that as a result of action represented by

this reaction rule some of the elements either have been

created or disappeared.

For the purpose of this introduction we will just indicate that

applying a reaction rule means finding occurrences of the

redex in a target bigraph and replacing them with reactum.

Details of these operations are skipped in this paper.

C. Tracking transition system

Apart from defining actions (reaction rules) that may happen

in the system and specifying when preconditions for each of

them are satisfied (finding redexes), we need to answer the

following question regarding the dynamics of the system:

" Who participates in an action that transforms a system

state in a particular way?

" Which elements of a state resulting from the transforma-

tion are “residue“ of the state before the action?

To answer these questions, a structure called tracking transi-

tion system has been proposed in [2] and later refined in [1]. It

is an extension of the basic transition systems defined in [7].

Formally, a tracking transition system is a seven tuple

TTS = (Agt,Red, Lab,Apl, Par,Res, Tra) where:

" Agt - is a set of bigraphs;

" Red - is a set of redexes of reaction rules;

" Lab - is a set of labels of the reaction rules. They are

meant to distinguish different types of actions in the

system.

" Apl ¦ Agt×Lab - is an applicability relation. It indicates

which reaction rules can be applied from which bigraph;

" Par = {Vb ³ Vr | b * Agt, r * Red} - is a set of

participation functions. Each of them maps vertices in a

redex from Red to vertices in a bigraph from Agt. Every

function par * Par is injective.

" Res = {Vb1 ³ Vb2 | b1, b2 * Agt} - is a set

of residue functions. Each of them maps vertices in a

bigraph representing a state after an action to vertices

in a bigraph representing a state where the action has

happened;

" Tra ¦ Apl × Agt × Par × Res - a transition relation.

Elements of this set will hereafter be referred to as

“transitions“.

A tracking transition system can be interpreted as follows.

The set Agt represents the reachable states of the system after

performing any sequence of actions. At this stage, the time-

lapse for objects is not considered, so the actual set of possible

states might be smaller. Elements of Red can be viewed as

preconditions necessary to occur in the states for any action

to happen, modeled as a reaction rule. The binary relation

Apl allows marking which action ( Lab) can occur in which

state of the system (Agt). The set of functions Par makes

it possible to indicate which elements (vertices) of a state

play what role in an action (reaction rule) with particular

redex. Let us adopt the following convention, a state from

which an action may be performed will be called an input

state, while a state being the result of acting will be called

an output state. The set of functions Res allows mapping

elements of an output state corresponding to elements of an

input state. If such a function is partial, then not all output

state elements have the corresponding element in the input

state. Thus, these “untracked“ elements are new to the system.

If, on the other hand, such a function is not surjective, then

some of the elements in the input state are not existing in

the output state. Thus these elements have vanished from the

system. The set of transitions Tra utilizes the above elements

to describe feasible alterations in the system.

D. State space

Having a tracking transition system (TTS), we can indicate

roles in an action played by each element of an input state.

Still, we can not determine how participating in a single

activity affects the possibility of interacting with other system

elements in different actions. To overcome this, a structure

called state space has been proposed. It can be constructed

as a directed multigraph from a TTS, where each arc has

a mission progress function assigned to it. By mission, we

understand any course of actions made by a swarm, leading

to successful task completion.
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A state space of a system consisting of no objects and ns

states is a tuple:

SS = (S,E, L, I, C, T,Mf )

where subsequent tuple’s elements are as follows:

" S ¢ N - is a set of states of the modelled system. Each

state in the state space corresponds to exactly one element

of Agt in the TTS;

" E ¦ S × S - a multiset of arcs between states;

" L - a set of labels describing possible changes in the

system. Each label unambiguously indicate a single tran-

sition in the TTS. To determine the order in which actions

are evaluated another set is introduced H = {lt | l *
L, t * N};

" I ¢ N
2
1 × · · · × N

2
no

- is a set of state-at-time (SaT)

configurations. With this set it is possible to define order

of objects (both active and passive) as well as the moment

of time in which each of them is;

" C ¢ (I×2H)*{0} - a set of mission courses. Consists of

the current SaT configuration and subsequent actions that

have led to it. Element 0 indicates an unfeasible course of

a mission and will be used as to mark states of the system

that are unreachable by expanding an existing course of

a mission;

" T = {fi : C × N ³ C | i * N} * {fnull} - is a set of

mission progress functions. Each of these functions takes

as an argument the current course of a mission and the

number of actions currently evaluated. A set Ti,j ¢ T

consist of all mission progress functions from ith state to

the jth state. Function fnull returns 0 (unfeasible course

of a mission) regardless of input;

" Mf : E ³ T - a bijection assigning mission progress

functions to arcs.

A walk in a state space from the state recognized as initial

to one of the satisfying final states is behavior policy. An

algorithm for finding all walks of specified length, in a state

space has been presented in [2]. Below are defined its main

components:

" Kt
s =

�

i=1

ci ci * C - a finite sequence of mission

courses of a length t to a state s. A function nK :
Kt

s ³ N returns the number of elements in the provided

sequence;

" F t
i,j =

�

f*Ti,j

f(x, t) i, j * {0, · · · , ns 2 1}, x * C -

a finite sequence whose elements are mission progress

functions from ith state to the jth state. Each of these

functions takes two arguments x and t. Only a value of

t is know at the moment of constructing a sequence.

" M
t
K =

�

Kt
0 · · · Kt

ns21

"

" M
t
F =

þ

ø

F t
0,0 · · · F t

0,(ns21)

· · · · · · · · ·
F t
(ns21),0 · · · F t

(ns21),(ns21)

ù

û

Additionally, two operations are defined:

" Kt
s ç F

t
i,j =

�

f*F t
i,j

nK(Kt
s)

�

i=1

f(ci, t) - a convolution of

sequences;

" M
t+1
K = M

t
K ·M

t
F - a multiplication of a matrix M

t
K by

a matrix M
t
F . Elements of the result matrix are calculated

according to the formula:

Kt+1
j =

ns21
�

i=0

Kt
i ç F

t
i,j

In order to find all behavior policies of a specified length t

it necessary to perform just as many multiplications Mt
K ·M

t
F ,

with each multiplication the t parameter will be incremented

and the matrix M
t
K will be the result of the previous product.

The number of steps required to find all walks of a specified

length is dependent on four parameters:

" the length of sought walks - l;

" a sum of all mission progress functions - nf ;

" the number of states in a system - ns;

" a sum of all mission courses in a matrix M
0
K - nk;

and it will be denoted as t(l)(ns, nf , nk).
A set of functions asymptotically bounded above by a

function g(n) is defined as:

O(g(n)) = {f(n) | #c, n0"n > n0 0 f f(n) f c · g(n)}

Using the above notations, the number of steps required to find

all walks of a specified length is bounded above asymptotically

by l · n2
s + nk ·

(nf )
l+1

21
nf21 . This in turn can be written as:

t(l)(ns, nf , nc) * O(l · n2
s + nk ·

(nf )
l+1 2 1

nf 2 1
)

E. Schedule of actions

The last component required to define behavior for swarm

elements is a schedule of actions for every active object. An

algorithm verifying the correctness of a behavior policy has

been described in [1]. It returns a set of ordered elements,

each comprising three items. The first is a system state at a

specified moment. The state is in the form of a bigraph. The

second component is a function assigning unique identifiers

to every vertex of the bigraph. The last component is a SaT

configuration of the state. Knowing that every task element

(whether this being an environmental element or an object)

is distinguishable with a unique identifier, we want to define

how each of these elements will behave. Unique identifiers for

task elements are drawn from an infinite set U .

Formally, a schedule of actions is a triple:

" A binary relation Assignment : U×(T×Lab×N) which

assigns mission progress functions, a label of an activity

represented by that function and a moment of time to

mission elements. The time here represents a moment

the activity shall began to be executed.

" A function role : U × (T × Lab × N) ³ Vr assigning

roles to task elements participating in an activity. Roles

are indicated by vertices of the redex in a reaction rule
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Fig. 1. Initial state of the system.

corresponding to a mission progress function provided as

an argument.

" A function duration : T ³ N which assigns how long

does each of the activities take time.

Although, the main goal of the schedule of actions is to

define how each element of a swarm shall behave during a

mission, it is also possible to apply this structure to verify

non-functional requirements.

III. RESULTS

The structures defined in Section II can be used to design

the behavior of members of a UAV swarm. A schedule of

actions allows to complete a task (hence fulfill functional

requirements) and makes it possible to verify if non-functional

requirements are also satisfied.

This chapter aims to demonstrate a simple example of

practical usage of the structures described in this paper. To

do this, the following scenario will be used. Let us consider a

UAV swarm consisting of two drones whose goal is to move

between two areas, namely area A and B. Assume they can

do this in two ways. The first one allows each of the drones

to move independently; this method of movement is power-

efficient (it is assumed that moving this way for an hour

consumes 20Wh) and takes two units of time for a drone to

complete a transition from an area A to an area B. Internally,

each drone is responsible for both obstacle detection and

avoiding and determining the trajectory of a movement. The

second way of moving between the areas requires cooperation.

It is more energy-consuming (here, assume that each drone

moving this method is a 50W device), but it is twice as fast,

which means it requires only one unit of time for both drones

to move from an area A to an area B. Internally, we can think

of this kind of movement as an activity where one of the

drones follows the other, but each is responsible for different

functions during the movement. By functions, we understand

things like obstacle detection and avoidance and determine

the trajectory of the flight. The first kind of transition will be

denoted as r1, while the second as r2. The unit of time in

this example is to be understood as 6 minutes. Reaction rules

representing both kinds of transitions are listed in Table I. The

initial state of the system is depicted in Figure 1. Vertices with

control U represent drones, while those with control A and B

represent areas.

Figure 2 presents a graphical form of a tracking transition

system for the system described above. Circles denote states of

the system. Every arc represents a single transition (a possible

action) between states. Types of actions (either r1 or r2) along

with functions par and res are placed inside each arc. There

TABLE I
REACTION RULES FOR TWO KINDS OF DRONES MOVEMENT. BOTH OF THE

τ FUNCTIONS ARE IDENTITIES.

Reaction rule Graphical notation

r1

r2

Fig. 2. A graphical form of the TTS for the example system.

are three possible states of the system. First one (B0) is equal

to the bigraph from Figure 1. B1 represents a situation where

one of the drones has already moved from A to B. There are

two transitions between B0 and B1 because any of the drones

can move between the areas. Which one actually participated

in the activity is indicated by the functions par and res. The

B2 state is equal to the situation where both drones are in the

B area. Knowing that, there is only one transition between the

state B1 to the state B2 because regardless of which one of

the drones has previously moved, only the second one can

participate in r1 activity. If we differentiate functions par

and res between the same states, only by their domains and

codomains, rather than actual mappings, then there can only

be one transition from the state B0 to B2 representing an

execution of r2 activity.

Figure 3 shows a state space transformed from TTS in

Figure 2. Only drones are classified as objects in the task, so

mission mission courses (elements of the set C) comprise of

tuples of pairs. Mission progress functions definitions are listed

below. A convention was adopted that each function takes the

form of fx(c, t) where c is a current mission course, and t

is the length of the course (number of included activities). A

mission course can either be of the form [ï(a, x), (b, y)ð ,H2] or

0. In the first case a and b are objects identifiers in a SaT, while

x and y are moments of time these objects are at. Knowing

this, each subsequent mission progress function will transform

a given course of the mission as follows:
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Fig. 3. A state space transformed from the TTS in Figure 2.

1)

�

�

ï(b, y), (a, x+ 2)ð ,H2 * {r11t+1}
"

c ;= 0

0 c = 0

2)

�

�

ï(a, x), (b, y + 2)ð ,H2 * {r12t+1}
"

c ;= 0

0 c = 0

3)

�

�

ï(a, x+ 1), (b, y + 1)ð ,H2 * {r23t+1}
"

c ;= 0 ' x = y

0 c = 0 ( x ;= y

4)

�

�

ï(b, y), (a, x+ 2)ð ,H2 * {r14t+1}
"

c ;= 0

0 c = 0

A permutation of SaT components depends on the order

of a bigraph’s vertices that correspond to task objects, and

it derives directly from function res and par. Incrementing

x and y values results from the assumptions taken about the

time needed for r1 and r2 activities to be completed. The set

H
2 represents a currently constructed walk in the state space.

Having all mission progress functions defined we can pro-

ceed to constructing a behavior policy. Assuming that the task

can only be started from the state denoted as 0 in Figure 2 and

both drones commence the task execution at the same time (let

us denote this moment as 0) the matrix M
0
K is of the form:

M
0
K =

�

[ï(1, 0), (2, 0)ð, '] 0 0
"

Based on the state space in Figure 3 the matrix M
t
F takes the

form:

M
t
F =

þ

ø

fnull f1 + f2 f3
fnull fnull f4
fnull fnull fnull

ù

û

Multiplying the above matrices we get all possible behavior

policies for drones. Successive M
t
K matrices are as follows:

M
1
K = M

0
K ·M

0
F

M
1
K =

þ

ø

0
�

ï(2, 0), (1, 2)ð, {r111}
"

+
�

ï(1, 0), (2, 2)ð, {r121}
"

�

ï(1, 1), (2, 1)ð, {r231}
"

ù

û

º

[ ]º denotes the transpose of a matrix [ ].

M
2
K = M

1
K ·M

1
F =

þ

ø

0
0

�

ï(1, 2), (2, 2)ð, {r111, r1
4
2}
"

+
�

ï(2, 2), (1, 2)ð, {r121, r1
4
2}
"

ù

û

º

Time

1 2 3

Area A - UI:1

f1:r1:0

f4:r1:0

Area B - UI:4

f1:r1:2

f4:r1:2

Drone 1 - UI:2 f1:r1:1

Drone 2 - UI:3 f4:r1:1

Fig. 4. A schedule of actions for all task elements based on the walk 0
f1
−−→

1
f4
−−→ 2. Areas A and B, being elements of the environment, can participate

in multiple activities concurrently. Colors indicate different mission progress
functions (activities). The text inside inform about a mission progress function,
type of an activity it corresponds to and a role an element plays in the activity.

M
1
K matrix indicates there are two walks leading to the state

1 of the length 1. There there is also a single walk to the state

2 of the same length. The matrix M
2
K shows there are two

walks to the state 2 of the length 2.

Having behavior policies, it is now possible to construct a

schedule of actions for swarm elements. Using the algorithm

described in [1] one can check that all found behavior policies

produce a valid schedule. Figure 4 shows a schedule of actions

from a walk of the form 0
f1
2³ 1

f4
2³ 2. The formal definition

of the same schedule is as follows:

" Assignment =

ù

ü

ú

ü

û

(1, (f1, r1, 0)), (1, (f4, r1, 0)),

(2, (f1, r1, 0)), (2, (f4, r1, 0)),

(3, (f1, r1, 0)), (4, (f4, r1, 0))

ü

ü

ý

ü

þ

" role =

ù

ü

ú

ü

û

((1, (f1, r1, 0)), 0), ((1, (f4, r1, 0)), 0),

((4, (f1, r1, 0)), 2), ((4, (f4, r1, 0)), 2),

((2, (f1, r1, 0)), 1), ((3, (f4, r1, 0)), 1)

ü

ü

ý

ü

þ

" duration = {(f1, 2), (f4, 2)}

The developed framework allows scaling a task both hori-

zontally and vertically. Scaling a task horizontally is expanding

the current task by including more elements. For example,

scaling the example covered in this section horizontally can

increase the number of drones. To modify a task this way, the

designer has to change the system’s initial state. This requires

a reconstruction of the tracking transition system and the state

space. Hence, any modifications of this kind are very intrusive

to the existing model because it requires a change in a structure

that every other relies on. Vertical scaling is expanding a

task by new functional requirements or additional stages. It

is significantly less intrusive to an already constructed model

because it does not imply changes to current structures. A new
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Algorithm 1 Finding the moment of last finished action

Require: assignment; duration
1: current_max± 0;

2: unchecked = assignment;

3: while unchecked ;= ' do

4: u, (fun, act, start)± unchecked.P ick

5: req_time± duration.F ind(fun)
6: if current_max < start+ req_time then

7: current_max = start+ req_time;

8: end if

9: end while

10: return current_max;

stage may be treated as a new task starting where the previous

one has ended, both in terms of bigraph representation of the

initial state and the SaT configuration in the matrix M
0
K . An

example of vertical scaling of the task from this chapter can

consist of requiring drones to return to the area A.

The last aspect of behavior designing that our framework

covers is verifying non-functional requirements. While ver-

ification of functional requirements comes down to finding

a certain bigraph in a TTS, verification of non-functional

requirements is more complex. It is mainly because such veri-

fication depends on the insight how system changes internally

while the task is executed. This implies that the verification

can only be performed after a schedule of actions is available.

For the task in this chapter, two non-functional requirements

will be considered. The first one limits the time it can take

to complete the task to 8 minutes. Whether this requirement

is satisfied can be verified using the Assignment relation

and the duration function, both components of a schedule

of actions. Algorithm 1 shows how both structures can be

utilized to verify the non-function requirement. It calculates

the moment when each activity ends and chooses the latest

one. This moment is later converted from abstract units to time

in the real world. In this example, one unit of time is equal to

6 minutes. The execution of the task according to the schedule

of activities in Figure 4 takes two units of time. It means that

the last activity will be finished twelve minutes after the start

of the task, which means that the walk 0
f1
2³ 1

f4
2³ 2 does not

produce a schedule satisfying this non-functional requirement.

A fix might be to use a schedule based on another behavior

policy and verify if it satisfies the requirement.

Another example of non-functional requirement regards

staying within power source capacity during a mission. Let

us assume that each drone is powered with a 4.5 Wh battery.

We can use role and a higher-order function that transforms

this function to a value representing the maximum energy

consumption by any task element during a mission. The

mention higher-order function can be of the form:

f(role) = max ç power(role)

where:

" power is a higher-order function that assigns power

consumption to each task element (represented by their

unique identifiers). It is important to remember that not

all elements participating in an activity use energy. For

example areas between which drones are moving do not

consumes energy during that process. So it is not only

the label of an activity that indicates the power usage

but also the role played by an element participating in it.

A role is indicated by a vertex in the redex of a reaction

rule representing an activity. A function calculating power

usage for each task element is defined as a set of pairs

(u, p), with u being a unique identifier of a task element

and p being a power usage during a whole mission. This

function is of the form:
ù

ú

û

(u, p) | p =
�

((u,(f,a,t)),v)*role

cons(a, v)

ü

ý

þ

The cons function calculates energy consumption in watt-

hours given a type of an activity and a role in it:

cons(a, v) =

ù

ü

ú

ü

û

20 · 0.2 if a = r1 ' v = 2

50 · 0.1 if a = r2 ' (v = 1 ( v = 2)

0 in other cases

For example, a drone participating in r1 activity for an

hour uses 20Wh. After adjusting for a fact that a single

transition between a pair of areas A and B takes 2 units

of time (12 minutes = 0.2 hour), energy consumption of

that single transition is equal to 20 · 0.2 = 4 Wh. A role

of element participating in an activity is checked against

set of vertices indicating drones. The vertex identifier of

a drone in r1 activity denoted with reaction rule from

Table I is 2, hence the condition v = 2.

" max : (U ³ N) ³ N is a higher-order function

that returns maximum value in codomain of the input

function.

For the example covered in this section, function power

takes the following form:

power = {(1, 0), (2, 4), (3, 4), (4, 0)}

It says that task elements with unique identifiers 1 and 4

do not use any energy, while elements with identifiers 2 and

4 use 4Wh during the whole mission.

IV. CONCLUSIONS

Designing a behavior of robotic swarms is an iterative

process, where subsequent iterations consider the designed

behavior with a higher level of detail. This paper presents a

framework that enables design of behavior for a UAV swarm

members within a single iteration. It is highly automated and

enables leaving the designing process to a specialized tool

after providing initial task parameters and a swarm. It takes

into account verification of both functional and non-functional

requirements, as well as scaling an existing task vertically and

horizontally.

Practical limitations of the described method come down

to the computational capacity and complexity of the modeled

system. The time needed for developing behavior for elements
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of a system consisting of thousands of states and a few

dozens of thousands of transitions is in the order of minutes.

It has to be emphasized that even for such systems, dozens

of gigabytes of available memory are required. The most

significant limitation of the modeled tasks is the lack of active

objects that can not be fully controlled, such as humans.

There are three directions for further developing the method

described in this article. The first one is by developing a

high-quality tool allowing for the convenient development

of schedules of actions for system elements. The currently

available software shall be regarded as a proof of concept.

The second direction is to improve the efficiency of methods

in the behavior designing process. As was already mentioned,

a relatively small system can exceed the capabilities of a

modern desktop computer. There are currently intense studies

on algorithms for bigraphs matching problems, which may

further accelerate sub-processes in the framework. The last

direction to improve is to extend the method to allow active

objects not fully controlled in the system or to enable a

variable number of objects (both active and passive) during

a mission.
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