
Towards Automatic Facility Layout Design Using

Reinforcement Learning

Hikaru Ikeda, Hiroyuki Nakagawa, Tatsuhiro Tsuchiya

Graduate School of Information Science and Technology

Osaka University, Japan

{h-ikeda, nakagawa, t-tutiya}@ist.osaka-u.ac.jp

Abstract—The accuracy and perfection of layout designing
significantly depend on the designer’s ability. Quick and near-
optimal designs are very difficult to create. In this study, we
propose an automatic design mechanism that can more easily
design layouts for various unit groups and sites using reinforce-
ment learning. Specifically, we devised a mechanism to deploy
units to be able to fill the largest rectangular space in the current
site. We aim to successfully deploy given units within a given
site by filling a part of the site. We apply the mechanism to
the three sets of units in benchmark problems. The performance
was evaluated by changing the learning parameters and iteration
count. Consequently, it was possible to produce a layout that
successfully deployed units within a given one-floor site.

Index Terms—reinforcement learning, machine learning, layout
design, facility layout problem

I. INTRODUCTION

THE FACILITY layout problem (FLP) [1], [2] is an

optimization problem of deploying equipment and ma-

chines in a facility. The solution to this problem depends

on the designer’s ability. Therefore, various methods and

procedures have been proposed to solve the FLP. For example,

Genetic Algorithm (GA), Genetic Programming (GP), and

deep learning are used. In this study, we propose a layout

design support mechanism using reinforcement learning. Re-

inforcement learning is a machine learning method in which

learning is performed without training data. An agent learns

through trial and error. It makes it possible to obtain layouts

for different conditions from training ones. We make learning

agent possible to create a layout in various environment

by predetermining the maximum layout area, and generating

layouts for the sites that are less than that. The object of this

study is to clarify whether reinforcement learning is effective

for solving the FLP.

The structure of this paper proceeds as follows. Section 2

explains the layout design, current problems, and reinforce-

ment learning as the background of this study. Section 3

explains the layout design mechanism using reinforcement

learning. Section 4 describes the results of the experiments

conducted to demonstrate the effectiveness of the proposed

mechanism and performance. Section 5 describes the discus-

sion based on the experiments presented in Section 4. Section

6 describes the prospects, such as the problems found and

future issues, and Section 7 concludes the paper.

II. BACKGROUND

A. Layout design

The FLP is a well studied combinatorial optimization prob-

lem which arises in a variety of problems such as layout

design of the deployment and flow lines of equipment, ma-

terials, parts, work-in-process, workers, circuit board design,

warehouses, backboard wiring problems [3]. An efficient and

rational layout is desirable for the layout design process. The

purpose of layout design is to obtain a layout that is close to

optimal under the specified conditions.

Facility layout design has been studied for a long time [4].

Many of them use GA [5] and GP [6]. GA is a programming

technique which forms its basis from the biological evolution.

GA uses the principles of selection and evolution to produce

several solutions to a given problem. GP is considered to be

a variant of GA, and used to evolve abstractions of knowl-

edge, like mathematical expressions or rule-based systems.

Venkatesh and Jim [7] use GA to reduce the sum of the product

of the three factors of material handling cost, which are: the

volume of material handling (frequency of journeys); the cost

of material handling, and the distance travelled. José et al. [8]

introduced biased random-key GA for the unequal area facility

layout problem where a set of rectangular facilities with

given area requirements has to be placed, without overlapping,

on a rectangular floor space. The role of GA is to evolve

the encoded parameters that represent the facility placement

sequence, the vector of facility aspect ratios, and the position

of the first facility. Stanislas [9] introduced to apply AI to

floor plans analysis and generation. His ultimate goal is three-

fold: (1) to generate floor plans. (2) to qualify floor plans. (3)

to allow users to browse through generated design options.

He have chosen nested Generative Adversarial Neural Net-

works or GANs. Luisa et al. [10] introduced Firefly algorithm

(FA), which was designed to solve continuous optimization

problems. From the map of the layout that contains the (x,

y) coordinates corresponding to the location of each of the

nodes or workstations that are distributed on the plant, and

paths between nodes are defined, the system solves layout

problem as traveling salesman problem (TSP). Jing et al.

[11] introduced the ant colony optimization (ACO) algorithm,

which is a bio-inspired optimization algorithm based on the

behavior of natural ants that succeed in finding the shortest

Communication Papers of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 11–20

DOI: 10.15439/2022F25

ISSN 2300-5963 ACSIS, Vol. 32

©2022, PTI 11



paths from their nest to food sources by communicating

via pheromone trails. Singh et al. [12] introduced a layout

generating method using the space-filling curve. The space-

filling curve [13] describes plane spaces based on the trajectory

of an individual curve. The layout was created by allocating

the required area based on the space-filling curve of the site.

In these current layout design, the techniques and methods are

not standardized.

B. Reinforcement learning

Reinforcement learning [14] is a machine learning method

that implement optimal system control through trial and error

by the system itself. Machine learning methods are generally

classified into five types: supervised learning, unsupervised

learning, self-supervised learning, semi-supervised learning,

and reinforcement learning. While supervised, unsupervised

self-supervised and semi-supervised learning require training

data for learning, reinforcement learning obtain the data gen-

erated from its own experience. A reinforcement learning

program developer creates a high learning efficiency model

instead of preparing learning data. An agent in reinforcement

learning learns the behavior to maximize the score set for the

objective in an environment.

Reinforcement learning uses the following concepts.

• agent: subject of learning.

• environment: virtual space in which the agent acts.

• state: situation which the agent is located.

• action: what the agent does in a state.

• reward: value obtained by an action of the agent.

• return: sum of rewards that can be earned in the future.

• policy: guidelines for choosing actions.

• episode: the entire sequence of learning.

• trial: a learning step of an episode.

• action-value function: a function that represents the value

of actions in the current state.

In reinforcement learning, rewards and returns are similar but

different concepts. Reward is the invariant value given as a

score for an action that causes a transition to the next state.

Return, on the other hand, is the expected total value of the

reward that will be finally obtained. In reinforcement learning,

an agent is created that does not simply select an action with

a large immediate reward but evolves to choose the action

toward the one with the highest return. Fig. 1 shows a flow of

reinforcement learning. The agent acts according to the policy

in the environment. This action causes a transition from the

current state to the next state. The reward is obtained based

on the results of the action. The learning proceeds by updating

the action-value function [15]and changing the state based on

this reward. Returns is calculated by rewards and action-value

function is calculated by returns. The agent continues the trial

several times and creates an episode. The series of actions

follow the Markov decision process [16]. The Markov decision

process has the characteristic that the probability distribution

of the future state depends only on the current state and not

on all past states. This is called the Markov property.

Fig. 1. Flow of reinforcement learning.

There are three main learning methods for reinforcement

learning: dynamic programming (DP) method [17], Monte

Carlo (MC) method [18], and time difference (TD) method

[19]. The DP method is a method of obtaining optimal behav-

ior by solving the Bellman equation when each parameter of

the system is known. The MC method was used to obtain the

optimal behavior from the real reward obtained by repeating

the trial. The TD method combines DP and MC methods to

obtain the optimal behavior by solving the Bellman equation

[20], [21] from the obtained reward. Currently, many learning

methods have been developed based on these three methods.

For example, DQN [22], SARSA [23], SAC [24] and Policy

Gradients [25]. In particular, DQN using the TD method is

currently a major part of reinforcement learning [14].

The Bellman equation is expressed as below:

V (St) = r(St+1) + µV (st+1) (1)

• St: t-th states.

• V(St): return in St,

• r(St+1): reward obtained when transitioning to state St+1

• µ: discount factor

The return is expressed by the obtained reward in the current

state and the return in the future state. This means the sum of

the discounted rewards from all future states until the end of

the trial. The discount factor µ is used to express the influence

on the return and is set from 0 to 1. The closer the value is

to 0, the less is the influence on the past states.

This Bellman equation is the basis of many reinforcement

learning methods, and the above mentioned three methods can

also be expressed using this equation.

Several studies have been conducted on reinforcement learn-

ing and space control, including layout problems. Xinhan et

al. [26] introduced a method of searching for an appropriate

arrangement while moving furniture in a room using a deep

Q-Network (DQN) [27]. While this method can be arranged

so as not to interfere with the function of the room, it can be

arranged according to any policy. However it can only learn

one piece of furniture at a time, which means that it is not

possible to assume the arrangement of multiple units. Matthias

et al. [28] study the layout for four functional units next to

the logistic lane where the material is transported by vehicles

using reinforcement learning. Their layout is generated to

12 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



be optimized regarding a single planning objective, i.e., the

transportation time. Richa et al [29] introduced reinforcement

learning framework for selecting and sequencing containers to

load onto ships in ports. The goal is to minimize the number

of crane movements required to load a given ship. We can

regard the problem as an assignment problem in which the

order of assignments is important and therefore the reward

is dependent of the order. Azalia et al [31] introduced a

new graph placement method based on reinforcement learning,

and demonstrate state-of-the-art results on chip floorplanning.

They show that their method can generate chip floorplans

that are comparable or superior to human experts in under

six hours, whereas humans take months to produce accept-

able floorplans for modern accelerators. Ruizhen et al. [30]

introduced the transport-and-pack (TAP) problem, a frequently

encountered instance of real-world packing. They developed a

neural optimization solution based on reinforcement learning.

Given an initial spatial configuration of boxes, they seek an

efficient method to iteratively transport and pack the boxes

compactly into a target container. Xinhan et al. [32] explore

the interior graphics scenes design task as a Markov decision

process, which is solved by deep reinforcement learning.

Their goal is to generate an accurate layout for the furniture

in the indoor graphics scenes simulation. Peter et al. [33]

described the recent surge of research interest in Artificial

Intelligence. They regard machine learning techniques includ-

ing reinforcement learning as the most promising approach to

facility layout research. López et al. [34] developed a virtual

reality application that creates a production line for electric

drills in a virtual space using deep reinforcement learning.

Their PCG method can reduce the resources required for

development and can personalize the 3-Dimentional virtual

environments. Amine et al. [35] developed a Mixed Integer

Programming (MIP) robust model for a form of Multi-floor

layout problem. In the experiment, they created facility layouts

reflecting the relationship between the cellar containing main

storages and upper floors in which departments will be located

in predetermined locations.

III. THE PROPOSED MECHANISM

We propose a layout-deployment mechanism using a rein-

forcement learning technique to deploy given units within a

given site as a solution for FLP. An agent in our mechanism

arranges the units on a flat site and proposes an efficient layout.

This section explains the specific environment settings and

algorithms of the proposed mechanism.

A. The mechanism specifications

Our mechanism assumes the following constraints.

1) Each functional space of the facility is modeled as a

unit.

2) All of the units are represented as rectangles. In this

study, a three-dimensional structure is not considered,

that is, only one-floor layouts are considered.

3) The condition of the site is managed as shown in Fig.

2. Let the upper left block be (0, 0) and associate the

Fig. 2. Unit deployment.

Exampleÿ
Maximum areaÿ5*4
Deployable areaÿ4*3
Unit sizeÿ1*1~5*4
Remaining areaÿ14/20

�ÿgÝhd

Fig. 3. An example site setting.

two-dimensional array with the block whose right and

bottom directions are positive.

4) If the width and the depth of a unit are different, we

should consider a 90-degree-rotated deployment.

B. Layout design mechanism

Site setting

As shown in Fig. 2, the top-left block of the site is the

origin, the rightward direction is the x-axis plus direction, and

the downward direction is the y-axis plus direction. The site

is managed as a two-dimensional array of integers, which is

assigned as zero when a unit is not deployed on it. When the

agent deployed a unit, the array value of the corresponding

location was updated to the number of units deployed. In

the layout method, the agent can only create a layout that

matches the site size initially set. In this mechanism, we set

the maximum depth and width of the site, separately from the

depth and width of the site used for layout. Since the states

are determined based on remaining area in the maximum site,

the agent can use the learning results for sites of other sizes.

In Fig. 3, the entire grid is the maximum extent of the site,

and the maximum area minus the gray area is the area used

for the layout.

Deployment mechanism

Unlike Go or Shogi, it is difficult to determine the placement

of units on a site because there are various sizes of units.

To solve this problem, a starting point was introduced. The

starting point is set according to the current conditions of the

site, and the units are deployed based on the starting point.

The agent searches the site and defines the next starting point

as the point that forms the largest rectangle with no units

HIKARU IKEDA ET AL.: TOWARDS AUTOMATIC FACILITY LAYOUT DESIGN USING REINFORCEMENT LEARNING 13



Fig. 4. Movement of the start point.

located. Fig. 4 shows an example of the starting point change.

The first starting point was set to the origin. The dark blue

area is already deployed, and the pale blue area is empty. In

Fig. 4 the block at (0,2) is chosen as the next starting point.

Learning process

The problem to be dealt with in this study is the successful

deployment of units within a given site. It may be difficult to

completely evaluate the quality of unit deployment deployed

in the middle of the trial. Therefore, the MC method, which

allows learning to proceed by trying to achieve the end state

and then evaluating each arrangement, is used in this study.

The MC method requires longer time for learning but can

generate a reliable solution. From the same reason, the MC

method was also used in Mahjong [36], Chess [37], Shogi

[38], and Go [39]. Since these game agents must evaluate

solutions in tree structures, they use MC trees [40]. In our

study, a table of action-value-function (Fig. 5) is created first.

This function is called the action-value table and managed as

a two-dimensional array, as shown in Fig. 5. One index of

the array is state which is represented by the size and the

maximum rectangular in the remaining area. Another index is

action which is represented by the size of the unit that fits the

site. All the values in the table were initialized to zero. The

value in action-value-function is expressed as the average of

the return in the state obtained in each trial.

One trial involved creating a layout for a set of units. The

unit sets are randomly generated with the same number as the

size of the site. The ÷-greedy method [41], [42] was used to se-

lect the unit. The agent selects a random unit with a probability

of ÷ (Exploration) and selects a unit with the highest action-

value with a probability of 1 - ÷ (Exploitation). The ÷-greedy

method can choose unlearned actions in exploration that will

never choose in exploitation. This method is commonly used

with reinforcement learning. When selecting a unit, the agents

consider whether units with different vertical and horizontal

lengths can be arranged as units with interchanged lengths.

Fig. 6 shows the calculation of return. When the mechanism

finds that none of the units can be deployed, the mechanism

finishes the current trial and regards the number of blocks

located by units as the reward value of the trial (Reward N in

Fig. 6). The score of the final state N is 0 (Score N in Fig.

6). Return was calculated using these values and the Bellman

equation. The values of Score N-1 in Fig. 6 (return at state N)

Fig. 5. Action-value table.

¹³²~�ÿ

ûûûûûû

Reward N:RReward N-1:0Reward K+1:0Reward K:0

Final state N

Score N=0

Score N-1

=R+³*Score N

=R

State N-1State K+1State K

Score K+1

=0+³*Score K+2

=³*Score K+2

Score K

=0+³*Score K+1

=³*Score K+1

(=³2*Score K+2)

g�ök {zq»yý²Ý�þ¹upqNx ÷w� xy
» ÿ}¼~w~Þ{~ökw~yý² xwv�x»
ök ~¹³²��ø÷³ ³ ²}tv

¹³² yý ³ ¹³²
xèu¼g�ök{¹¹¿üø~ök{U{sv�ÿu¼»
}~ök{¹Ì×²Ìs�x}{ß¹¼»yýx}~Ywßv
»yý{¸sv¹³²|�ÿu¼vt»

Fig. 6. Calculation of learning value.

were calculated as the sum of the reward N and the product

of the score N and discount factor µ. The values of Score

K in Fig. 6 (return at state K) are calculated as the sum of

the reward K+1 and the product of the score K+1 and the

discount factor µ. Returns are updated by returning to the first

state in the trial. According to the above process, the return

value of a trial is calculated using the following formula:

Scorek = Rk+1 + µ ∗ Scorek+1

= µN−k−1 ∗RN

(2)

• N: Number of deployed units until final state.

• Scorek: the return in k-th state.

• RN : the reward in k-th state.

• µ: discount factor.

Each value in the action-value table (Fig. 5) is calculated by

the average of each return. The agent updates the action-value

table for each trial and adjust the unit selection criteria.

learning mechanism

Fig. 7 shows the flow of one trial in an episode. First, the

agent generates a set of units. Second, the agent selects a

unit using ÷-greedy method. Third, the agent deploys the unit

based on the present starting point. Finally, the agent changes

the staring point according to the site situation. The agent

continues this procedure for as many units and calculates each

value in the action-value table.

The agent learns the procedure to select the best from the

set of units for the current site by repeating the trial.

14 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Generate sets of 

units

Deploy the unit

Moving the starting 

point

Finish the trial

Did the agent 

continue at the 

number of units
No

Yes

Is the generated 

random number 

greater than 

epsilon?

Randomly select 

a unit

Select a unit according 

to the action-value

Yes No

Fig. 7. Flow of one trial in our mechanism.

IV. EXPERIMENT

This section represents the contents and results of the

experiment. Two experiments were conducted to demonstrate

the effectiveness and efficiency of the proposed mechanism.

First, the proposed mechanism was applied to the three sets

of units in the benchmark problems [12] to affirm whether

the proposed mechanism can appropriately obtain a layout

that satisfies these conditions. A one-floor plan is considered.

Thereafter, we measure whether the learning will become

faster by executing learning multiple times for each set of units

to affirm the possibility to deep learning for the combinations

of existing units. Learning was conducted according to the

learning process described in Section III-B. The variables ÷

used in the ÷-greedy method and the variables µ used in the

learning value calculation are ÷ = 0.9 and µ = 0.9, respectively.

A. Experiment 1 : Effectiveness of the proposed mechanism

In this experiment, the proposed mechanism was applied

to the benchmark problems to demonstrate the effectiveness.

The site has 7 x 5 blocks, with a total size of 35 blocks.

Learning was performed for 50,000,000-unit sets, and each

unit set randomly generated the same number of units as the

site and the size that fits in the site for each trial. The study

[12], which describes the benchmark problems, illustrates

layouts that deploy units using a space-filling curve (Fig. 8).

Because the proposed mechanism handles rectangular units,

the L-shaped units that appear in the layout of the benchmark

problem are handled by dividing them as appropriate.

Fig. 8. Layouts of the benchmark problem illustrated in [12].

The results of the generation are presented in Fig. 9. It was

observed that the layout in which all the units on each floor

fit in the site could be generated. The maximum change in

learning value is shown in Fig. 10. These change of the values

decrease with learning and converge to a constant value as

the learning stabilizes. In Experiment 1, the maximum change

decreased from 35 to approximately 25. The decrease of the

graph started at approximately 20,000,000 times. The execu-

tion time was about 12 h for learning with the learning model

for 50,000,000 times used this time, while the generation time

was less than 0.1 s.

B. Experiment 2 : Changing the iteration count

In this experiment, the efficiency of repeated learning was

examined for one set of units. It is ensured that the layout

can be generated when the iteration counts of one set of units

are changed. The agent is trained to repeat 100 times and

1,000 times for one set of units, and the layout is derived in

the same way as in Experiment 1. Learning is performed for

500,000-unit sets were repeated 100 times, and for 50,000-unit

sets were repeated 1,000 times. First, the case of continuous

learning of one set of units is examined. Second, the case of

repeated learning for all prepared sets of units is examined.

1) Experiment 2 Result 1: The generation result in the case

of learning one set of units continuously is shown in Fig.

HIKARU IKEDA ET AL.: TOWARDS AUTOMATIC FACILITY LAYOUT DESIGN USING REINFORCEMENT LEARNING 15



Fig. 9. Unit layout when learning 1 * 50,000,000 times.

*10ÿ *10ÿ *10ÿ *10ÿ *10ÿ

T
h

e
 m

a
x
im

u
m

 c
h

a
n

g
e

The iteration count

Fig. 10. Amount of change in learning value for 1*50,000,000 learning.
Horizontal axis represents the iterarion count of learnings and Vertical axis
represents the maximum change of the learning value.

11. The results were derived using a layout that could be

completely satisfied at all iterations. The maximum change

in the action-value function is shown in Fig. 12. This graph

is similar to the graph shown in Fig. 10.

2) Experiment 2 Result 2: The generation result in the case

of repeating learning prepared sets of units is shown in Fig.

13. In this case, a layout that was completely satisfied was

derived for all the repeated numbers. The maximum change

Fig. 11. Unit layout when learning 100*500,000 times.

in the action-value function is shown in Fig. 14. This graph

is similar to the graph illustrated in Fig. 10 and 12.

*10ÿ *10ÿ *10ÿ *10ÿ *10ÿ

T
h

e
 m

a
x
im

u
m

 c
h

a
n

g
e

The iteration count

Fig. 12. Maximum change of action-value for 100* 500,000 learning.

V. DISCUSSION

A. Unit Deployment

According to Experiments 1 and 2, large units tend to be

deployed earlier in the trial, and one-block-size units tend to

be deployed later in the layout generated by the proposed

mechanism (Fig. 9, Fig. 11, Fig. 13). The agent learns to

16 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Fig. 13. Unit layout when learning 500,000*100 times.

*10ÿ *10ÿ *10ÿ *10ÿ *10ÿ

T
h

e
 m

a
x
im

u
m

 c
h

a
n

g
e

The iteration count

Fig. 14. Maximum change of action-value for 500,000*100 learning.

get more rewards and changes the starting point that forms

the largest rectangle in which no units are located. The agent

regards the number of blocks located by units as the reward

value of the trial. Therefore, the agent’s priority is to try

to deploy larger units. This tendency reflects the proposed

mechanism. Additionally, proposed mechanism is superior to

some methods because the mechanism can specify the shape of

units. For example, in JLAV model [43] units are approximated

by a circle to determine the positions. Each unit can specify

TABLE I
FASTEST GENERATION COUNT AND AVERAGE.

1* 2* 3* 10*

Avg. number 54587 94497.33 50315 54104

20* 100* 200* 300*

Avg. number 120883.33 83282.5 66385.33 74313066

400* 500* 1000* *100

Avg. number 196713.833 153687.166 217674 175466.66

*1000

Avg. number 229450

The iteration count

N
u

m
b

e
r o

f tria
ls u

n
til th

e
 fa

ste
st g

e
n

e
ra

tio
n

 

Fig. 15. Correlation between the number of the iteration counts and the
number of trials until the fastest layout generations.Horizontal axis represents
the iterarion count of learnings and Vertical axis represents number of trials
until the fastest generation.

the size but can not specify the shape. From these viewpoints,

reinforcement learning is effective to the FLP.

B. Repeated learning effect

Although Experiment 2 obtained the result when the it-

eration count was changed, we did not observe the large

differences in the maximum change of action-value. Therefore,

an additional experiment was conducted to demonstrate the

differences of the number of iteration counts. To measure the

learning ability of the agent, we measured how many learning

trials were repeated before the fastest fulfilled layout could be

generated for the three sets of units. A graph of the average

trial times is shown in Fig. 15. As shown in Fig. 15, an

outlier is generated when repeated 300 times. However the

other parts of the graph tended to increase monotonically. It

is considered that such a result was obtained because it takes

time to simply encounter an unknown combination of units

as the number of iterations counts increases. As the number

of iterations increases, the possibility that the unit common

to the desired unit set does not appear in learning increases.

Therefore, it is better not to repeat learning using the same set

of units.

C. Degree of learning

We conduct 50,000,000-iteration learning to perform suffi-

cient learning in Experiment2 1 and 2. The layouts can be

HIKARU IKEDA ET AL.: TOWARDS AUTOMATIC FACILITY LAYOUT DESIGN USING REINFORCEMENT LEARNING 17



*10ÿ *10ÿ *10ÿ *10ÿ *10ÿ

T
h

e
 a

m
o
u

n
t o

f c
h

a
n

g
e
s

The iteration count

Fig. 16. Total amount of changes of 50,000,000-iteration learning.

generated by at most 2,000,000-iteration learning in Table I.

According to Fig. 10, Fig. 12, and Fig. 14, the maximum

change in the action-value decreased a few numbers from 35.

Because the maximum change in the action-value is taken

from all the changes in the action-value table, large changes

are frequently observed in the graphs. Therefore, to avoid

the effect of large changes, the total number of changes was

graphed. Fig 16 shows a graph of the total amount of change

of 50,000,000-iteration learning. According to Fig. 16, the

number of changes is decreased from 200 and converged to

around 25 when the agent learned about 10,000,000 times. The

investigation shows that the approximate degree of learning

can be measured by observing the total number of changes.

D. Unit order

Layouts were only generated with the same order sets

of units in Experiment2 1 and 2. Therefore, an additional

experiment was conducted to examine whether the agent can

generate layouts when the order of the set of units is changed.

Hundred different orders of units were prepared, and the agents

were made to generate their layouts at each time step of

learning. The experimental results are presented in Fig. 17.

50,000,000-iteration learning was conducted and check the

layout of each order of sets of units for every 1000 learnings

finished. The figure shows the total number of fulfilled layouts

in three floors. From the figure, we could demonstrate that the

learning with the proposed mechanism gradually increase the

possibility of successful layout generation.

VI. OUTLOOK

The problems and functions that we would like to imple-

ment in future studies are described below.

Enlarged table

The action-value table is created by the number of blocks

that has no unit and the units that can be deployed at the site

as the index. Therefore, the size of the table is the product

T
h

e
 n

u
m

b
e
r o

f fu
lfille

d
 la

y
o
u
t

The iteration count devided by 1000

Fig. 17. Number of fulfilled layout using 100 orders of units.

of the number of each index. Because the number of units

increases in response to the site area, the size of the table

increases exponentially. Therefore, if the site area becomes too

large, it may not be possible to secure the memory area. The

study by Seongwoo [44] describes the efficiency of memory

in deep Q-learning, and it is mentioned as one solution to this

problem. Therefore, we will have to use deep Q-learning to

tackle the problem of not only reducing calculation time, but

also memory shortage.

Extension in three-dimensional direction

Most studies on layout creation are for flat sites, similar

to the proposed mechanism. However, many facilities have a

three-dimensional structure to make functions and activities

efficient. This is a common practice in the areas with high

land cost or concerns of the available land [45]. In the future,

we would like to expand on the creation of a three-dimensional

site layout. Helbor et al. [46] and Hahn et al. [47] studied the

layout of the facility over multiple layers and stated that it is

required to multi-floor layout the functions and activities of

the facility at a lower cost.

Correlation between units

The proposed mechanism creates a layout that successfully

deploys the given units within a given site. In actual facilities,

each unit has a function and meaning, and each unit must

be adjacent or should not be close. Therefore, we would like

to set the relationship between the units and modify that

the agent can learn that the units can be deployed close to

each other. Yifei et al. [48], [49] completed the warehouse

layout based on the current situation of comprehensive related

relationships and warehouse problems using the SLP method.

When the SLP method is used to analyze the non-logistics

relationship between the operation units, it depends on several

evaluation indicators. In the process of determining the degree

of correlation, the subjective idea of the designer must be

18 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



mixed. Therefore, introducing correlation between units is a

very time-consuming modification.

Accelerate learning

In the learning of this mechanism, it took approximately

12 h to learn 50,000,000 times. This result is evidently

slow. For example, deep reinforcement learning, which uses a

neural network to represent a table of learning values as an

approximate function and performs learning, can reduce the

time required for table reference and creation. Simultaneously,

it is possible to speed up and reduce the load on the memory

area of the learning table. Zhiang et al. [50] proposed a

whole-building-energy-model-based deep reinforcement learn-

ing control framework. The building energy model (BEM),

which is a detailed physics-based model used to predict a

building’s thermal and energy behaviors, has been widely used

for building design decision support. Therefore, a deep neural

network is expected to contribute to higher speeds.

Utilization of learned agents

To use the learned agent for generating the layout in other

size sites, the maximum deployable site is set, and the remain-

ing site is calculated from it. Therefore, its effectiveness was

not affirmed in the experiments. If the same agent can generate

layouts at different sites, the time and cost can be significantly

reduced. Felipe et al. [51], [52] stated that learning a task from

scratch every time is impractical because of the huge sample

complexity of reinforcement learning algorithms.

VII. CONCLUSION

A mechanism that generates a facility layout using rein-

forcement learning was proposed. The proposed mechanism

generates a layout plan that can successfully deploy the given

units within a given site. Based on the results, reinforcement

learning was considered to be effective to FLP. In addition,

training the agent by providing additional information on the

maximum rectangle in which no units are located, the agent

can generate the layout for a set of various sets of units,

and the effectiveness of learning when the iteration counts

are changed was examined. Consequently, it was discovered

that the agent tends to learn faster by providing new learning

data for each trial without repetition. However, some situations

could not be tested in the experiment. First, we could not

examine whether the agent could learn and generate layouts

at the multi-floor site. Second, we could not examine the

layout generation with interrelationship among the units. The

problem with generating the layout at the multi-floor site is

one of the most important points to be examined for efficiency

in the layout of warehouses and distribution facilities in the

real world. In addition, speeding up learning using multi-agent

[53], [54] or parallelization [55], [56], and comparing the MC

method with other reinforcement learning methods, such as

Q-learning, are future challenges. We would like to focus on

these problems in future studies.

VIII. ACKNOWLEDGEMENTS

Kajima Corporation supported this work. We would like to

thank Hiromasa Akagi and Fumi Sekimoto, who work with

Kajima Corporation, for helpful discussions. We gratefully

thank three anonymous referees for their constructive com-

ments that helped improve the paper.

REFERENCES

[1] Andrew Kusiak, Sunderesh S.Heragu, 1987,The facility layout problem,
European Journal of Operational Research 29, 229-251, https://doi.org/
10.1016/0377-2217(87)90238-4

[2] Sunderesh S.Heragu, AndrewKusiak, 1991, Efficient models for the
facility layout problem, European Journal of Operational Research,
https://doi.org/10.1016/0377-2217(91)90088-D

[3] S.P.Singh, R.R.K.Sharma, 2006, A review of different approaches to
the facility layout problems, The International Journal of Advanced
Manufacturing Technology volume 30, pages 425–433, https://doi.org/
10.1007/s00170-005-0087-9

[4] Kar Yan Tam, 1992, Genetic algorithms, function optimization, and
facility layout design, European Journal of Operational Research Volume
63 issue 2, https://doi.org/10.1016/0377-2217(92)90034-7

[5] Anita Thengade, Rucha Dondal, 2012, Genetic Algorithm – Survey
Paper, MPGI National Multi Conference 2012, ISSN: 0975 - 8887

[6] Pedro G. Espejo, Sebastian Ventura, Francisco Herrera, 2010, A Survey
on the Application of Genetic Programming to Classification, IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews, Volume 40, Issue 2, 10.1109/TSMCC.2009.2033566

[7] Venkatesh Dixit, Jim Lawlor, 2019, Modified genetic algorithm for auto-
mated facility layout design, International Journal of Advance Research,
Ideas and Innovations in Technology, Volume 5, Issue 3, ISSN: 2454-
132X

[8] José Fernando Gonçalvesa, Mauricio G.C.Resende, 2015, A biased
random-key genetic algorithm for the unequal area facility layout
problem, European Journal of Operational Research, Volume 246,
https://doi.org/10.1016/j.ejor.2015.04.029

[9] Stanislas Chaillou, 2019, AI and Architecture An Experimental Perspec-
tive, The Routledge Companion to Artificial Intelligence in Architecture,
ISBN:9780367824259

[10] Luisa Fernanda Vargas-Pardo, Frank Nixon Giraldo-Ramos, 2021, Fire-
fly algorithm for facility layout problemoptimization, Visión electrónica,
https://doi.org/10.14483/issn.2248-4728

[11] Jing fa, Liuab JunLiu, 2019, Applying multi-objective ant colony
optimization algorithm for solving the unequal area facility layout
problems, Applied Soft Computing, Volume 74, https://doi.org/10.1016/
j.asoc.2018.10.012

[12] Russell D.Meller, Yavuz A.Bozer, 1997, Alternative Approaches to
Solve the Multi-Floor Facility Layout Problem, Journal of Manufac-
turing Systems, Volume 16, Issue 3, https://doi.org/10.1016/S0278-
6125(97)88887-5,

[13] Arthur R.Butz, 1969, Convergence with Hilbert’s Space Filling Curve,
Journal of Computer and System Sciences, https://doi.org/10.1016/
S0022-0000(69)80010-3

[14] L.P.Kaelbling, M.L.Littman, A.W.Moore, 1996, Reinforcement Learn-
ing: A Survey, JAIR, https://doi.org/10.1613/jair.301

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, Martin Riedmiller, 2013, Playing Atari
with Deep Reinforcement Learning, NIPS Deep Learning Workshop,
https://doi.org/10.48550/arXiv.1312.5602

[16] Yu-Jui Liu, Shin-Ming Cheng, Yu-Lin Hsueh, 2017, eNB Selection for
Machine Type Communications Using Reinforcement Learning Based
Markov Decision Process, /url10.1109/TVT.2017.2730230

[17] Frank L. Lewis, Draguna Vrabie, 2009, Reinforcement learning and
adaptive dynamic programming for feedback control, IEEE Circuits and
Systems Magazine Volume9 Issue3, 10.1109/MCAS.2009.933854

[18] F. Llorente, L. Martino, J. Read, D. Delgado, 2021, A survey of
Monte Carlo methods for noisy and costly densities with application
to reinforcement learning, https://doi.org/10.48550/arXiv.2108.00490

[19] P. Cichosz, 1995, Truncating Temporal Differences: On the Efficient
Implementation of TD(lambda) for Reinforcement Learning, 2017,
JournalofArti cialIntelligenceResearch2, IEEE Transactions on Vehicular
Technology, Volume 66, No. 12, https://doi.org/10.1613/jair.135

HIKARU IKEDA ET AL.: TOWARDS AUTOMATIC FACILITY LAYOUT DESIGN USING REINFORCEMENT LEARNING 19



[20] Harmon, Mance E., Harmon, Stephanie S., 1997, Reinforcement Learn-
ing: A Tutorial., January,

[21] E. N. Barron, H. Ishii, 1989, The Bellman equation for minimizing the
maximum cost, Nonlinear Analysis, Theory, Methods and Applocations,
https://doi.org/10.1016/0362-546X(89)90096-5

[22] Christopher J. C. H. Watkins, Peter Dayan, 1992, Q-Learning, https:
//doi.org/10.1007/BF00992698 Machine Learning, 8, 279-292

[23] Ali Asghari, Mohammad Karim Sohrabi, Farzin Yaghmaee, 2021, Task
scheduling, resource provisioning, and load balancing on scientifc
workfows using parallel SARSA reinforcement learning agents and
genetic algorithm, The Journal of Supercomputing, https://doi.org/10.
1007/s11227-020-03364-1

[24] Feng Ding, Guanfeng Ma, Zhikui Chen, Jing Gao, Peng Li, 2021, Av-
eraged Soft Actor-Critic for Deep Reinforcement Learning, Complexity,
vol.2021, https://doi.org/10.1155/2021/6658724

[25] Seyed Sajad Mousavi, Michael Schukat1, Enda Howley, 2017, Traf-
fic light control using deep policy-gradient and value-function-
basedreinforcement learning, IET Intelligent Transport Systems, https:
//doi.org/10.1049/iet-its.2017.0153

[26] Xinhan Di, Pengqian Yu, IHome Company, IBM Research, 2021, Deep
Reinforcement Learning for Producing Furniture Layout in Indoor
Scenes, Cornell University, https://doi.org/10.48550/arXiv.2101.07462

[27] Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G. Belle-
mare, Joelle Pineau, 2018, An Introduction to Deep Reinforcement
Learning, Foundations and Trends in Machine Learning, Volume 11,
https://doi.org/10.1561/2200000071

[28] Matthias Klar, Moritz Glatt, Jan C. Aurich, 2021, An implementation
of a reinforcement learning based algorithm for factory layout planning,
Manufacturing Letters, Volume 30, October, https://doi.org/10.1016/j.
mfglet.2021.08.,

[29] Richa Verma, Sarmimala Saikia, Harshad Khadilkar, Puneet Agarwal,
Gautam Shrof, Ashwin Srinivasan, 2019, A Reinforcement Learning
Framework for Container Selection and Ship Load Sequencing in Ports,
Autonomous Agents and Multiagent Systems,

[30] Ruizhen Hu, Juzhan Xu, Bin Chen, Minglun Gong, Hao Zhang, Hui
Huang, 2020, TAP-Net: Transport-and-Pack using Reinforcement Learn-
ing, ACM Transactions on Graphics, Volume 39, December, https:
//doi.org/10.1145/3414685.3417796

[31] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang,
Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar
Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William
Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger
Carpenter, Jeff Dean, 2021, A graph placement methodology for fast
chip design, Nature, volume 594, pages207–212, https://doi.org/10.1038/
s41586-021-03544-w

[32] Xinhan Di, Pengqian Yu, 2021, Multi-Agent Reinforcement Learning
of 3D Furniture Layout Simulation in Indoor Graphics Scenes, ICLR
SimDL Workshop, https://doi.org/10.48550/arXiv.2102.09137

[33] Peter Burggraf, Johannes Wagner, Benjamin Heinbach, 2021, Bibliomet-
ric Study on the Use of Machine Learning as Resolution Technique for
Facility Layout Problems, IEEE Access, Volume 9, 10.1109/ACCESS.
2021.3054563

[34] Christian E. López, James Cunningham, Omar Ashour, Conrad S.
Tucker, 2020, Deep Reinforcement Learning for Procedural Content
Generation of 3D Virtual Environments, Journal of Computing and
Information Science in Engineering, https://doi.org/10.1115/1.4046293

[35] Niloufar Izadinia, Kourosh Eshghi, Mohammad Hassan Salmani, A
robust model for multi-floor layout problem, 2014, Computers and
Industrial Engineering 78, http://dx.doi.org/10.1016/j.cie.2014.09.023

[36] Junjie Li, Sotetsu Koyamada, Qiwei Ye, Guoqing Liu, Chao Wang,
Ruihan Yang, Li Zhao, Tao Qin, Tie-Yan Liu, Hsiao-Wuen Hon, 2020,
Suphx: Mastering Mahjong with Deep Reinforcement Learning, Cornell
University, https://doi.org/10.48550/arXiv.2003.13590

[37] Matthew Lai, 2015, Giraffe: Using Deep Reinforcement Learning to
Play Chess, partial fulfilment of the requirements for the MSc Degree
in Advanced Computing of Imperial College, https://doi.org/10.48550/
arXiv.1509.01549

[38] Adrian Goldwaser, Michael Thielscher, 2020, Deep Reinforcement
Learning for General Game Playing, The Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence (AAAI-20), https://doi.org/10.1609/aaai.
v34i02.5533

[39] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis
Hassabis, 2018, A general reinforcement learning algorithm that mas-
ters chess, shogi, and Go through self-play, Science, 10.1126/science.
aar6404,

[40] Guillaume Chaslot, Sander Bakkes, Istvan Szita, Pieter Spronck, 2008,
Monte-Carlo Tree Search: A New Framework for Game AI, Proceedings
of the Fourth Artificial Intelligence and Interactive Digital Entertainment
Conference, https://ojs.aaai.org/index.php/AIIDE/article/view/18700

[41] Yahui Liu, Buyang Cao, Hehua Li, Improving ant colony optimization
algorithm with epsilon greedy and Levy flight, 2021, Complex and Intel-
ligent Systems 17111722,https://doi.org/10.1007/s40747-020-00138-3

[42] Tailong Yang, Shuyan Zhang, Cuixia Li, 2021, A multi-objective hyper-
heuristic algorithm based on adaptive epsilon-greedy selection, Complex
and Intelligent Systems, https://doi.org/10.1007/s40747-020-00230-8

[43] Abbas Ahmadi, Mohammad Reza Akbari Jokar, 2016, An efficient
multiple-stage mathematical programming method for advanced single
and multi-floor facility layout problems, Applied Mathematical Mod-
elling, Volume 40, Issues 9–10, Pages 5605-5620, https://doi.org/10.
1016/j.apm.2016.01.014

[44] Seongwoo Lee, Joonho Seon, Chanuk Kyeong, Soohyun Kim, Young-
ghyu Sun, Jinyoung Kim, 2021, Novel Energy Trading System Based
on Deep-Reinforcement Learning in Microgrids, https://doi.org/10.3390/
en14175515,

[45] Amine Drira, Henri Pierreval, SoniaHajri-Gabouj, 2007, Facility layout
problems: A survey, Annual Reviews in Control, Volume 31, Issue 2,
https://doi.org/10.1016/j.arcontrol.2007.04.001

[46] Stefan Helber, Daniel Bohme, Farid Oucherif, Svenja Lagershausen,
Steffen Kasper, 2015, A hierarchical facility layout planning approach
for large and complex hospitals, Flexible Services and Manufacturing
Journal, pp 5-29, https://doi.org/10.1007/s10696-015-9214-6

[47] Peter Hahn, J.MacGregor Smith, Yi-Rong Zhu, 2008, The Multi-Story
Space Assignment Problem, Annals of Operations Research,pp77-103,
https://doi.org/10.1007/s10479-008-0474-3

[48] Yifei Zhang, 2021, The design of the warehouse layout based on the
non-logistics analysis of SLP, E3S Web of Conferences 253, https://doi.
org/10.1051/e3sconf/202125303035

[49] Yifei Zhang, 2020, Research on layout planning of disinfection tableware
distribution center based on SLP method, MATEC Web of Conferences
325, https://doi.org/10.1051/matecconf/202032503004

[50] Zhiang Zhang, Adrian Chongb, Yuqi Panc, Chenlu Zhanga, Khee Poh
Lam, 2019, Whole building energy model for HVAC optimal control:
A practical framework based on deep reinforcement learning, Energy
and Buildings, Volume 199, Pages 472-490, https://doi.org/10.1016/j.
enbuild.2019.07.029

[51] Felipe Leno Da Silva, Anna Helena Reali Costa, 2019, A Survey
on Transfer Learning for MultiagentReinforcement Learning Systems,
Journal of Artificial Intelligence Research 64, https://doi.org/10.1613/
jair.1.11396

[52] Felipe Leno Da Silva, Matthew E. Taylor, Anna Helena Reali Costa,
2018, Autonomously Reusing Knowledge in Multiagent Reinforcement
Learning, Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence (IJCAI-18),

[53] Wei Du, Shifei Ding, 2020, A survey on multi-agent deep reinforcement
learning: from the perspective of challenges and applications, Artificial
Intelligence Review, https://doi.org/10.1007/s10462-020-09938-y

[54] Ingy Elsayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers,
Ufuk Topcu, Lu Feng, 2021, Safe Multi-Agent Reinforcement Learning
via Shielding, Autonomous Agents and Multiagent Systems, https://doi.
org/10.48550/arXiv.2101.11196

[55] Alfredo V. Clemente, Humberto N. Castejon, Arjun Chandra, 2017,
EFFICIENT PARALLEL METHODS FOR DEEP REINFORCEMENT
LEARNING, Cornell University, https://doi.org/10.48550/arXiv.1705.
04862

[56] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory
Fearon, Alessandro De Maria, Vedavyas, Panneershelvam, Mustafa
Suleyman, Charles Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih,
Koray Kavukcuoglu, David Silver, 2015, Massively Parallel Methods for
Deep Reinforcement Learning, the Deep Learning Workshop, Interna-
tional Conference on Machine Learning, https://doi.org/10.48550/arXiv.
1507.04296

20 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022


