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Abstract—Information about the existence of periodic patterns
in a database workload can play a big part in the process of
database tuning. However, full analysis of audit trails can be
cumbersome and time-consuming. This paper discusses a heuris-
tic algorithm that focuses on workload reconstruction based on
pattern discovery in a simplified workload notation. This notation
is based on multisets representing database actions (such as user
queries) requiring access to specific persistent objects, but without
the access cost analysis. Each action in this notation is a multiset
of accessed objects, which can be tables, system files, views, etc.
The theoretical model for such an approach has been discussed
in detail in the authors’ previous work [1] This work is mostly
proof-of-a-concept for the theoretical approach. Additionally, in
order to test the performance of the proposed algorithm, a test-
data generator has been constructed. Both the previous and the
current papers are parts of a research project dealing with the
application of periodic pattern theory to the field of database
optimization and tuning [2], [3], [4], [5].

I. INTRODUCTION

T
HE WORKLOAD reconstruction for an SQL database is

a non-trivial task. However it can be very important when

considering tuning options. Because in a typical relational

database queries tend to be repetitive to a point, discovering

recurring patterns may lead to the improvement of DBMS

performance. This paper is part of a research project tackling

the application of the periodic pattern theory to the database

workload reconstruction and prediction [5] This paper follows

the research discussed theoretically in [1], and provides a

heuristic reconstruction algorithm utilising a recursive periodic

pattern discovery process. This work on the workload recon-

struction strays from the research on the prediction of the n-th

database state based on the retrospective analysis of the n-1

previous states (actions) [6]. Instead we focus on the global

system usage estimation and prediction with the help of the

reconstruction methods working with a simplified workload

dump. In order to verify and evaluate the researched algorithm

we have also developed a parameterized test-data generator.

It is capable of generating a list of random multisets with a

hidden periodicity feature. It is not predetermined but rather

the construction of the generator ensures the existence of some

non-trivial periodic patterns. The generated test-data is used to

firstly verify the correctness of the main heuristic algorithm

when it comes to the recognition of periodic patterns when

searching for the optimal workload reconstruction. The second

task was to aid the research on the reconstruction quality

measure and time-efficiency of the reconstruction algorithm.

The overall goal was to develop a fast, statistically stable

algorithm that works with an optimal time and space com-

plexity. The conducted tests have confirmed these assumptions.

The programming language used for the development of the

algorithm and the generator was Python 3.

The reconstruction problem touches on the possibility of the

reconstruction (lossy or lossless) of a given system based on

partial data obtained from the earlier (or current) behaviour

of the system. The problem of reconstruction, as well as

the current research on it, work with the concept of recon-

structability (non-reconstructability) of affine functions [7],

[8] and the reconstruction of multisets over grupoids as well.

Apart from some open problems for multisets over groupoids,

the concept of reconstructing the sequence of multisets (in

general) is a new concept and has not been studied so

far. In the proposed approach, we reduce the presentations

of multisets in sequences to increasing sequences. Such a

simplification for the presentation of multisets is related to the

homogeneous treatment of elements (subtrees) that are imple-

mentations of algebra expressions, including entity instances

sets (tables), which are a part of the output relational algebra.

Such assumptions for multisets made it possible to tackle the

problem of the reconstruction of the sequences of multisets

without considering the problem of coverage of multisets,

which takes place in the case of the reconstruction of the

mutliset over grupoids. The aim of this work is to provide

efficient algorithms for the reconstruction of the considered

system and to provide qualitative information on the degree

of its reconstruction. The algorithm can be applied to complex

systems, such as database systems, whose log interpretations

can be written in the form of a sequence of multisets, etc. The

degree of reconstruction allows to evaluate the predictions of

the whole system; the methodology of the algorithm takes into

account the simultaneous inclusion of the time and frequency

domains in each step of the reconstruction algorithm, for all

periodic patterns included in the reconstruction. The problem

of workload predicting has already been discussed by the

author [2] in terms of another concept of the periodic pattern.

The methods of signal analysis or wavelets are based on the

assumption (in short) that points in time have been assigned
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values (real numbers), including the use of appropriate recon-

struction methods[9], [10]. In our data model, first, we do not

consider the points in time, but the time periods (pulled down

to points) and sets of elements (including elements allowed

multiple times), not to mention the nesting interpenetration

of events considered on such structures etc. Therefore, the

methodology of time series, Fast Fourier Transform (FFT) in

discrete form (DFT), spectra, etc., does not work for events in

the context of the data under consideration. In addition, we do

not consider the independent behavior of individual elements,

but we study and take into account (periodic) behavior of

multiple sets of elements and their subsets, taking into account

the interactions of one on another (in various proportions) as

well as the entire system on individual elements, etc.

The paper is organised as follows. In Section II we focus on

methodology. Section III provides our recursive reconstruction

algorithm. Section IV specifies test data generator. Section V

concludes effectiveness of the algorithm, possible future works

end this section.

II. METHODOLOGY

The methodology used in the workload reconstruction pro-

cess is based on the concept of intelligent extraction of

periodic patterns in the workload defined below. The methods

used in the author’s previous works are standard bottom-up

methods. The methods used in the current work use a recursive

approach in combination with the heuristic method(s), much

more efficient than the previous ones.

The theory and applications of the concept of periodic

patterns to the workload prediction problem were discussed in

the previous works of one of the authors [5], [2]. The theory of

periodic patterns is well known. It grew out of, among others,

the periodic sets [11] as well as periodic events [12]

Let recall terminology defined in previous considerations

[1]. Let the workload WL and the sequence of time units U

be given. The non empty subsequences C,C 2 ¦ WL of the

same length and consecutive coordinates are called equivalent

if C = C 2 occurs for all corresponding coordinates.

A periodic pattern in a workload WL is a tuple <C, f , t,
p, > where:

1) the carrier C determines a non empty subsequence C ¦
WL

2) f is a number of time unit in U where the repetitions

of C start

3) t is a total number of occurrences of equivalent se-

quences C ¦ WL, such that p denotes the number of

consecutive time unit elements after which the t pairs

of neighbouring sequences are equivalent.

4) Parameters f , t, p satisfy the following inequality: f, t g
1, p g 0, f + (t2 1) 7 p+ |C| 2 1 f |U |

Also, if t = 1 then p = 0 and the pattern <C,f, 1, 0> is called

the trivial periodic pattern (trivial pattern)

Let <C, f , t, p, > be a periodic patterns in WL with a

given U .

A trace of a carrier C is a subsequence C ¦ WL, denoted

tr(C, f, n), in which the first f 2 1 elements are the empty

multisets.

A trace of a periodic pattern <C, f , t, p, > over the time

unit sequence U , under the condition f+(t21)7p+|C|21 f
n, is a subsequence TR(< C, f, t, p >, n) of a sequence WL

such, that TR(< C, f, t, p >, n) = tr(C, f, n) ® tr(C, f +
p, n) ® . . .® tr(C, f + (t2 1) 7 p, n)

Let R be a non-empty set of periodic pattens in a WL given

time unit sequence U(n) . In the current approach , we say

that R is a reconstruction of the workload WL in U(n) if:

i. ®
|R|
s=1

TR(< CS , fS , pS >,n) = WL

ii. all TRs implementing connect-disconnect processes re-

main consistent in relation to each other. We allow

duplication of database connect/disconnect processes in

case of hypothetical processes, assuming that logging in

and logging out does not involve costs.

As a quality measure of the reconstruction R is a real value

0 f mR < 1 defined as:

mR = 12 (1/
�|R|

i=1
('Ci' 7 ti))

1/|R|

where 'Ci' is the length of the carrier Ci, |R| is the cardinality

of R. When R = R0 = {< WL, 1, 1, 0 >} we assume that

mR0
= 0.

The test data generator, described in Section IV, is to

provide synthetic data in the form of a sequence of multisets

representing the sequence of database queries expressed in

the evaluation representation obtained thanks to the EXPLAIN

PLAN operation. This internal representation is then encoded

using the syntax tree table [2]. The task of the presented test

data generator is to generate hypothetical periodic patterns, but

the generator does not determine the occurrence of a specific

periodicity.

III. WORKLOAD RECONSTRUCTION ALGORITHM

With reference to the algorithm of [1], the algorithm

presented in this paper has undergone some modifications

and, as noted in the introduction, the simplification does not

consider workload costs (in general). The pseudocode for the

maximum relative frequency heuristic reconstructive algorithm

is presented below. The heuristic is based on the local selection

of the maximum relative frequency of the elements.

IV. TEST DATA GENERATOR

In order to verify and evaluate the researched algorithm

we have also developed a parameterized test-data generator.

It is capable of generating a list of random multisets with a

hidden periodicity feature. It is not predetermined but rather

the construction of the generator ensures the existence of

some non-trivial periodic patterns. The generator has been

implemented in Python 3 language.

The basic building block of the result set is the list of lists:

[[object_number, number of occurrences], ...]

e.g. [[1.2], [2.2], [4.1], [6.3]]
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Algorithm 1 Reconstruction algorithm

INPUT : WL, list e

OUTPUT: optimal reconstruction R with the optimal value

mR

1) e= [ e1, e2, e3,..] sorted (or not: in case of greedy

heuristic), R : = < WL,f,1,0 >, mR:=0 , C:= WL,

R: = ', |R|: = 1,

2) While |C| <> 0:

a) C : = C \ TR (pp) ; for the current element e, start-

ing from a minimum f value until all possibilities

for f have been analyzed, search for such p and t

that pp : = < ei ,f,t,p > is a periodic pattern in WL

b) R : = R * < C, f, 1,0> * pp ; |R|++, Determination

of min f and max t when selecting an element

from the WL sequence, i.e. identifying systems

matching: f + ( t - 1) * p f n, pp = < Cpp, f,

t, p >

c) For the following elements, accept the last used t

and p (start with the minimum value of f for which

there is pp with parameters t and p, skipping the

cases: t=1, p > [n/2] ), always proceed until the

possibility of a non-trivial periodic pattern with

the given parameters t and p is exhausted. If no

patterns are found for the current t and p, do

the same as in the previous step, starting with

the current element (if there is one, otherwise the

next one). In the absence of the current element e,

sort the array e (based on the relative frequency)

for the current elements. Normalisation Rule +

Decomposition Rule [1] : < C, f, 1,0> in each

step is a (trivial) periodic pattern in WL. Use the

Decomposition Rules for periodic patterns found

for elements for which patterns with t and p

parameters were found. Create periodic patterns:

ppi, ppj in WL with Ci, pi, ti and Cj , pj , tj
respectively, such that: pi= pj = p and ti= tj =

t, in order to pair (reduce) periodic patterns to the

form: ppij = < tr ( Ci , 1, fj - fi + |Cj | ) ®
tr ( Cj , fj - fi, fj - fi + | Cj |), fi , t, p >

in WL , and pair in such a way as to maximise

the value of mR, |R| 2 2, use (22) as many

times as the number of reduced pairs (reduction

associative). As a results from method used above

we consider only those cases in which the very

last step of the recursion consists of non-trivial

patterns. Otherwise, the interruption and output of

the algorithm with the output as reconstruction of

WL not possible.

d) Return and possibly replace (depending on the

value of the previous scenario of the previous "re-

cursive paths") the maximum mR and associated

set R

The full multiset list may then take the form:

WL=[[1,8], [2,4], [ [1,7], [2,3] ] , [1,6],

[3,2], [[1,7],[2,1]], [[1,1],[2,1]],

[[1,7],[2,1]] , [[1,1][2,1]] , [[1,3],

[2,1],[3,2]], [[1,1],[2,1]] ],

[2,1],[3,2]], [[1,1],[2,1]] ]

The generator randomly sets the number of occurrences with

a set decreasing probability of a number (from 1 to maxOcc

parameter) being chosen.

The generator has a number of parameters that can be set

to modify its performance. The most important are:

1) N - the size of the generated set; by default 1000

2) maxObj - the maximum number of "objects" (tables,

indexes, lob files ertc.) - 20 by default

3) maxOcc - the maximum number of object occurrences

in an element - by default 10

In the above example, the maxObj has been set to 3,

therefore e=[1, 2, 3] is a set of all object appearing in WL

The generator starts by randomly selecting a number of

objects that are to appear in a generated multiset. It then

randomly (but according to a specified distribution param-

eter) select objects and their occurrence numbers. Then the

generator proceeds with this procedure to generate following

multisets. However, there is a chance (parametrized) that

a multiset, that is to be generated, will be chosen from

previously generated once. If such possibility is to happen,

another parameter specifies how many following multisets

should also be copied. Of course the mentioned parameter

only specifies the maximum amount of copied elements, but

the actual amount is randomly selected. We proceed in such

manner until all N multisets have been generated.

The generator is equipped in a high amount of parameters

influencing the pseudo-randomness. Therefore it is possible to

estimate the number of potential periodic patterns present in

the generated data

V. CONCLUSIONS AND FURTHER WORKS

Testing procedures for the algorithm included the analysis of

the query series transformation to their multiset representation.

Such representation was generated form the obtained database

traces and resulted in a multiset sequence of a type described

in chapter IV. Then followed the tests of the performance

of the designed algorithm on the test data. The generated

test-data was used to firstly verify the correctness of the

main heuristic algorithm when it comes to the recognition

of periodic patterns when searching for the optimal workload

reconstruction. The second task was to aid the research on

the reconstruction quality measure and time-efficiency of the

reconstruction algorithm. The overall goal was to develop a

fast, statistically stable algorithm that works with an optimal

time and space complexity. The algorithm has been imple-

mented in Python 3 and the tests were not meant to evaluate

the actual time performance, but rather they focused on testing
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the statistical stability and correctness of the results. Therefore,

the performed tests were used for empirical verification of

the correctness and stability of the algorithm’s operation and

have confirmed that not only is the algorithm stable but also

optimal in its performance. Future work on the subject may in-

clude working on new heuristics combined with reconstruction

algorithms’ efficiency comparative analysis. Another aspect

worth researching is the extended implementation of the re-

construction algorithm that takes into account the cost analysis

derived from both the DBMS statistics and the relational

algebra operators; the analysis of parallelization possibilities

for periodic pattern discovery algorithms with the help of the

GPU processing capabilities. Also it may be interesting to

additionally enhance the heuristics with the computation of

the reconstruction significance rate.
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