
ModelWeb: A Toolset for the Model-based Testing

of Web Applications

Mert Ozkaya

Department Computer Engineering

Yeditepe University

Istanbul, Turkey

mozkaya@cse.yeditepe.edu.tr

Mehmet Alp Kose

Institute of Graduate Studies

Altinbas University

Istanbul, Turkey

alp.kose@ogr.altinbas.edu.tr

Arda Burak Mamur

Empa Technology

Istanbul, Turkey

arda.mamur@empa.com

Turker Koc

Kurulum Cognitive Services

Istanbul, Turkey

turker@kurul.com.tr

Abstract—Model-based testing promotes the specifications of
abstract system behaviours and their transformations into test
scenarios to enhance the quality of software testing. In this
paper, we propose a modeling toolset called ModelWeb for the
model-based testing of web applications. ModelWeb provides a
modeling editor that offers a flowchart-based notation set for the
modeling of users’ functional behaviours on the web applications.
ModelWeb’s flowchart notation set consists of a pre-defined
list of user actions (e.g., click, type, login, register, select etc.)
and system actions (display and return). ModelWeb can further
transform the flowchart-based model for a web functionality
(e.g., adding products to cart in an online store) into the test
scenarios that are documented in accordance with the behaviour-
driven development (BDD) approach for understandability and
the acceptance by the web test automation tools. So finally,
ModelWeb can automatically test the web applications against
the transformed BDD scenarios using the Selenium web test
automation tool and report the test results to the user. To evaluate
ModelWeb, we asked four practitioners from diverse industries to
test three different web-applications with and without ModelWeb.
We observed that ModelWeb enables considerable gains on the
time performance (27-41%) and the number BDD scenarios
obtained (51-113%).

Index Terms—model-based testing, domain-specific modeling,
behaviour-driven development, Selenium, Metaedit+

I. INTRODUCTION

MODELS are considered as the abstract representations

of real systems for their better understanding and

reasoning [1]–[3]. As Rumbaugh stated in [4], models can

be used for various important purposes including the precise

understanding and communications of the domain knowl-

edge, making early design decisions, separating design from

requirements, generating useful business products, exploring

alternative solutions, and managing complexity. Today, many

attempts have been made for applying modeling on the

software and systems testing so as to reduce the time for

generating test scenarios and increase the effectiveness of the

test scenarios [5]–[7].

Model-based testing could be used in the web applications

development, which has been getting more complex ever-

increasingly as the web applications may require complex

GUIs and further need to satisfy various quality requirements

(e.g., performance). Therefore, modeling and analysing web

applications and automating the implementation and test case

generation from models are highly popular issues nowadays.

Many modeling approaches have been proposed for the web

applications development, e.g., [8]–[12], which enable to

specify high-level models for the web applications with some

precise textual/graphical notation sets and are supported with

tools for the model transformation (e.g., the automated imple-

mentation of web applications and early model analysis and

simulation). Also, many model-based testing approaches have

been proposed on web applications, e.g., [13]–[19], which

are discussed in Section II. Using those approaches, abstract

models can be specified using various types of notation sets

for different concerns about systems including functional and

non-functional concerns and transformed into test scenarios.

In this paper, we propose a modeling toolset for the web

applications called ModelWeb. ModelWeb is supported with a

flow-chart based notation set that consists of a pre-defined list

of actions (e.g., click, select, open, login, type, share, register,

drag & drop, and comment) through which the functional user

behaviours on the web applications can be specified. Any

flowchart models can be automatically transformed into the

test scenarios with path coverage matching the cyclomatic

complexity of the flow-chart models. To make the generated

test scenarios understandable and at the same time executable,

ModelWeb formats the transformed scenarios in accordance

with the behaviour-driven development (BDD) approach [20].

ModelWeb further automatically executes the BDD scenarios

on a given web application using the Selenium web test

automation tool1 and reports the test results to the user.

ModelWeb’s novelty is to do with its flowchart-based, simple

notation set consisting of a reusable set of actions for the

modeling of users’ functional behaviours on web applications

and support for the fully automated testing process including

the automated generation of scenarios and their execution

on the web applications. As shown in Table I, the current

approaches offer a textual notation set supported with some

formalisms and therefore require a learning curve, some use

statechart notation set that is not always easy to manage

for specifying the user behaviours for stakeholders due to

many states and transitions to be drawn, and some offer

domain-specific notation sets for the quality testing (e.g.,

load, vulnerability, and security). We strongly believe that

1Selenium web-site: https://www.selenium.dev/

Communication Papers of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 331–338

DOI: 10.15439/2022F270

ISSN 2300-5963 ACSIS, Vol. 32

©2022, PTI 331



TABLE I: The model-based testing approaches for web applications

Work Notation Set Notation Set Type Formalism Focus Scenario Gen. Test Exec.

[13] State-chart Graphical No Functionality Automated Automated

[14] Domain-specific Textual Alloy Security testing No Automated

[15] State-chart Textual No Stateful GUI testing Automated Automated

[16] No Graphical No Ajax web apps. Automated Manual

[21] State-chart Graphical No GUI testing No Automated

[18] Domain-specific Graphical No Load testing No Automated

[19] Domain-specific Hybrid Regular Expression Vulnerability testing Automated Automated

[22] Domain-specific Textual Labelled transition system Functionality Automated Automated

ModelWeb may easily be used by stakeholders with any levels

of technical knowledge involved in the testing process thanks

to its simple notation set with no (or very little) learning curve.

Thanks to its tool support, web applications may therefore be

tested for the functional user behaviours in a highly productive

manner (i.e., more cases to be tested in a shorter time period).

II. RELATED WORK

The literature includes some works on the model-based

testing of web applications, which are analysed in Table I

for a number of requirements (i.e., notation set, formalism,

focus, scenario generation, and test execution). Concerning the

notation set, state-chart based notation set is quite dominant,

which prompts the users to specify different states that the

web pages can be in at a time and the events that cause

transitions among them. Using the state-chart notation set

could essentially be useful for proving the correctness of

behaviour models as many model checkers have been existing

for formally verifying the state-chart models (e.g., SPIN [23]

and UPPAAL [24]). However, in our work, we do not focus on

the formal verification and our main intent here is to generate

BDD test scenarios from user functional behaviour models.

Concerning the notation set type, while some approaches

offer textual, some offer visual notation sets - Lebeau etal.’s

approach [19] is the only exception here which offers a

hybrid notation set. Concerning the formalism support, some

approaches provide notation sets that are based on formal

languages so as to enable formal verification or precise model-

ing. However, formally-based approaches lead to notation sets

with steep learning curve [25]. Concerning the focus, different

approaches focus on different aspects for testing, e.g., quality

testing, Ajax web applications, GUI testing, and functionality

testing. Lastly, each approach is supported with a tool that

either generates the test scenarios from models automatically

or executes the scenarios on the web application automatically.

Note that some tools perform both tasks automatically. So, we

observe that ModelWeb is the only tool that offers a graphical,

flowchart-based notation set for the modelling of functional

user behaviours and supports the fully automated way of

producing test scenarios from flowchart models and executing

the scenarios on the web application.

III. MODELWEB TOOLSET

As shown in Fig. 1, ModelWeb’s tool architecture consists

of two main tools that are each composed of some sub-

tools2. Users firstly use the model extractor to extract the

web application HTML source file structures consisting of

the HTML IDs of the web components. Then, users use the

modeling editor to specify the flowchart models of their web

applications and map their model elements with the actual

web components using the extracted HTML IDs. The BDD

generator is used next to transform the flow-chart models into

test scenarios in BDD. Lastly, using the scenario tester, users

execute the transformed test scenarios on the web application.

Fig. 1: ModelWeb’s tool architecture

IV. MODELWEB’S MODELING EDITOR

ModelWeb’s modeling editor is depicted in Fig. 2 and

has been developed using the Metaedit+ meta-modeling tool

[26]. Firstly, a modeling project is created via the dialog

box appearing for specifying the project name and the web

application URL. Then, a new editor opens for the project,

through which the functionalities to be modeled for the web

application can be specified in a tabular notation. Herein, for

each functionality, users may record the name of the function-

ality and create a flowchart model for that functionality which

opens up another (sub-)editor for drawing the flowchart model.

With ModelWeb’s editor, a flowchart model is specified

using the pre-defined user and system actions. User actions

represent the different types of actions that users perform while

navigating through the web pages. System actions represent

the system responses operated by the web application upon

any user actions. As depicted in Fig. 2, any action on a flow-

chart model may be right-clicked and a window appears for

specifying the relevant data and the HTML identifiers of the

web components associated with that action. As discussed later

in Section 7, each action needs to be mapped with the web

application components so as to enable the automated testing

of web applications for the model specifications.

2 ModelWeb’s web-site:https://sites.google.com/view/modelweblanguage

332 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Fig. 2: ModelWeb’s modeling editor

To determine the user and system actions given as follows,

we analysed several web applications in such industries as e-

commerce, banking, and social-media, and came up with a set

of actions. Then, we conducted interviews with practitioners

working for an e-commerce software development company

to get their feedback about the action set. We interviewed

with one web developer, one support engineer, one analyst,

and one manager. Each interview took 1-2 hours and aid in

understanding from the practitioners’ point of view to what

extent the current list of actions are adequate and how the

action list could be extended further.

User Actions

Choose. The choose action is intended for choosing a web

browser through which the web pages of the web application

under test can be requested by the user.

Open. The open action is intended for specifying the user

action of opening a web page. To specify the open action, the

name of the web page to be opened needs to be specified.

Click. The click action is for specifying the user action

of clicking any web components, which can be either a

button, link, text-area, drag-drop area, list (e.g., radiobutton

and dropdown lists), or a list item. A click action is specified

with the HTML ID of the web component to be clicked.

Type. The type action is for specifying the user action of

typing a text on any text-area in a web page. To specify the

type action, the text to be typed and the HTML ID of the

text-area in which the text is to be typed need to be specified.

Login. Any login action for logging into a web application

is specified with the login link ID, login page name, and

username & password details. The login link ID is the HTML

ID of the login page link. The login page name is the name of

the page directed upon clicking the login link. The username

and password are each specified with the IDs of the respective

text-areas and the data to be provided.

Search. Any search action for searching information on a

web page is specified with the search box ID, text, and search

button ID. The search box ID is the HTML ID of the web

component clicked for entering the search key. The search text

is what the user enters as the search key. The search button ID

is the HTML ID of the web component clicked for searching.

Select. The select action is intended for specifying the user

action of selecting an item from a list on a web page. To

specify the select action, the HTML ID of the list and the

HTML ID of the list item to be selected need to be specified.

Register. The register action is for specifying the user action

of performing a registration by filling a form. To specify

the register action, a set of web components (e.g., text-area,

button, dropdown list) constituting the registration form needs

to be specified. For each component, the HTML ID of the

component and the data that is supplied by the user for that

component need to be specified by the user.

Comment. The comment action is for leaving a comment

on a post. The comment action is specified with the comment

link ID, comment text and, comment submit button ID. The

comment link ID is the HTML ID of the link clicked to

type comment. The comment text is the text typed by the

user whenever the user clicks on the comment link ID. The

comment submit button ID is the HTML ID of the button that

the user clicks to submit comment.

Share. The share action is for sharing a post. The share

action is specified with the share link ID, share text and, share

submit button ID. The share link ID is the HTML ID of the

link that the user clicks to share the post in question. The

share text is the text that the user types on a window that

appears whenever the user clicks on the share link ID. The

share submit button ID is the HTML ID of the button that the

user clicks to share the post with the text message.

Drag&Drop. The drag&drop action is intended for spec-

ifying the user action of dragging and dropping any item

into a particular area of the same web page. To specify the

drag&drop action, the HTML ID of the element that is dragged

and dropped needs to be specified.

System Actions

Return. The return action is intended for specifying the

system action of returning a web page upon any user action.

To specify the return action, the name of the web page to be

returned needs to be specified.

Display. The display action is intended for specifying the

MERT OZKAYA ET AL.: MODELWEB: A TOOLSET FOR THE MODEL-BASED TESTING OF WEB APPLICATIONS 333



system action of displaying a message on a web page upon

any user action. To specify the display action, the message

text and the name of the web page on which the message will

be displayed need to be specified.

Note that a user action may transition to a diamond notation

(as depicted in Fig. 4), whose aim is to connect the action

with multiple user actions one of which can be chosen to be

transitioned into. The outgoing action to be operated is decided

depending on the user who performs one of the outgoing

actions at that time.

Fig. 3: A snapshot from the social networking web applica-

tion’s homepage

A. Case-study - Social Networking Web Application

We illustrate ModelWeb’s flowchart modeling notation set

via a social networking web application, which allows users to

connect with each other, post photos/videos/musics/documents

of their interest for their connections, like each others’ posts,

send messages to any users, and follow/unfollow each other to

get informed about each others’ posts. We developed a proto-

type web application for social networking using PhP, whose

main page is depicted in Fig. 3. Our prototype web application

basically allows the users for registering themselves, logging

in/out, following/unfollowing other users, clicking to like any

post shared by the users, and sending messages.

Fig. 4 depicts the flowchart model of the follow functionality

specified with ModelWeb, through which one may follow

any users so as to be informed about their news/updates. As

specified, the user starts by choosing the Google Chrome web-

browser and opening the webpage. Then, the user attempts

to login, where the necessary data are provided via the login

action specification (i.e., username and password details, login

link ID, and login page name). If login is unsuccessful, a

message is displayed on the login page. Otherwise, the system

returns the profile page. The user may now perform the follow

functionality in three alternative ways. The user may search the

name of the person whom he/she wishes to follow. The user

may click to view the followers appearing on the user home

page. Alternatively, the user select one of his/her connections

to check the followers/following list of his/her connection.

Each of those alternative ways leads to the system response

that is to display the list of users where any user may be

selected to follow. The system is then supposed to return

the profile page of the chosen user where the follow button

can be clicked to follow the user. If the follow operation is

successful, the system returns the profile page of the followed

user, otherwise an error message is displayed.

The full specification for the social networking web appli-

cation can be found in the project web-site2.

Fig. 4: The flowchart model for the ”follow” functionality

V. MODELWEB’S BDD GENERATOR

To process the test scenarios generated from the flowchart

models, we consider the transformation of the flowchart mod-

els in the behaviour-driven development (BDD) approach.

BDD is supported by various test automation tools for execut-

ing the test scenarios on the web application under test (e.g.,

Selenium). Also, BDD does not require any learning curve

thanks to its English-based notation set and also promotes the

precise communication among non-technical stakeholders.

BDD has been proposed by Dan North in 2003 for tackling

with the issues raised from the test-driven development (TDD)

[27], which is mainly to do with writing test cases, testing

the software systems against those test cases, and making

the necessary refactoring. BDD’s main focus is on the high-

level system behaviour specifications rather than writing test

cases that may require technical knowledge. As defined by

the Gherkin language3 that has been proposed for specifying

BDD-based test scenarios and accepted by the BDD-based

web test automation tools, the test scenarios that describe

the expected system behaviours can be specified in terms of

the given, when, and then clauses. Given here represents for

a behaviour specification the pre-condition that needs to be

satisfied before the behaviour is performed; when represents

the behaviour specification itself; and, then represents the post-

condition to be ensured after the behaviour specified.

We developed a transformation tool using Metaedit+’s

MERL code-generator definition technology, which can be

used via the modeling editor as depicted in Fig. 2. An icon

3Gherkin Language: https://cucumber.io/docs/gherkin/reference/

334 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



appears on the top-left of the editor, which is clicked to

transform for any web application development project the

flowchart models specified for different web functionalities

of the web application. A set of BDD test scenarios are

transformed from each flowchart model. The BDD generator

outputs for any given web application project the generated

BDD scenarios for the modeled web functionalities in XML.

Fig. 5: Transforming a flowchart model into BDD

A. Transforming Flowchart Models in BDD

In a flowchart model, multiple paths may be existing de-

pending on the diamond notations specified in the model. Each

path is considered to be transformed into a distinct BDD test

scenario. The number of paths for a flowchart model matches

with the cyclomatic complexity of the model.

Given any flowchart model, the first action is supposed to be

choose for choosing any web browser and that is considered

as the pre-condition for each path of the flowchart model. As

shown in Fig. 5, the first action of each path is considered

as the pre-condition of the test scenario and thus transformed

into a given clause. For each path of the flowchart model,

all the actions that come after the first action in that path –

except the last action – are considered as the main behaviour

of the corresponding flowchart path which are expected to

be operated in order given the pre-condition specified as the

given clause is operated successfully. So, those actions are

transformed as the the when clause, which includes the logical

AND combinations of the actions in the same order that the

actions are specified in the flowchart path. The last action on

the path is considered as the post-condition of the test scenario

that is ensured after the when behaviour is operated and thus

transformed as the then clause. The last action on any path

is expected to be a system action, which asserts that upon

the user performing a behaviour for a web functionality, the

system is to provide the expected response as a post-condition.

Fig. 6 illustrates how the model transformation works. The

flowchart model in Fig. 6 describes the user behaviour for

the ”add to cart” functionality of an e-store web application.

Apparently, the flowchart model includes four different paths,

which are indicated in Fig. 6. Each path here is transformed

into a separate BDD scenario, where the first action is

transformed as the given clause, the middle actions as the

when, and the last action transformed as the then clause of

the BDD scenario. Note that each model translation starts

with the functionality description (i.e., ”add to cart”) and

that is followed by the BDD scenario descriptions which are

translated from each unique path of the model and started with

the scenario identification number (e.g., ”Scenario 1”).

As depicted in Fig. 6, some user actions specified in a

flowchart model are refined into a sequence of actions. A

search action is transformed as clicking the search area, typing

a search text, and then clicking the search button. A select

action is transformed as clicking a list to be oopened and

then clicking the item on the opened list. A type action is

transformed as clicking the text area and typing the text on

the clicked area subsequently. A share action is transformed

as clicking the share box, typing the sharing message on the

text area, and clicking the share submit button subsequently.

Likewise, a comment action is transformed as clicking the

comment box, typing the comment message on the text area,

and clicking the comment submit button subsequently. A

register action is transformed as the sequence of actions that

correspond to the components composing the register form.

A login action is transformed as clicking the login link,

clicking the username text-area, typing the username, clicking

the password text-area, typing the password, and clicking the

submit button subsequently. By doing so, we intend to enable

any flow-chart models to be transformed in a standard manner

in terms of user-clicks and therefore any third-party tools

(e.g., scenario prioritisation tools) may easily understand and

process the transformed BDD scenarios.

VI. TEST EXECUTOR

As depicted in Fig. 1, ModelWeb’s test executor consists

of the model extractor and scenario tester tools, which are

accessible via the GUI given in Fig. 7. The model extractor

button in Fig. 7 is clicked for mapping the action elements in

the flow-chart models with the HTML components on the web

application (e.g., buttons, links, text-areas, lists, etc.). Note

that to be able to test the web applications against the BDD

scenarios generated from the flow-chart models, the flowchart

models need to be traceable with regard to the web application

implementation (i.e., the HTML sources). For instance, a click

action specified needs to refer to the identifier of a clickable

element on the relevant web page. So, given for any web

application source HTML files, the model extractor produces

and visualises the HTML element structures of each web page

in a tree form. Users go through the generated tree model of

web pages, learn the identifiers of the HTML elements in the

web pages, and thus click any action elements on the flow-

chart model as depicted in Fig. 2 so as to specify the HTML

identifiers of the actions via the window opening. Then, the

user may click the ”execute” button on the test executor GUI

to run the scenario tester tool and perform the following

activities automatically: (i) produce from the BDD scenarios

(received as a text file from the modeling editor) a test script

for the Selenium web test automation tool, (ii) run Selenium

and execute the generated test script on the web application,

and (iii) display the test results in HTML form as depicted

in Fig. 7. In the test results screen, the test duration,the test

platform, the BDD scenario tested with Selenium and the part

of the BDD scenario under test (i.e., given, when, and then)

that fail (red cross) or pass (green tick) are displayed. Note

that the test executor in Fig. 7 also enables the scenarios to be

prioritised, which is not inside the scope of this paper however.

MERT OZKAYA ET AL.: MODELWEB: A TOOLSET FOR THE MODEL-BASED TESTING OF WEB APPLICATIONS 335



Fig. 6: Illustrating the model transformation from ModelWeb’s flowchart to BDD

Fig. 7: The test execution GUI tool

VII. EVALUATION

We discuss here ModelWeb’s performance evaluation, which

has been conducted together with a group of practitioners for

understanding to what extent ModelWeb provides the time

performance gain when testing web applications. Note that

we further conducted a usability evaluation through a series

of interviews with 9 practitioners. However, due to the space

restrictions, we could only discuss the performance evaluation

here, and the document including the usability evaluation

results discussion is accessible via the project web-site2.

We considered the social networking, course management,

and sports-store case-studies for our performance evaluation.

The social networking application has been partly illustrated in

Section IV-A, which provides such functionalities as following

people, sending messages, and leaving likes on the posts

shared by others. The course management application is used

by the students to enroll for any course, retrieve materials,

and upload any files. The sport-store application enables the

users to do online shopping for the sports store, performing

such tasks as adding any product to a cart, purchasing the

products in the cart, and viewing orders. For each case-study,

we developed a prototype web application in PhP. So, the

practitioners who participate in the evaluation could use the

web application implementations.

To choose the participants, we applied non-random sam-

pling and selected four practitioners who work for the com-

panies that our research group collaborates with. To reduce

biases, we ensured that each participant works in a different

industry, which are e-commerce, logistics, IOT, and defense,

and represents a different user behaviour on web applications.

Each participant completed a software engineering course in

their undergraduate studies and thus has the basic modeling

knowledge. Each participant has no experience on web pro-

gramming and web test automation tools such as Selenium.

In the initial phase of our evaluation, we asked each partic-

ipant to test the web applications without ModelWeb. So, each

participant documented the scenarios for the functionalities

of the three case-studies in BDD manually. We recorded

the time here in extracting the possible scenarios given any

functionality, their documentation in the BDD format, and

transforming the BDD scenarios into a feature file that can

be accepted by the Selenium web test automation tool. Then,

each participant has been asked to use Selenium and test

the corresponding web applications for the BDD scenarios

specified as a feature file. In this aspect, the participants

have used the Eclipse development environment that supports

Selenium and perform the following activities for each web

functionality: (i) writing the Java code for the step-definition

(i.e., mapping scenarios in the feature file to the test code to

be executed) and (ii) writing the Java code for the runner files

that execute the step-definition code. The time spent on the

above-listed two activities for each web functionality of each

336 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



TABLE II: The increase ratios for the time performance and the number of BDD scenarios with the use of ModelWeb

web application have also been taken into consideration.

In the second phase of our evaluation, we asked the same

participants to use ModelWeb this time. Note here that getting

each participant involved in both the first and second phases

may cause biases due to ”carry-over effect” and thus we

decided not to count the time that the participants spend on

learning and understanding the functionality for the case when

ModelWeb is not used and the time spent on understanding

the functionality and learning the modeling notation set when

ModelWeb is used. With ModelWeb, each participant initially

used the modeling editor and the BDD generator to (i)

specify the flowchart models for the functionalities of each

web application considered and (ii) transform the flowchart

models into BDD scenarios automatically. After obtaining the

BDD scenarios, each participant used ModelWeb’s GUI-based

executor tool so as to automatically execute the scenarios on

the web applications automatically. Our test executor firstly

takes the transformed BDD scenarios from the user via the

GUI tool. Then the test executor produces a test script for

the Selenium web test automation tool, and runs Selenium to

execute the test script on the web application automatically.

The test results are then displayed in HTML form.

Having collected the data from two phases of our evaluation,

we calculated the increase ratios given in Table II for the

time performance and the number of BDD scenarios obtained

when the ModelWeb toolset has been used for the three

case-studies. The time performance percentage indicates how

much the time spent for testing is reduced when ModelWeb

has been used, while the percentage for the BDD scenarios

indicates how many more BDD scenarios are obtained when

ModelWeb has been used. So, ModelWeb along with its test

executor aids in improving the time performance of web

applications testing considerably. Indeed, the users involved

in the evaluation gained 27-41% time performance by using

ModelWeb. Also, the users were able to maximise the number

of BDD scenarios tested with the use of ModelWeb. Indeed, the

users gained 51-113% increase on the number BDD scenarios

obtained. Therefore, while the time spent have been reduced

considerably, the number of the BDD scenarios tested got

increased very highly thanks to ModelWeb. It should also

be noted that using ModelWeb does not require learning and

using any programming technologies. It is essentially enough

to be capable of specifying flowchart models and the rest of

the processes (test scenario generation and test execution via

Selenium) are all performed by the toolset automatically in the

background. On the other hand, in the case when ModelWeb

is not used, practitioners have to use software development

environments such as Eclipse and learn any required web test

automation technologies such as Selenium.

VIII. ACKNOWLEDGEMENT

This work was supported by a project of the Scientific and

Technological Research Council of Turkey (TUBITAK) under

grant 120E394.

IX. CONCLUSION

In this paper, a model-based testing toolset called ModelWeb

for testing web applications has been proposed. ModelWeb

is supported with a modeling editor that has been developed

using the Metaedit+ meta-modeling tool. The editor enables to

use a modeling notation set for specifying a flowchart model

for any functionalities of web applications. A flowchart model

is specified with a a pre-defined set of actions (i.e., click, type,

open, choose, search, select, share, comment, register, login,

and drag&drop). The modeling editor is also supplemented

with a transformation tool, which can transform a flowchart

model of any web functionality into the test scenarios ac-

cording to the behaviour-driven development (BDD) approach.

Users can further use ModelWeb’s test executor to execute the

BDD test scenarios on the web application automatically. The

test executor generates a test script for the Selenium web test

automation tool and runs the test script over the Selenium

platform. The test results are displayed in HTML format.

Therefore, using ModelWeb, users may specify their functional

behaviours for any web functionality with a simple, flow-

chart notation set, and execute their web applications for each

scenario derived from their flow-chart models automatically

without having to use programming and testing technologies.

We focussed on the time performance gain that can be

achieved with ModelWeb. That is, we developed prototype

web applications for three case studies, (i.e., course man-

agement, sports-store, and social networking) and determined

four practitioners from different industries to participate in

the evaluation. So, we illustrated how ModelWeb reduces the

MERT OZKAYA ET AL.: MODELWEB: A TOOLSET FOR THE MODEL-BASED TESTING OF WEB APPLICATIONS 337



time spent for testing while maximising the number of BDD

scenarios generated.

We further extended ModelWeb with a scenario prioritiser,

which determines the users’ usage behaviours on the web

applications by analysing the sequence of user actions tracked

and stored via the web analytics tools (e.g., OWA4), and

prioritises the transformed test scenarios accordingly. Due

to the space restriction, we could not discuss ModelWeb’s

prioritisation tool here. However, a document is available in the

project web-site2 for ModelWeb’s prioritisation tool support.

As a future work, we will improve the modeling notation

set with (i) user-defined action types for better expressiveness

and (ii) the inclusion of a model within another model for

managing complexity. We will also consider using some

complex web applications with complex user behaviours and

apply ModelWeb on a real environment and test real web

applications using ModelWeb so as to validate the preliminary

evaluation results.

REFERENCES

[1] E. Seidewitz, “What models mean,” IEEE Softw., vol. 20, no. 5, pp. 26–
32, 2003. [Online]. Available: https://doi.org/10.1109/MS.2003.1231147

[2] B. Selic, “The pragmatics of model-driven development,” IEEE

Softw., vol. 20, no. 5, pp. 19–25, 2003. [Online]. Available:
https://doi.org/10.1109/MS.2003.1231146

[3] T. Kühne, “Matters of (meta-)modeling,” Software and Systems

Modeling, vol. 5, no. 4, pp. 369–385, 2006. [Online]. Available:
https://doi.org/10.1007/s10270-006-0017-9

[4] J. E. Rumbaugh, I. Jacobson, and G. Booch, The unified modeling

language reference manual. Addison-Wesley-Longman, 1999.

[5] I. Schieferdecker, “Model-based testing,” pp. 14–18, 2012. [Online].
Available: https://doi.org/10.1109/MS.2012.13

[6] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner, “One evaluation of model-based
testing and its automation,” CoRR, vol. abs/1701.06815, 2017. [Online].
Available: http://arxiv.org/abs/1701.06815

[7] M. Utting, B. Legeard, F. Bouquet, E. Fourneret, F. Peureux,
and A. Vernotte, “Recent advances in model-based testing,” Adv.

Comput., vol. 101, pp. 53–120, 2016. [Online]. Available: https:
//doi.org/10.1016/bs.adcom.2015.11.004

[8] A. Kraus, A. Knapp, and N. Koch, “Model-driven generation of
web applications in UWE,” in Proceedings of the 3rd International

Workshop on Model-Driven Web Engineering MDWE 2007, Como,

Italy, July 17, 2007, ser. CEUR Workshop Proceedings, N. Koch,
A. Vallecillo, and G. Houben, Eds., vol. 261. CEUR-WS.org, 2007.
[Online]. Available: http://ceur-ws.org/Vol-261/paper03.pdf

[9] J. Gómez, C. Cachero, and O. Pastor, “Conceptual modeling of
device-independent web applications,” IEEE Multim., vol. 8, no. 2, pp.
26–39, 2001. [Online]. Available: https://doi.org/10.1109/93.917969

[10] D. M. Groenewegen, Z. Hemel, L. C. L. Kats, and E. Visser,
“Webdsl: a domain-specific language for dynamic web applications,”
in Companion to the 23rd Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2008, October 19-13, 2007, Nashville, TN, USA, G. E.
Harris, Ed. ACM, 2008, pp. 779–780. [Online]. Available: https:
//doi.org/10.1145/1449814.1449858

[11] R. D. Virgilio, “AML: a modeling language for designing adaptive web
applications,” Pers. Ubiquitous Comput., vol. 16, no. 5, pp. 527–541,
2012. [Online]. Available: https://doi.org/10.1007/s00779-011-0418-9

[12] G. Paolone, M. Marinelli, R. Paesani, and P. D. Felice, “Automatic code
generation of MVC web applications,” Comput., vol. 9, no. 3, p. 56,
2020. [Online]. Available: https://doi.org/10.3390/computers9030056

4OWA Web-site: http://www.openwebanalytics.com/

[13] F. Bolis, A. Gargantini, M. Guarnieri, E. Magri, and L. Musto, “Model-
driven testing for web applications using abstract state machines,”
in Current Trends in Web Engineering - ICWE 2012 International

Workshops: MDWE, ComposableWeb, WeRE, QWE, and Doctoral

Consortium, Berlin, Germany, July 23-27, 2012, Revised Selected

Papers, ser. Lecture Notes in Computer Science, M. Grossniklaus and
M. Wimmer, Eds., vol. 7703. Springer, 2012, pp. 71–78. [Online].
Available: https://doi.org/10.1007/978-3-642-35623-0 7

[14] M. Peroli, F. D. Meo, L. Viganò, and D. Guardini, “Mobster: A
model-based security testing framework for web applications,” Softw.

Test. Verification Reliab., vol. 28, no. 8, 2018. [Online]. Available:
https://doi.org/10.1002/stvr.1685

[15] A. Törsel, “Automated test case generation for web applications from a
domain specific model,” in Workshop Proceedings of the 35th Annual

IEEE International Computer Software and Applications Conference,

COMPSAC Workshops 2011, Munich, Germany, 18-22 July 2011.
IEEE Computer Society, 2011, pp. 137–142. [Online]. Available:
https://doi.org/10.1109/COMPSACW.2011.32

[16] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of ajax web
applications,” in First International Conference on Software Testing,

Verification, and Validation, ICST 2008, Lillehammer, Norway, April

9-11, 2008. IEEE Computer Society, 2008, pp. 121–130. [Online].
Available: https://doi.org/10.1109/ICST.2008.22

[17] P. W. M. Koopman, P. Achten, and R. Plasmeijer, “Model-based testing
of thin-client web applications and navigation input,” in Practical

Aspects of Declarative Languages, 10th International Symposium,

PADL 2008, San Francisco, CA, USA, January 7-8, 2008, ser.
Lecture Notes in Computer Science, P. Hudak and D. S. Warren,
Eds., vol. 4902. Springer, 2008, pp. 299–315. [Online]. Available:
https://doi.org/10.1007/978-3-540-77442-6 20

[18] X. Wang, B. Zhou, and W. Li, “Model based load testing of
web applications,” in IEEE International Symposium on Parallel and

Distributed Processing with Applications, ISPA 2010, Taipei, Taiwan,

6-9 September 2010. IEEE Computer Society, 2010, pp. 483–490.
[Online]. Available: https://doi.org/10.1109/ISPA.2010.24

[19] F. Lebeau, B. Legeard, F. Peureux, and A. Vernotte, “Model-based
vulnerability testing for web applications,” in Sixth IEEE International

Conference on Software Testing, Verification and Validation, ICST

2013 Workshops Proceedings, Luxembourg, Luxembourg, March 18-22,

2013. IEEE Computer Society, 2013, pp. 445–452. [Online]. Available:
https://doi.org/10.1109/ICSTW.2013.58

[20] M. Wynne, A. Hellesoy, and S. Tooke, The Cucumber Book: Behaviour-

Driven Development for Testers and Developers. Pragmatic Bookshelf,
2017.

[21] H. Reza, K. Ogaard, and A. Malge, “A model based testing technique
to test web applications using statecharts,” in Fifth International

Conference on Information Technology: New Generations (ITNG

2008), 7-8 April 2008, Las Vegas, Nevada, USA, S. Latifi, Ed.
IEEE Computer Society, 2008, pp. 183–188. [Online]. Available:
https://doi.org/10.1109/ITNG.2008.145

[22] J. P. Ernits, R. Roo, J. Jacky, and M. Veanes, “Model-based testing
of web applications using nmodel,” in Testing of Software and

Communication Systems, 21st IFIP WG 6.1 International Conference,

TESTCOM 2009 and 9th International Workshop, FATES 2009,

Eindhoven, The Netherlands, November 2-4, 2009. Proceedings, ser.
Lecture Notes in Computer Science, M. Núñez, P. Baker, and M. G.
Merayo, Eds., vol. 5826. Springer, 2009, pp. 211–216. [Online].
Available: https://doi.org/10.1007/978-3-642-05031-2 14

[23] G. J. Holzmann, “The spin model checker,” vol. 23, no. 5, pp. 279–295,
May 1997.

[24] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” STTT,
vol. 1, no. 1–2, pp. 134–152, 1997.

[25] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” IEEE Trans.

Software Eng., vol. 39, no. 6, pp. 869–891, 2013. [Online]. Available:
https://doi.org/10.1109/TSE.2012.74

[26] S. Kelly, K. Lyytinen, and M. Rossi, “Metaedit+ A fully configurable
multi-user and multi-tool CASE and CAME environment,” in Seminal

Contributions to Information Systems Engineering, 25 Years of CAiSE,
J. A. B. Jr., J. Krogstie, O. Pastor, B. Pernici, C. Rolland, and
A. Sølvberg, Eds. Springer, 2013, pp. 109–129. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36926-1 9

[27] K. Beck, Test Driven Development: By Example. Addison-Wesley
Professional, 2002.

338 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022


