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Abstract—Knowledge graphs play a central role for linking
different data which leads to multiple layers. Thus, they are
widely used in big data integration, especially for connecting
data from different domains. Few studies have investigated the
questions how multiple layers within graphs impact methods and
algorithms developed for single-purpose networks, for example
social networks. This manuscript investigates the impact on the
centrality measures of graphs with multiple layers compared to
a those measures in single-purpose graphs. In particular, (a) we
develop an experimental environment to (b) evaluate two different
centrality measures – degree and betweenness centrality – on
random graphs inspired by social network analysis: small-world
and scale-free networks. The presented approach (c) shows that
the graph structures and topology has a great impact on its
robustness for additional data stored. Although the experimental
analysis of random graphs allows us to make some basic
observations we will (d) make suggestions for additional research
on particular graph structures that have a great impact on the
stability of networks.

I. INTRODUCTION

KNOWLEDGE graphs have been shown to play an im-

portant role in recent knowledge mining and discovery,

for example in the fields of digital humanities, life sciences

or bioinformatics. They also include single purpose networks

(like social networks), but mostly they contain also additional

information and data, see for example [1], [2], [3]. Thus, a

knowledge graph can be seen as a multi-layer graph com-

prising different data layers, for example social data, spatial

data, etc. In addition, scientists study network patterns and

structures, for example paths, communities or other patterns

within the data structure, see for example [4]. Very few studies

have investigated the questions how multiple layers within

graphs impact methods and algorithms developed for single-

purpose networks, see [5]. This manuscript investigates the

impact of a growing part of other layers on centrality mea-

sures in a single-purpose graph. In particular, we develop an

experimental environment to evaluate two different centrality

measures – degree and betweenness centrality – on random

graphs inspired by social network analysis: small-world and

scale-free networks.

This paper is divided into five sections. The first section

gives a brief overview of the state of the art and related

work. The second section describes the preliminaries and

background. We will in particular introduce knowledge graphs

and centrality measures. In the third section, we present the

experimental setting and the methods used for this evaluation.

The fourth section is dedicated to experimental results and the

evaluation. Our conclusions are drawn in the final section.

II. PRELIMINARIES

The term knowledge graph (sometimes also called a se-

mantic network) is not clearly defined, see [6]. In [7],

several definitions are compared, but the only formal def-

inition was related to RDF graphs which does not cover

labeled property graphs. As another example, [8] gives

a definition of knowledge graphs limited to the defini-

tion of important features. Knowledge graphs were in-

troduced by Google in 2012, when the Google Knowl-

edge Graph was published on the use of semantic knowl-

edge in web search, see https://blog.google/products/search/

introducing-knowledge-graph-things-not/. This is a represen-

tation of general knowledge in graph format. Knowledge

graphs also play an important role in the Semantic Web and

are also called semantic networks in this context.

Thus, a knowledge graph is a systematic way to connect

information and data to knowledge. It is thus a crucial concept

on the way to generate knowledge and wisdom, to search

within data, information and knowledge. Context is the most

important topic to generate knowledge or even wisdom. Thus,

connecting knowledge graphs with context is a crucial feature.

Definition 1 (Knowledge Graph). We define a knowledge

graph as graph G = (E,R) with entities e * E =
{E1, ..., En} coming from formal structures Ei like ontologies.

The relations r * R can be ontology relations, thus in

general we can say every ontology Ei which is part of the

data model is a subgraph of G indicating O ¦ G. In addition,

we allow inter-ontology relations between two nodes e1, e2
with e1 * E1, e2 * E2 and E1 ;= E2. In more general terms,

we define R = {R1, ..., Rn} as a list of either inter-ontology

or inner-ontology relations. Both E as well as R are finite

discrete spaces.

Every entity e * E may have some additional metainforma-

tion which needs to be defined with respect to the application

of the knowledge graph. For instance, there may be several

node sets (some ontologies, some actors (like employees or
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stakeholders, for example), locations, ...) E1, ..., En so that

Ei ¢ E and E = *i=1,...,nEi. The same holds for R when

several context relations come together such as ”is relative of”,

”has business affiliation”, ”has visited”, etc.

By using formal structures within the graph, we are implic-

itly using the model of a labeled property graph, see [9] and

[10]. Here, nodes and edges form a heterogeneous set. Nodes

and edges can be identified by using a single or multiple labels,

for example using ¼ : E ³ Σ, where Σ denotes a set of labels.

We need to mention that both concepts are equivalent, since

graph databases use the concept of labeled property graphs.

Here, our experimental setting is – without loss of generality

– settled in social network analysis (SNA). It is quite obvious

that a social network containing actors may easily be extended

with other data, for example spacial data (e.g. locations, rooms,

towns, countries), or social groups (e.g. companies, clubs),

or any other information (e.g. information data about actors).

Once a social network is built, we may start to ask questions

like “How many friends does actor X have?” or “To how many

groups does actor Y belong?”. The mathematical formulation

of these questions would be “What is the degree of node

X?” and “How many communities Ci can be found such

that Y * Ci?”. The mathematical foundations in this and the

following sections are based on the works of [11] and [12]

unless otherwise noted.

In general, we define a Graph G = (V,E) with a set

of edges or vertices V – these are actors, locations or any

other nodes in the network – and edges E, which describe the

relations between nodes. The number of nodes |V | is usually

denoted with n. Given two nodes s =Simon and j =Jerusalem

we may add an edge or relation (s, j) between both describing

for example, that Simon is or was in Jerusalem. Then we say s
and j are connected or they are neighbors. The neighborhood

of a vertice v is denoted with N(v) and describes all nodes

connected to v. If we are interested in the size of this neighbor-

hood we calculate the node degree given by deg(v) = |N(v)|.
The neighborhood thus gives information about the con-

nectedness of an actor in the network. This can be useful to

illustrate the direct influence of an actor within the complete

network, especially for actors with a high node degree. But

it is obvious that the amount of relations does not necessarily

give a good idea on their quality or how we could use these

relations. While the node degree is often used as a measure

to create random graphs, it is in general not a good measure

in order to analyze particular actors in networks, see [13].

Nevertheless, the degree centrality for a node v * V is given

by

dc(v) =
deg(v)

n2 1

The output value ranges between 0 and 1 and gives a reference

to the direct connections. As discussed, it omits all indirect

relations and in particular the node’s position in the network.

Definition 2 (Scale-Free Network). A network is scale-free if

the fraction of nodes with degree k follows a power law k2α,

where ³ > 1.
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Fig. 1. Top: In random networks the degree distribution follows a given
random distribution. Here, most nodes are average linked and an equal number
of nodes is lowly and highly linked. Bottom: Real networks often follow other
or even no standard random distribution. Here, a scale-free distribution is
shown: Most nodes are lowly linked whereas only very few notes are highly
linked.

Definition 3 (Small World Network [14]). Let G = (V,E) be

a connected graph with n nodes and average node degree k.

Then G is a small-world network if k j n and k k 1.

In any case, the degree distribution provides us with infor-

mation about the network structure since we can distinguish

between sparsely and densely connected networks. While [13]

suggests statistical analysis to compute the correlation between

attributes of the network and the density of nodes, this will

not work for the small networks and the missing statistical

values. In any case, although scale-free networks are not

an universal characteristic for real-world networks, we might

use this approach to get a first overview about the network

itself. Random graphs, like the Erdős–Rényi networks, follow

a Poisson distribution. Scale-free networks, inspired by real-

world social networks, follow a power law. See Figure 1

for two examples of a random graph and a more common

distribution in real word networks.

We will now discuss one more property to evaluate nodes

and their position in the networks. These properties can be

used to calculate statistical parameters, so-called centrality

measures, cf. [15] and [16]. They answer the question “Which

nodes in this network are particularly significant or impor-

tant?”.

Betweenness analyzes critical connections between nodes

and thus gives an indication of individuals that can change

the flow of information in a network. This measure is based

on paths in a network:

Much of the interest in networked relationships

comes from the fact that individual nodes benefit

(or suffer) from indirect relationships. Friends might

provide access to favors from their friends, and
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information might spread through the links of a

network.[13]

A path p in a graph G = (V,E) is a set of vertices v1, ..., vt,
t * N, for example written as

p = [v1, ..., vt],

where (vi, vi+1) * E for i * {1, . . . , t 2 1}. The length |p|
of the path p is the total number of edges – not nodes. Thus

|p| = t21. The path p links the starting node v1 and an ending

node vt. In a path, no crossings are allowed, thus vi ;= vj for

all i, j * {1, ..., t}. If all properties of a path are met except

that the beginning and the end vertex are the same – that is,

v1 = vt – we denote this set as a circle.

Betweenness centrality was first introduced by [17]1 and

considers other indirect connections, see [19]. Given a node

v, it calculates the number Pv(k, j), that is, the number of

all shortest paths in a network for all beginning and ending

nodes k, j * V that pass through v. If P (k, j) denotes the

total number of paths between k and j, the importance of v
is given by the ratio of both values. Thus the betweenness

centrality according to [13] is given by

bc(v) =
�

k ;=j,v ;=k,v ;=j

Pv(k, j)

P (k, j)
·

2

(n2 1)(n2 2)
,

where n denotes the number of the vertices in the graph.

This parameter allows an analysis of the critical links and how

often a node lies on such a path. This centrality measure thus

answers the questions whether a node can change the flow of

information in a network or whether it is a bridge between

other nodes, see [19].

While betweenness assumes network flows to be like pack-

ages flowing from a starting point to a destination, other

measures consider multiple paths: For example, the so-called

eigenvector centrality – introduced by [20] – measures the

location of directly neighboring nodes in the network. For the

eigenvector centrality, we “count walks, which assume that

trajectories can not only be circuitous, but also revisit nodes

and lines multiple times along the way.”[21] This measure

not only classifies the direct possibility to influence neighbors,

but also ranks the indirect possibility to influence the whole

network. For a detailed mathematical background we refer

to [13].

Less popular measures are Katz prestige, and Bonacich’s

measure, see [13]. It has been shown that these measures are

closely related, see [22].

III. METHOD

We evaluate the degree centrality and betweenness centrality

on random graphs. First, we consider Scale-Free Networks

with n nodes, see [13]. Moreover, [23] introduced a widely

used graph model with three random parameters ³+´+µ = 1.

These values define probabilities and thus define attachment

1Initially introduced for symmetric relations – undirected graphs – it was
extended to asymetric relations – directed graphs – by [18].

Fig. 2. Frequency of nodes with a given degree for three random Scale-Free
Networks with n = 150 nodes.

Fig. 3. Frequency of nodes with a given degree for three Newman-Watts-
Strogatz small-world random graph with n = 500 nodes.

rules to add new vertices between either existing or new nodes.

This model allows loops and multiple edges, where a loop

denotes one edge where the endvertices are identical, and

multiple edges denote a finite number of edges that share

the same endvertices. Thus, we convert the random graphs to

undirected graphs. For testing purpose, we scale the number of

nodes n and use ³ = 0.41, ´ = 0.54, and µ = 0.05. We chose

this random graph model since it is generic and feasible for

computer simulations for measuring and evaluation purposes,

see [24], [25].

Figure 2 shows the frequency of nodes (y-axis) with a

particular degree (x-axis) for three random networks with

n = 150 nodes. Compared to Figure 2, Figure 1 clearly shows

the scale-free distribution, in which many nodes have a small

degree and only few nodes have a very large degree: most

nodes are hence lowly linked. Thus these small-degree nodes

lead to a few communities which are highly connected.

The second random graph uses a fixed degree distribution

and is widely known as Newman-Watts-Strogatz small-world

random graph [26]. The algorithm to create such as graph

takes a number of nodes n, the number of k nearest neighbors

that form a ring topology and the probability p for adding a

new edge. A small-world graph contains only small average

paths and thus has a small diameter, see [13]. Some studies

like [27] study the relation between scale-free and small-world

networks, in particular the relationship between the average
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path length and local clusterings. In general, it is possible to

generate scale-free networks with small-world attributes, see

[28].

Figure 3 shows the frequency of nodes with a given degree

for three random networks with n = 500 nodes. Compared to

Figure 1, Figure 3 clearly shows the Poisson distribution with

many nodes having an average degree. Together with Figure 2

it also illustrates the “long tail” of the scale-free distribution,

see [13].

We will now evaluate how graph structures and in particular

measures change when additional information are stored in

extra layers. We partition a graph into an uncolored part that

contains the ‘original’ data and into a part with blue nodes

in which novel ‘extra’ data stored. These blue nodes simulate

one or more new layers in the knowledge graph. One could

imagine a graph in which every node represents a scientist in a

social network, and two persons are connected whenever they

are tied in the network (e.g. friends, collaborators, etc.). We

now want to add more information to our graph by adding blue

nodes. Every blue node represents a specific conference. Two

blue nodes are connected whenever the conferences address -

at least partly - the same community. A scientist is connected

to a conference whenever they attended the workshop. The

original graph is here the set of scientists, the blue nodes

(the conferences) form a new layer, in which the extra data is

stored.

Thus, given a random graph G = (V,E), a next step

comprises a probability pb for blue nodes which leads to a

graph G with blue nodes B ¢ V . We first compute the

centrality measures for all nodes in V \ B in the graph

G = (V,E). Then we compute those measures for all nodes

in G \ B, this time in the Graph G \ B = (V \ B,E). Thus,

we have two vectors c1, c2 * R
n where here, n is the number

of nodes in V \B. We denote ci by ci =
�

c1i , c
2
i , c

3
i , ...

�

.

While comparing two vectors, we are interested in two val-

ues. The first one is the total number of misordered elements,

that is, the total number of positions on which the elements

differ from each other. The second value that we compute

in order to compare two vectors is the number of moved

elements. For this we count those elements that have a different

predecessor and / or successor in the first vector compared to

the second one.

Example III.1. Let c1 = [1, 2, 3, 4, 5], c2 = [5, 3, 2, 1, 4] and

c3 = [1, 5, 2, 3, 4]. If c1 is the original ordering, we see that

c2 has a totally different order. In c3 the entry 5 is moved,

but the rest of the list is unchanged, although still 4 elements

are on the wrong location. Hence, the number of misordered

elements in c1 compared to c2 is 5. The number of moved

elements is 5 and 1.

To identify both errors, we first define function e:

e(i, c1, c2) =

�

0 ci1 = ci2
1 ci1 ;= ci2

That is, e(i, j, c1, c2) = 1 if the element on the ith position

÷ ÷N ÷ ÷N ÷ ÷N
Scale-Free n = 150 n = 300 n = 500

Mean 0.95 0.46 0.97 0.47 0.98 0.48

Small-World k = 4 k = 8 k = 50
Mean 0.97 0.97 0.97 0.96 0.95 0.96

TABLE I
MEAN VALUES FOR DEGREE CENTRALITY ERRORS.

of c1 differs from the element on the jth position in c2. To

shorten notation, we write e(i, c1, c2) whenever i = j.

Let x be an element contained in every cu, u * N. Then

p(x, cu) denotes the predecessor of element x in cu and

s(x, cu) denotes the successor of x in cu. If x is the first

element in cu, then p(x, cu) = '. If x is the last element of

cu, then s(x, cu) = '. With these definitions, we define eN :

eN (x, c1, c2) =

ù

ü

ü

ü

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

ü

ü

ü

û

1 if p(x, c1) = ' and s(x, c1) ;= s(x, c2),

or s(x, c1) = ' and p(x, c1) ;= p(x, c2),

or s(x, c1) ;= s(x, c2) and p(x, c1) ;= p(x, c2),

1/2 if s(x, c1) ;= s(x, c2) and p(x, c1) = p(x, c2),

or s(x, c1) = s(x, c2) and p(x, c1) ;= p(x, c2),

0 otherwise.

In other words, we consider the predecessor of an element

in c1 and check if this element is still a predecessor of this

element in c2, and analyse analoguously the successor of an

element.

With this, we define two error measures ÷ and ÷N :

÷(c1, c2) =
n
�

i=1

e(i, c1, c2)

÷N (c1, c2) =
�

x*c1

eN (x, c1, c2)

Example III.2. Let’s reconsider Example III.1: Recall that

c1 = [1, 2, 3, 4, 5], c2 = [5, 3, 2, 1, 4] and c3 = [1, 5, 2, 3, 4].
Then, ÷(c1, c2) = 5 and ÷N (c1, c2) = 5. Moreover, ÷(c1, c3) =
4 and ÷N (c1, c3) = 2.5.

We will now analyze different scenarios to evaluate the

impact of additional blue nodes on a scale-free and a small-

world network.

IV. RESULTS

A. Degree Centrality

The Degree Centrality was evaluated with errors ÷ and ÷N
for scale-free random graphs (n = 150, n = 300 and n =
500, see Figure 4) and Newman-Watts-Strogatz small-world

random graphs (n = 150, k * {4, 8, 50}, see Figure 5). The

mean values are given in Table I.

Here, we see that the Small-World graph has a very high

error rate for both ÷ and ÷N even for small pB . In particular, the

values are rather constant, no matter what value was chosen. In

addition, the graph topology for different values of k has only

very little impact on the error rate. Thus, even small changes
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Fig. 4. Degree Centrality errors for scale-free random graphs (n = 150,
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Fig. 5. Degree Centrality errors for Newman-Watts-Strogatz small-world
random graph (n = 150, k ∈ {4, 8, 50}) for different values of pB between
0 and 0.3.

in the graph structure (a very small value for pB) have a great

impact on the degree centrality. Since Small-World graphs

have a high level of local clustering, the random exclusion

of blue nodes will most likely effect not only one cluster, but

also other clusters. This changes not only the position, but also

the ordering of node degrees.

A different scenario occurs when considering Scale-Free

graphs. Again we see a very high error rate for ÷, even for

small pB . The values for ÷N are usually near to .5 (mean

values 0.46, 0.47, 0.48). Neither the graph size n nor the value

for pB has an impact on these errors. Here, we see the scale-

free distribution: the blue nodes do change the position of

the degree centrality, but while they also change the ordering

within clusters, they do not affect the complete ordering due

to the longer distance between nodes.

B. Betweenness Centrality

The Betweenness Centrality was evaluated with errors ÷ and

÷N for scale-free random graphs (n = 150, n = 300 and

n = 500, see Figure 6) and Newman-Watts-Strogatz small-

world random graphs (n = 150, k * {4, 8, 50}, see Figure 7).

The mean values are given in Table II.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

E
rr

o
r

Probability for blue nodes

· for n=150 
·N for n=150

· for n=300 
·N for n=300

· for n=500 
·N for n=500

Fig. 6. Betweenness Centrality errors for scale-free random graphs (n = 150,
n = 300 and n = 500) for different values of pB between 0 and 0.3.
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Fig. 7. Betweenness Centrality errors for Newman-Watts-Strogatz small-
world random graph (n = 150, k ∈ {4, 8, 50}) for different values of pB
between 0 and 0.3.

÷ ÷N ÷ ÷N ÷ ÷N
Scale-Free n = 150 n = 300 n = 500

Mean 0.77 0.23 0.87 0.27 0.91 0.29

Small-World k = 4 k = 8 k = 50
Mean 0.94 0.92 0.94 0.92 0.94 0.93

TABLE II
MEAN VALUES FOR BETWEENNESS CENTRALITY ERRORS.

Betweenness centrality (see Figure 6) in scale-free graphs

is very much influenced by the choice for pB . Again, the total

error ÷ becomes very high although there are several outliers.

More interesting is again the ordering error ÷N : although the

error increases with a rising value of pB , it remains very low.

Again, the number of nodes n has only very little impact on

the error measures.

Here, again, the Small-World graph has a very high error

rate for both ÷ and ÷N although not for very small pB , see

Figure 7. In particular, we may find a boundary p2B so that

the values are rather constant for pB > p2B . Again, the graph

topology for different values of k has only very little impact

on the error rate. Thus, even small changes in the graph

structure (a very small value for pB) have a great impact on

the betweenness centrality. Thus, the random choice of blue

nodes again destroys the structures of local clustering which
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will most likely effect not only one cluster, but also other

clusters.

We will now consider two graph structures to take a closer

look at their impact on the error measures.

C. Cliques

Let G = (V,E) be a graph with |V | = n and blue

nodes B ¢ V . The nodes in G \ B = (V \ B,E) are

denoted by v1, . . . , vn2|B| while the nodes in B are denoted

by vn2|B|+1, . . . , vn. We further assume that G\B is still con-

nected. Let dc(G) be the vector containing the degree central-

ity measures for all nodes v in G in descending order, where -

after the computation of dc(v) for all v1, . . . , vn * V (G) - the

values for all v * B, that is, vi with i = n2 |B|+ 1, . . . , n,

are deleted. Hence,

dc(G) =
�

dc(v1), dc(v2), ..., dc(vn2|B|)
�

with dc(vj) g dc(vj+1) for all j * {1, . . . , n2 |B|}.

Let bc(G) be the vector containing the betweenness central-

ity measures for all nodes in G in descending order, where -

after the computation of bc(v) for all v1, . . . , vn * V (G) - the

values for all v * B, that is, vi with i = n2 |B|+ 1, . . . , n,

are deleted. That is,

bc(G) = (bc(v1), bc(v2), ..., bc(vn 2 |B|+ 1))

with bc(vj) g bc(vj+1) for all j * {1, . . . , n 2 |B|}. Let

pdc(v) respectively pbc(v) be the position of node v in the

vector dc(G) respectively bd(G). When it is clear from the

context which vector is meant, we omit the index and simply

write p(v).
We may now prove some very basic observations on how a

single blue node may influence the different error measures ÷
and ÷N , given that the blue node is part of a cluster in G. Here,

with a cluster or a clique we denoate a complete subgraph of

G.

Lemma IV.1. Let G = (V,E) be a graph with |V | = n
and blue nodes B ¢ V with B = {u} where G \ B is still

connected. Let Ck be a clique in G with k nodes and let

u * Ck. Then

÷(dc(G), dc(G \B)) f n2 12 min
v*N(u)

pdc(v)

holds.

Proof. Let a1 = dc(G) and a2 = dc(G \B). The only nodes

which are affected by a decreasing degree centrality are those

in the neighborhood N(u) of the blue node u, since for v *
N(u), only one node in the neighborhood of v is removed in

G \B compared to G. Thus,

a
p(v)
1 = a

p(v)
2 2 1 "v * N(u)

holds. Observe that minv*N(u) pdc(v) denotes the smallest

position in dc(G) of a node in N(u) (that is, the highest

ranked neighbor of u in dc(G)). All nodes in dc(G), that

are higher ranked are not affected by the deletion of u. Recall

that dc(G) only has n 2 |B| = n 2 1 entries. Thus, at most

n 2 1 2 minv*N(u) pdc(v) nodes change their position in

dc(G \B) compared to dc(G).

We can rely on the same basic observations for the error

measure ÷N :

Lemma IV.2. Let G = (V,E) be a graph with |V | = n
and blue nodes B ¢ V with B = {u} where G \ B is still

connected. Let Ck be a clique in G with k nodes and let

u * Ck. Then

÷N (dc(G), dc(G \B)) f k 2 1

holds.

Proof. Let a1 = dc(G) and a2 = dc(G \B). Again, the only

nodes which are affected by a decreasing degree centrality are

those in the neighborhood of the blue node, that is the set

v * N(u). Here, only one node in the neighborhood of these

nodes is removed in G\B. While the internal order of all nodes

in G\{Ck\{u}} does not change and the internal order of the

k 2 1 nodes in Ck \ {u} remains untouched as well, at most

the k2 1 nodes in Ck \ {u} are shifted to a certain degree to

the right, since their value in dc(G \ B) decreased compared

to dc(G). Every vertex in Ck \ {u} hence contributes at most

1 to the sum computed in ÷N (dc(G), dc(G \B)), which leads

to the upper bound k 2 1.

The herefore stated lemma explains why this error increases

for small-world networks: The node degree is high and a lot

of local clusters exist.

Since betweenness centrality is also affected by the global

structure of the graph, counting all shortest paths, the situation

is slightly different.

Lemma IV.3. Let G = (V,E) be a graph with |V | = n
and blue nodes B ¢ V with B = {u} where G \ B is still

connected. Let Ck be a clique in G with k nodes and let

u * Ck. Then

÷(bc(G), bc(G \B)) f

�

0 if d(u) = k 2 1
�

w ;=y Pu(w, y) otherwise.

Proof. Case 1 d(u) = k 2 1: In this case, u only lies on

shortest paths between u and any node in G \ {u}, since

N(u) = Ck \ {u}. That is, every shortest path through Ck

ignores u, since u is only connected to nodes within Ck \{u},

see Figure 8.

Thus, the number of shortest paths in G that include u is

n2 1, that is,
�

w ;=y,w ;=u,y ;=u

Pu(w, y) = n2 1

holds. Hence, for v * G \B,
�

w ;=y,w ;=u,y ;=u

PG\B
v (w, y) =

�

w ;=y,w ;=u,y ;=u

PG
v (w, y)2 1

where PG denotes a shortest path in the graph G. In other

words: There exists a value b * R such that for every v *
G \B,

bc(G)p(v) = bc(G \B)p(v) 2 b.
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Fig. 8. If d(u) = k − 1, u lies only on shortest paths between u and any
other node in G \ {v}. Any shortest path through Ck ignores u, since u is
only connected to nodes within Ck .

Hence, the ordering of the values in bc(G) compared to bc(G\
B) does not change and the considered diffence is 0.

Case 2 d(u) g k: In this case, u lies on

s =
�

w ;=y,w ;=u,y ;=u

Pu(w, y)

shortest paths within the graph. Thus, removing this node will

affect all these paths and thus the ordering of at most s nodes

will be changed. Hence ÷(bc(G), bc(G \B)) f s.

Here, we considered highly connected blue nodes within

clusters and their impact on the error measures. Usually,

external data may not only be added to such dense structures

but also to single nodes. Thus, we will now discuss the impact

of nodes with degree 1.

D. Nodes with Degree 1

We now consider the special case in which the only existing

blue node has degree 1.

Lemma IV.4. Let G = (V,E) be a graph with |V | = n
and blue nodes B ¢ V with B = {u} where G \ B is still

connected. Let further N(u) = {v}. Then

÷ (dc (G) , dc (G \B)) f pdc(v)

holds.

Proof. Since d(u) = 1, there is only one node v in N(u). This

node is on position pdc(v) in dc(G) and it is the only node

affected in G\B. Thus, at most pdc(v) nodes are affected.

A similar observation can be made for ÷N :

Lemma IV.5. Let G = (V,E) be a graph with |V | = n
and blue nodes B ¢ V with B = {u} where G \ B is still

connected. Let further |N(u)| = 1, that is, d(u) = 1. Then

÷N (dc(G), dc(G \B)) f 2

holds.

Proof. Let a1 = dc(G) and a2 = dc(G\B). If d(u) = 1, there

is only one node v in N(u). This node is on position pdc(v)
in a1 and it is the only node affected in G \B. Thus, either it

is at the same position in a2 or on a different one which will

affect the nodes on position pdc(u)2 1 and pdc(u) + 1 in a1
and pdc(u)2 1 and pdc(u) + 1 in a2. Thus

÷N (dc(G), dc(G \B)) f 2

holds.

While degree centrality is a local centrality measure, be-

tweenness is a global measure. Since u lies only on shortest

paths between u and any other node in the graph, we can make

the following observation:

Lemma IV.6. Let G = (V,E) be a graph with |V | = n
and blue nodes B ¢ V with B = {u} where G \ B is still

connected. Let further N(u) = {v} and let

t = max

ù

ú

û

n2 1,
�

w ;=y

Pv(w, y)

ü

ý

þ

.

Then

÷(bc(G), bc(G \B)) f t

holds.

Proof. Let a1 = bc(G) and a2 = bc(G \B).
Since d(u) = 1, there is only one particular node v * N(u).

Thus, all shortest paths containing u will include v. The

highest impact of removing u will hence be on v. Moreover,

n 2 1 shortest paths that include u exist in G \ B. Thus, the

first part of the maximum holds.

In general, s =
�

w ;=y Pv(w, y) shortest paths in G include

v. Thus, removing u will also change the betweenness for s
nodes and the second part of the maximum holds.

The evaluation of ÷N will—in general—decrease the worst-

case scenario:

Lemma IV.7. Let G = (V,E) be a graph with |V | = n
and blue nodes B ¢ V with B = {u} where G \ B is still

connected. Let further N(u) = {v} and let

Let

z = max

ù

ú

û

2
�

w ;=y

Pu(w, y), 2
�

w ;=y

Pv(w, y)

ü

ý

þ

.

Then

÷N (bc(G), bc(G \B)) f z

holds.

Proof. Let a1 = bc(G) and a2 = bc(G \B). Since d(u) = 1,

there is only one particular node v * N(u). Thus, all shortest

paths containing u will include v. Moreover, n21 such paths

exist and the highest impact of removing u will be on v. But

since we are interested in the ordering of nodes, the total

number of reordered entries in a2 may be just a factor. We

can estimate this factor with the total number of shortest paths

containing u which is
�

w ;=y Pu(w, y).
In general, again, s =

�

w ;=y Pv(w, y) shortest paths in G
include v. Thus, removing u will also change the betweenness

for s nodes and the second part of the maximum holds.
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These error estimations are not sharp. In addition, if the size

of B increases, it will be even more challenging to specify the

error rates. But together with our experimental results, these

estimations offer us a first impression of problematic graph

structures having a great impact on ÷ and ÷N .

We could show that blue nodes in clusters have a great

influence on both ÷ and ÷N while those nodes with a small

neighborhood have a rather small influence on ÷N . This gives

a first idea why in general scale-free networks are more robust

regarding ÷N . The degree centrality is only influenced by

local structures but in general the errors are higher while the

betweenness centrality is in general more complex and the

results of this paper can only give some hints, but further

research needs to be done here.

V. DISCUSSION AND OUTLOOK

This paper investigates the impact on two particular cen-

trality measures of graphs with multiple layers compared to

single-purpose graphs. We presented an experimental environ-

ment to evaluate two different centrality measures – degree

and betweenness centrality – on random graphs inspired by

social network analysis: small-world and scale-free networks.

The result clearly shows that the graph structures and topology

has a great impact on its robustness for additional data stored.

In particular, we could identify nodes with a high node degree

and closely connected communities or clusters as problematic

for reordering the centrality measures. Thus, we could show

that small-world networks are rather less robust than scale-free

networks.

Although the experimental analysis of random graphs allows

us to make some basic observations, we could also present

some very preliminary error approximations for two cases: A

node within a cluster Ck and a node v with d(v) = 1. These

results underline the experimental results. We need to mention

that a lot of research needs to be done in this field, because

we only considered degree and betweenness centrality.

In particular, we can identify the following questions for fur-

ther research: Is it possible to find good error approximations

for larger sets of blue nodes B? How do ÷ and ÷N behave on

any given node v * B ¢ V with d(v) = m? What are (other)

graph structures that have a great impact on the stability of

networks for degree, betweenness and other centralities?

To sum up, it is valid to extend single-purpose networks

with data from other sources. In particular, we considered

random social networks as a basis. Thus, extending social

networks with other information layers is possible, although it

will change the behavior of measurements like network cen-

trality. The effect highly depends on the given graph structure.

More interdisciplinary research is needed to investigate the

impact on real-world data within the context of humanities. In

addition, further research needs to be done on the robustness

of other centrality measures.
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