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Abstract—Noncommutative cryptography is based on appli-
cations of algebraic structures like noncommutative groups,
semigroups, and noncommutative rings. Its intersection with
Multivariate cryptography contains studies of cryptographic
applications of subsemigroups and subgroups of affine Cremona
semigroups defined over finite commutative rings. Efficiently
computed homomorphisms between stable subsemigroups of
affine Cremona semigroups can be used in tame homomorphisms
protocols schemes and their inverse versions. The implementation
scheme with the sequence of subgroups of affine Cremona group
that defines the projective limit was already suggested. We
present the implementation of another scheme that uses two
projective limits which define two different infinite groups and the
homomorphism between them. The security of the corresponding
algorithm is based on complexity of the decomposition problem
for an element of affine Cremona semigroup into a product of
given generators. These algorithms may be used in postquantum
technologies.

Index Terms—Multivariate Cryptography, stable transforma-
tion groups and semigroups, decomposition problem of nonlinear
multivariate map into given generators, tame homomorphisms,
key exchange protocols, cryptosystems, algebraic graphs
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I. INTRODUCTION

L
ET k be a natural number g 3. The problem of ap-

proximation of k-regular tree by the family of k-regular

graphs of increasing order and increasing girth, i.e. minimal

length of cycle in the graph, is very important. Solution of

this broblem can be used in many applications, like computer

implementations of branching process, construction of low

density parity check codes, various application to Opimisation

Graph Theory and Cryptography (see [30], [32] and further

references). Families of k-regular graphs Γi of increasing order

vi of increasing girth satisfying to one of the following 3

properties are especially interesting:

1) to be a family of large girth, i.e. family such that gi g
C logk21(vi) for certain constant C and each i,

2) to have a tree well defined projective limit of Γi when

i tends to infinity,

3) to be a family of small world graphs, i.e. family such

that diameter di of graphs Γi is at most c logk(vi).

The known families satisfying properties (1) and (2) were

the families of q-regular graphs D(n, q), n = 1, 2, . . . and q

are prime powers and their connected components CD(n, q).
In recent publication [33], [34], were announced that special

homomorphic images quotients A(n, q) of graphs D(n, q)
form a family satisfying (1), (2) and (3) for each value of

parameter q.

Cryptographic applications of A(n, q) were already known.

In particular, in paper [30] postquantum secure protocols

which uses standard homomorphisms between D(n, q) and

D(m, q) (n g m) (or A(n, q) and A(m, q)) were used for the

construction of protocols of Noncommutative Cryptography.

Current paper is dedicated to protocols of Postquantum

Cryptography which use “hidden” remarkable homomor-

phisms between D(n, q) and A(n, q). In the generalisation

of these protocols general finite commutative ring K can

be used instead of finite field. We hope that the usage of

remarkable graph homomorphism leads a strong postquantum

secure protocol.

II. ON IDEAS OF NONCOMMUTATIVE CRYPTOGRAPHY

WITH PLATFORMS OF TRANSFORMATIONS OF

MULTIVARIATE CRYPTOGRAPHY

Post Quantum Cryptography serves for the research of

asymmetrical cryptographic algorithms which can be poten-

tially resistant against attacks with the usage of a quan-

tum computer. The security of currently popular algorithms

is based on the complexity of the following well known

three hard problems: integer factorization, discrete logarithm

problem, discrete logarithm for elliptic curves. Each of these

problems can be solved in polynomial time by Peter Shor’s

algorithm for the theoretical quantum computer. In fact, some

rather old cryptosystems which were suggested in the late

’70s of the 20 century potentially may have some resistance

to attacks on quantum computers (see for instance McEliece

cryptosystem [18]).

Modern PQC is divided into several directions such as

Multivariate Cryptography, Nonlinear Cryptography, Lattice-

based Cryptography, Hash-based Cryptography, Code-based

Cryptography, studies of isogenies for superelliptic curves,

Noncommutative cryptography, and others.
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The Multivariate Cryptography (see [4], [12], [6]) uses

polynomial maps of affine space Kn defined over a fi-

nite commutative ring into itself as encryption tools. It

exploits the complexity of finding a solution of a system

of nonlinear equations from many variables. Multivariate

cryptography uses as encryption tools nonlinear polynomial

transformations of kind x1 ³ f1(x1, x2, . . . , xn), x2,³
f2(x1, x2, . . . , xn), . . . , xn ³ fn(x1, x2, . . . , xn)), transform-

ing affine space Kn, where fi : K[x1, x2, . . . , xn], i =
1, 2, . . . , n are multivariate polynomials usually given in a

standard form, i.e. via a list of monomials in a chosen order.

Noncommutative cryptography appeared with attempts to

apply the Combinatorial group theory to Information Security.

If G is a noncommutative group then correspondents can

use conjugations of elements involved in the protocol, some

algorithms of this kind were suggested in [19], [22], [23],

[7], where group G is given with the usage of generators and

relations. The security of such algorithms is connected to Con-

jugacy Search Problem (CSP) and Power Conjugacy Search

Problem (PCSP), which combine CSP and Discrete Logarithm

Problem and their generalizations. Currently, Noncommutative

cryptography is essentially wider than group-based cryptogra-

phy. It is an active area of cryptology, where the cryptographic

primitives and systems are based on algebraic structures like

groups, semigroups, and noncommutative rings (see [20], [3],

[5], [21], [1], [2], [11], [17], [13]). This direction of security

research has very rapid development (see [16], [14] and further

references in these publications).

One of the earliest applications of noncommutative alge-

braic structures for cryptographic purposes was the usage of

braid groups to develop cryptographic protocols. Later several

other noncommutative structures like Tompson groups and

Grigorchuk groups have been identified as potential candidates

for cryptographic post-quantum applications. The standard

way of presentations of groups and semigroups is the usage of

generators and relations (Combinatorial Group Theory). Semi-

group based cryptography consists of general cryptographic

schemes defined in terms of wide classes of semigroups and

their implementations for chosen semigroup families (so-called

platform semigroups).

The paper is devoted to some research on the intersection

of Noncommutative and Multivariate Cryptographies. We try

to use some abstract schemes in terms of Combinatorial Semi-

group Theory for the implementation with platforms which are

semigroups and groups of polynomial transformations of free

modules Kn where K is a commutative ring.

The most popular form of Multivariate cryptosystem is

the usage of a single very special map f in a public key

mode. The first examples were based on families of quadratic

bijective transformation fn(see [4], [12], [6]), such choice

implies a rather fast encryption process. The paper is devoted

to other aspects of Multivariate cryptography when some

subsemigroup of affine Cremona semigroup of all polynomial

transformations is used instead of a single transformation. Let

us discuss a case of subsemigroup with a single generator.

Everybody knows that Diffie-Hellman key exchange protocol

can be formally considered in general case of any finite group

or semigroup G. In the case of group G, the corresponding

ElGamal cryptosystem can be introduced. Notice that the

security of this algorithm depends not only on abstract group

G but on the way of its generation in computer memory. For

instance, if G = Z7

p is a multiplicative group of a large prime

field then the discrete logarithm problem (DLP) is a difficult

one and guarantees the security of the protocol. If the same

abstract group is given as an additive group of Zp21 protocol

is insecure because DLP will be given by linear equation.

Notice that the implementation of the idea to use a multi-

variate generator in its standard form has to overcome essen-

tial difficulties. At first glance, the Diffie-Hellman protocol

in affine Cremona semigroup looks like an unrealistic one

because the composition of two maps of degree r and s taken

in “general position” will be a transformation of degree rs.

So in majority of cases deg(F ) = d, d > 1 implies very fast

growth of function d(r) = deg(F r). Of course in the case of

the generator in common position, not only a degree but also

a density (total number of monomial terms of the map in its

standard forms) grows exponentially.

So we have to find special conditions on a subsemigroup

of affine Cremona group which guarantees the polynomial

complexity of procedure to compute the composition of several

elements from subsemigroup. Such conditions can define a ba-

sis of Noncommutative Multivariate Cryptography. Hopefully,

at least two conditions of this kind are already known [26]

(see further references) and [28]. We consider them in the

following section.

III. ON STABLE SUBSEMIGROUPS OF AFFINE CREMONA

SEMIGROUP, EULERIAN TRANSFORMATIONS AND

CORRESPONDING CRYPTOGRAPHIC SCHEME

Stability condition demands that the degree of each trans-

formation of the subsemigroup of affine Cremona semigroup

has to be bounded by independent constant d. We refer to such

subsemigroup as a stable subsemigroup of degree d. Examples

of known families of stable subgroups of degree d = 3 reader

can find in [26] (see further references) or [30]. Applications

of such families to Symmetric Cryptography could be found in

[32]. Some examples of stable families of subgroups of degree

2 are given in [25].

The eulerian condition demands that all transformations

of subsemigroup of affine Cremona subgroup are given in a

standard form

(x1, x2, . . . , xn) ³ (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn),
. . . , fn(x1, x2, . . . , xn)) where each fi has density

1. All transformations of this kind form General

Eulerian Semigroup nGES(K) of transformations

of kind x1 ³ µ1x
a(1,1)
1 x

a(1,2)
2 . . . x

a(1,n)
n , x2 ³

µ2x
a(2,1)
1 x

a(2,2)
2 . . . x

a(2,n)
n , . . . , xn ³

µnx
a(n,1)
1 x

a(n,2)
2 . . . x

a(n,n)
n where a(i, j) are positive

integers and µi * K.

First cryptosystems of Nonlinear Multivariate Cryptography

in terms of nGES(K) are suggested in [28].
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The discrete logarithm problem is the special simplest case

of the word decomposition problem for semigroups. Let S2

be a subsemigroup of S generated by elements g1, g2, . . . , gt.

The word problem (WP) of finding the decomposition of

g * S into a product of generators gi is difficult, i.e.

polynomial algorithms to solve it with Turing machine or

Quantum Computer are unknown. The idea to apply this

problem in Cryptography was considered in [39] where some

general schemes to use WP for constructions of algorithms of

Noncommutative Cryptography were suggested. Of course, the

complexity of the problem depends heavily on the choice of S

and the way of a presentation of the semigroup. In the cases

of families of affine Cremona semigroups or S =n GES(K),
the problem WP is computationally infeasible with a Turing

machine and with Quantum Computer.

We are working on implementations of the following formal

schemes of usage of the complexity of WP. Tame map means

computable in polynomial time from parameter m.

a) TORIC TAHOMA CRYPTOSYSTEM: Let K be a

commutative ring, subgroups nG of nGES(K) act naturally

on (K7)n, mS(n,K) is a subsemigroup of mGES(K) such

that there is a tame homomorphisn ∆ = ∆(m,n) of mS(n,K)
onto nG. We assume that m = m(n) where m > n and

consider the following toric tahoma cryptosystem:

Alice takes b1, b2, . . . , bs, s > 1 from mS(n,K) and

a1, a2, . . ., as where ai = ∆(bi)
21. She takes g *m

EG(K) and h *n EG(K) and forms pairs (gi, hi) =
(g21big, h

21aih), i = 1, 2, . . . , s and sends them to Bob.

He writes the word w(z1, z2, . . . , zs) in the alphabet

z1, z2, . . . , zs together with the reverse word w2(z1, z2, . . . , zs)
formed by characters of w written in the reverse order. He

computes element b = w(g1, g2, . . . , gs) via specialization

zi = gi and a = w2(h1, h2, . . . , hs) via specialization zi = hi.

Bob keeps a for himself and sends b to Alice. She computes

a21 as h21∆(gbg21)h.

Alice writes her message (p1, p2, . . . , pn) and sends cipher-

text a21(p1, p2, . . . , pn) to Bob. He decrypts with his function

a. Symmetrically Bob sends his ciphertext a(p1, p2, . . . , pn) to

Alice and she decrypts with a21.

The problems of constructions of large subgroups G of
nGES(K), pairs (g, g21), g * G, and tame Eulerian ho-

momorphisms µ : G ³ H , i.e. computable in polynomial

time t(n) homomorphisms of subgroup G of nGES(K)
onto H <m GES(K) are motivated by tasks of Nonlinear

Cryptography.

The first platforms for this scheme and some other abstract

schemes are suggested in [28].

b) AFFINE TAHOMA CRYPTOSYSTEM: If we change

semigroup mGES(K) for affine Cremona semigroup S(Km)
we obtain the following Affine Tahoma Cryptosystem on stable

transformations.

Let K be a commutative ring, stable subgroups nG of

S(Kn) act naturally on Kn and mS(n,K) be a subgroup of

S(Km) such that there is a tame homomorphisn ∆ = ∆(m,n)
of mS(n,K) onto nG. We assume that m = m(n) where

m > n.

Alice takes b1, b2, . . . , bs, s > 1 from mS(n,K) and

a1, a2, . . . , as where ai = ∆(bi)
21. She takes g * C(Qm) and

h * C(Rn) where R and Q are extensions of the commutative

ring K and forms pairs (gi, hi) = (g21big, h
21aih), i =

1, 2, . . . , s and sends them to Bob. We assume that g = g2T ,

h = h2T 2 where semigroup ïg2,m S(n,K)ð generated by

g2 and elements of mS(n,K) and group ïh2, Gð are stable

semigroups of degree d and T * AGLn(R), T 2 * AGLm(Q).

As in the previous algorithm Bob writes the word

w(z1, z2, . . . , zs) in the alphabet z1, z2, . . . , zs together with

the reverse word w2(z1, z2, . . . , zs) formed by characters

of w written in the reverse order. He computes element

b = w(g1, g2, . . . , gs) via specialization zi = gi and a =
w2(h1, h2, . . . , hs) via specialization zi = hi. Bob keeps

a for himself and sends b to Alice. She computes a21 as

h21∆(gbg21)h.

Alice writes her message (p1, p2, . . . , pn) from Rn and

sends ciphertext a21(p1, p2, . . . , pn) to Bob. He decrypts

with his function a. Symmetrically Bob sends his ciphertext

a(p1, p2, . . . , pn) to Alice and she decrypts with a21 (see

[27]). Let nTC(K,R,Q) stand for affine Tahoma cryptosys-

tem as above.

In [25] quadratic stable subsemigroups with corresponding

homomorphisms are suggested as platforms of this scheme.

Some other schemes are also implemented there with these

platforms. Some cubical platforms were suggested in [27].

Only one family of platforms was investigated via computer

implementation. Paper [31] is devoted to implementations

of Affine Tahoma scheme with platforms of cubical stable

groups. They were defined via families of linguistic graphs

that form projective limits and the standard homomorphisms

between two members of these sequences. So we have pairs

(Gn,∆n) where Gn < S(Kn), ∆n is a homomorphism of

Gn onto Gm, m = m(n) such that projective limits lim(Gn),
n ³ > and lim(∆(Gn)), n ³ > coincide with the same

infinite transformation group G.

This article is devoted to another computer experiment with

the new platform which uses the same groups Gn but different

tame homomorphisms ηn . In the new scheme lim(Gn), n ³
> equals to G, but lim(ηn(Gn)), n ³ > coincides with the

image of homomorphism of G with an infinite kernel.

We believe that the option to vary tame homomorphisms

in the chosen sequence of semigroup makes the task of

cryptanalytic much more difficult.

We use projective limits D(K) and A(K) of the well known

graphs D(n,K) (see [15], [35]) and A(n,K) (see [31] and

further references) defined over arbitrary finite commutative

rings. Walks on the graphs D(K) and A(K) allow to de-

fine groups GD(K) and GA(K) of cubic transformations

of infinite dimensional affine space over K. Group GA(K)
is a homomorphic image of GD(K), both groups can be

obtained as projective limits of sequences GAn(K) and

GDn(K),n = 1, 2, . . . of finite cubical stable groups. We

suggest key exchange protocols based on homomorphisms of

GDj(K) onto GAi(K) for some i and j.
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Computer simulations demonstrate an interesting effect of

density stabilization of generated cubical maps. The time

execution tables for algorithms of generation of maps and

numbers of monomial terms are given. They demonstrate the

feasibility of algorithms. The method of generation allows

constructing for each bijective transformation of the free

module over K its inverse map. Multivariate nature of collision

maps allows using these algorithms for the safe exchange of

multivariate transformations. Various deformation rules can be

used for this purpose (see formal schemes of [27], [26], [25]).

IV. SOME BASIC DEFINITIONS

Let us consider basic algebraic objects of multivariate cryp-

tography, which are important for the choice of appropriate

pairs of maps f , f21 in both cases of public key approach

or idea of asymmetric algorithms with protected encryption

rules. Let us consider the totality SFn(K) of all rules of

kind: x1 ³ f1(x1, x2, . . . , xn), x2 ³ f2(x1, x2, . . . , xn),
. . . , xn ³ fn(x1, x2, . . . , xn) acting on the affine space Kn,

where fi, i = 1, 2, . . . , n are elements of K[x1, x2, . . . , xn]
with natural operation of composition. We refer to this semi-

group as semigroup of formal transformation SFn(K) of free

module Kn. In fact it is a totality of all endomorphisms of

ring K[x1, x2, . . . , xk] with the operation of their superposi-

tion. Each rule f from SFn(K) induces transformation t(f)
which sends tuple (p1, p2, . . . , pn) into (f1(p1, p2, . . . , pn),
f2(p1, p2, . . . , pn), . . . ,fn(p1, p2, . . . , pn)). Affine Cremona

semigroup S(Kn) is a totality of all transformations of kind

t(f). The canonical homomorphism t ³ t(f) maps infinite

semigroup SFn(K) onto finite semigroup S(Kn) in the case

of finite commutative ring K.

We refer to pair (f, f 2) of elements SFn(K) such that

ff 2 and f 2f are two copies of identical rule xi ³ xi,

i = 1, 2, . . . , n as pair of invertible elements. If (f, f 2) is

such a pair, then product t(f)t(f 2) is an identity map. Let us

consider the subgroup CFn(K) of all invertible elements of

SFn(K) (group of formal maps). It means f is an element

of CFn(K) if and only if there is f 2 such that ff 2 and f 2f

are identity maps. It is clear that the image of a restriction

of t on CFn(K) is affine Cremona group Cn(K) of all

transformations of Kn onto Kn for which there exists a

polynomial inverse.

We say that a family of subsemigroups Sn of SFn(K) (or

S(Kn)) is stable of degree d if maximal degree of elements

from Sn is an independent constant d, d > 1. If K is a finite

commutative ring then stable semigroup has to be a finite set.

Condition d > 1 is natural because of elements from the

group AGLn(K) of all affine bijective transformations, i.e.

elements of affine Cremona group of degree 1.

V. ON LINGUISTIC GRAPHS AND RELATED SEMIGROUPS OF

AFFINE TRANSFORMATIONS

Linguistic graph I of type (1, 1, n 2 1) over commuta-

tive ring K is a bipartite graph with partition sets P =
Kn (set of points) anf L = Kn (set of lines) such

that point p = (p1, p2, . . . , pn) is incident to line l =

[l1, l2, . . . , ln] if and only if a2p2 + b2l2 = f1(p1, l1),
a3p3 + b3l3 = f2(p1, p2, l1, l2), . . . , anpn + bnln =
fn21(p1, p2, . . . , pn21, l1, l2, . . . , ln21) where ai and bi are

elements of K7 and fi are multivariate polynomials with

coefficients from K. We define colours of points and lines as

ρ(p) = p1 and ρ(l) = l1. In linguistic graph for each vertex

there is a unique neighbour with chosen colour. Symplectic

homomorphism of lingustic graph is the homomorphism in-

duced by selecting coordinates pi of points and li where i is

an element of selected proper subset of {2, 3, . . . , n}. Elements

of theory of linguistic graphs and their applications to graph

based encryption reader can find in [29]. Some applications

of linguistic graphs of type (1, 1, n2 1) are described in [24],

[36], [38].

Let us concentrate on linguistic graphs of type 1, 1,m. Let

N(a, v) be the operator of taking neighbour of the vertex v

with colour a * K. We refer to sequences (f1, f2, . . . , fs)
with f1 * K[x1] of even length s as symbolic strings. On the

totality S1,1 (K) of such sequences we consider the product

(f1, f2, . . . , fs)(g1, g2, . . . , gr) = (f1, f2, . . . , fs, g1(fs(x1)),
g2(fs(x1)), . . . , gr(fs(x1))).

Proposition 1. Elements of S1,1(K) with defined product form

a semigroup.

If Q is an extension of the ground commutative ring K then

linguistic graph I(Q) and can be defined via the same set of

equations. Let us take Q = K[x1, x2, . . . , xn] and consider in-

finite linguistic graph I 2 = I(K[x1, x2, . . . , xn]) with partition

sets P 2 and L2 isomorphic to variety K[x1, x2, . . . , xn]
n. For

each symbolic string (f1, f2, . . . , fs) from S1,1(K) and con-

sider the symbolic computation C(f1, f2, . . . , fs) which is a

walk in I 2 with starting point X = (x1, x2, . . . , xn) are generic

elements of the commutative ring K[x1, x2, . . . , xn], other

elements of the walk are X1 = N(f1, X), X2 = N(f2, X1),
. . . , Xs = N(fs, Xs21). Notice that operators N(fi, Xi21)
are computed in the graph I 2.

It is easy to see that Xs =
(fs(x1), g2(x1, x2), . . . , gn(x1, x2, . . . , xn)), where

gi * K[x1, x2, . . . , xi]. The rule (x1 ³ fs(x1),
x2 ³ g2(x1, x2), . . . , xn ³ gn(x1, x2, . . . , xn)) defines

the map from S(Kn) into itself. We denote this map as

∆I(K)(f1, f2, . . . , fs) and refer to it as a map of symbolic

computation.

Proposition 2. A map ∆I(K) from S1,1(K) into s(Kn) send-

ing symbolic string (f1, f2, . . . , fs) to ∆I(K)(f1, f2, . . . , fs)
is a homomorphism of S1,1(K) into s(Kn).

We refer to the image PS(I(K)) of homomorphism of

proposition 2 as semigroup of symbolic point to point com-

putations and refer to ∆I(K) as linguistic compression (lc)

homomorphism. We define a semigroup LS(I(K)) of line-to-

line computations via simple change of points for lines in I

and I 2.

Proposition 3. A symplectic homomorphism δ of linguistic

graphs 1I(K) and 2I(K) of type (1, 1, n) induces canonical
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homomorphism of PS(1I(K)) onto PS(2I(K)).

Let us consider subsemigroup Σ(K) of S1,1(K) generated

by symbolic shifting strings of kind (x1+a1, x1+a2, . . . , x1+
as), where ai, i = 1, 2, . . . , s are elements of K. We identify

tuple C = (x1 + a1, x1 + a2, . . . , x1 + as) with its code

ïa1, a2, . . . , asð.

Proposition 4. For each linguistic graph I(K) of type

(1, 1, n2 1) the image Σ(I(K)) of Σ(K) under the linguistic

compression homomorphism onto PS(I(K)) is a subgroup of

affine Cremona group.

In fact for invertibility of δ(f1, f2, . . . , fs) * PS(I(K)) the

bijectivity of fs is a sufficient and necessary condition. We

refer to Σ(I(K)) as group of walks on points of linguistic

graph I(K).
Let C = (x1+ a1, x1+ a2, . . . , x1+ as) be a shifting sym-

bolic string from the semigroup Σ(K). We refer to Rev(C) =
(x1 2 as + as21, x1 2 as + as22, . . . , x1 2 as + a1, x1 2 as)
as revering string for x.

Lemma. Let ∆ = ∆I(K) be linguistic compression map from

S1,1(K) onto PS(I(K)) and x * Σ(K). Then inverse map

for ∆(x) coincides with ∆(Rev(x)).

VI. STABLE GROUPS OF CUBICAL MAPS DEFINED IN

TERMS OF LINGUISTIC GRAPHS AND THEIR

HOMOMORPHISMS

Let K be a commutative ring. We define A(n,K) as

bipartite graph with the point set P = Kn and line set L = Kn

(two copies of a Cartesian power of K are used). We will use

brackets and parenthesis to distinguish tuples from P and L.

So (p) = (p1, p2, . . . , pn) * Pn and [l] = [l1, l2, . . . , ln] * Ln.

The incidence relation I = A(n,K) (or corresponding bi-

partite graph I) is given by condition pIl if and only if the

equations of the following kind hold

p22l2 = l1p1, p32l3 = p1l2, p42l4 = l1p3, p52l3 = p1l4,

. . . , pn2ln = p1ln21 for odd n and pn2ln = l1pn21 for even n.

Let us consider the case of finite commutative ring K,

|K| = m. As it instantly follows from the definition the

order of our bipartite graph A(n,K) is 2mn. The graph is

m-regular. In fact the neighbour of given point p is given

by above equations, where parameters p1, p2, . . . , pn are fixed

elements of the ring and symbols l1, l2, . . . , ln are variables.

It is easy to see that the value for l1 could be freely chosen.

This choice uniformly establishes values for l2, l3, . . . , ln . So

each point has precisely m neighbours. In a similar way, we

observe the neighbourhood of the line, which also contains m

neighbours. We introduce the colour ρ(p) of the point p and

the colour ρ(l) of line l as parameter p1 and l1 respectively.

It means that graphs A(n,K) with colouring ρ belong to

the class of Γ linguistic graphs of type (1, 1, n2 1).
Let GA(n,K) = Σ(A(n,K)) stands for the group of walks

on points of A(n,K). We have a natural homomorphism

GA(n+ 1,K) onto GA(n,K) induced by symplectic homo-

morphism ∆ from A(n + 1,K) onto A(n,K) sending point

(x1, x2, . . . , xn, xn+1) to (x1, x2, . . . , xn) and line [x1, x2,

. . . , xn, xn+1] to [x1, x2, . . . , xn]. It means that there is well

defined projective limit A(K) of graphs A(n,K) and groups

GA(K) of groups G(n,K) when n is growing to infinity.

As it stated in [37] case of K = Fq , q > 2 infinite graph

A(Fq) is a tree. Some properties of infinite groups GA(K)
of transformation of infinite dimensional affine space over

commutative ring K the reader can find in [31].

Other family D(n,K) of linguistic graphs of type (1, 1, n2
1) defined over the commutative ring K were defined in [35]

but its definition in the case of K = Fq was known earlier. In

fact graphs D(n, q) = D(n, Fq) are widely known due to their

applications in Extremal Graph Theory, in Theory of LDPC

codes and Cryptography. Graphs D(n,K) are bipartite with

set of vertices V = P*L, |P+L| = 0. A subset of the vertices

P is called the set of points and another subset L is called the

set of lines. Let P and L be two copies of Cartesian power

Kn, where n g 2 is an integer. Two types of brackets are used

in order to distinguish points from lines. It has a set of vertices

(collection of points and lines), which are n-dimensional

vectors over K : (p) = (p1, p2, p3, p4, . . . , pi, pi+1, pi+2, pi+3,

. . . , pn), [l] = [l1, l2, l3, l4, . . . , li, li+1, li+2, li+3, . . . , ln]. The

point (p) is incident with the line [l], if the following relations

between their coordinates hold: l22p2 = l1p1, l32p3 = l2p1,

l4 2 p4 = l1p2, li 2 pi = l1pi22, li+1 2 pi+1 = li21p1,

li+2 2 pi+2 = lip1, li+3 2 pi+3 = l1pi+1 where i g 5. Con-

nected component of edge-transitive graph D(n, q) is denoted

by CD(n, q) [15]. Notice that all connected components of

the natural projective limit D(q) of graphs D(n, q), n ³ >
are q-regular trees. Let D(K) stands for the projective limit

of graphs D(n,K).

Let us denote as GD(n,K) and GD(K) the groups

Σ(D(n,K)) and Σ(D(K)) of walks on points of graphs

D(n,K) and D(K) respectively. For the description of

certain symplectic quotients we will use the alternative

description of graphs D(K). It is based on the connections

of these graphs with Kac-Moody Lie algebra with

extended diagram A1.The vertices of D(K) are infinite

dimensional tuples over K. We write them in the

following way (p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
2

2,2, p2,3,

. . . , pi,i, p
2

i,i, pi,i+1, pi+1,i, . . .), [l] =
[l1,0, l1,1, l1,2, l2,1, l2,2, l

2

2,2, l2,3, . . . , li,i, l
2

i,i, li,i+1, li+1,i,

. . .]. We assume that almost all components of points and

lines are zeros. The condition of incidence of point (p) and

line [l] ((p)I[l]) can be written via the list of equations below.

li,i 2 pi,i = l1,0pi21,i, l2i,i 2 p2i,i = li,i21p0,1,

li,i+1 2 pi,i+1 = li,ip0,1, li+1,i 2 pi+1,i = l1,0p
2

i,i.

This four relations are defined for i g 1, (p21,1 = p1,1, l21,1 =
l1,1).

Similarly, we can define the projective limit A(K) of graphs

A(n,K), n > 1.

We can describe the bipartite infinite graph A(K)
on the vertex set consisting on points and lines

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p2,3, . . . , pi,i, pi,i+1, . . .).
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[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l2,3, . . . , li,i, li,i+1, . . .] such that

point (p) is incident with the line [l] ((p)I[l], if the following

relations between their coordinates hold: li,i2pi,i = l1,0pi21,i,

li,i+1 2 pi,i+1 = li,ip0,1.

It is clear that the set of indices A = {(1, 0), (0, 1), (1, 1),
(1, 2), (2, 2), (2, 3), . . . , (i 2 1, i), (i, i)} is a subset in D =
{(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 2)2, . . . , (i 2 1, i), (i, i 2
1), (i, i), (i, i)2, . . .). So graph A(K) is a symplectic quotient

of linguistic incidence structure D(K). Let us use symbol Ψ
for the corresponding symplectic homomorphism. For each

positive integer m g 2 we consider subsets M = Am

and M = Dm containing of first m 2 2 elements of

A2 = A 2 {(1, 0), (0, 1)} and D2 = D 2 {(1, 0), (0, 1)} with

respect to the above orders and obtain symplectic quotients

IM of D(K) and A(K). One can check that corresponding

quotients are isomorphic to graphs D(m,K) and A(m,K).
The investigation of pair Am, Dm leads to following statement

[35].

Proposition 5. For each n g 4 there are a symplectic

homomorphisms of D(2n,K) onto A(m, k), 2 g m g n+ 1
and D(2n + 1,K) onto A(m,K), 2 g m g n + 2. Notice

that D(n,K) = A(n,K) for n = 2, 3.

Proposition 6. Groups GD(K) and GA(K) are stable cubi-

cal transformations of infinite-dimensional affine space over

a commutative ring K. Graph homomorphism of Proposi-

tion 5 induces group homomorphism Σ of GD(n,K) onto

GA(n,K).

Corollary. GD(n,K) and GA(n,K) are stable cubical sub-

groups of Cremona group C(Kn).

A. Tahoma word cryptosystem

Alice selects commutative ring K and parameters n and m

as in Proposition 5. She will prepare data for Affine Tahoma

Cryptosystem presented in Section II in the simplest case of

K = Q = R. She selects strings Ci = ïiα1,
iα2, . . . ,

iαt(1)ð,
i = 1, 2, . . . , r from Σ(Q) and elements B = ïβ1, β2, . . . , βsð
from Σ(K) and D = ïγ1, γ2, . . . , γkð from Σ(K). Alice com-

putes Rev(B) and Rev(D). She takes affine transformations

T1 * AGLn(K) and T2 from AGLm(K).
Alice forms strings Bi = Rev(B)CiB and Di =

Rev(D)Rev(Ci)D, i = 1, 2, . . . , r in Σ(K) and Σ(R). She

computes images CBi and CDi of linguistic compression

homomorphism ∆D(n,K) and ∆A(m,K) on elements Bi and

Di. Finally Alice computes elements T21
1 CBiT1 = Gi and

Fi = T21
2 CDiT2 which are elements of affine Cremona

groups C(Kn) and C(Rm).
Alice keeps the pairs (Gi, Fi) and computes additionally for

herself H = T21
1 ∆D(n,K)(Rev(B)), H21 = ∆D(n,K)(B)T1

and

Z = T21
2 ∆DA(m,K)(Rev(D)), Z21 = ∆A(m,K)(D)T2.

Alice sends pairs Gi and Fi to Bob and correspondents execute

steps of the cryptosystem with this data.

The homomorphism δ : GD(n,Q) ³ GA(m,Q) of the

diagram is tame, i.e. its image can be computed in polynomial

time in variable n. The triple (GD(n,Q), A(m,Q), δ) can

be considered as a platform of Tahoma protocol introduced

in [27], word tahoma stands for an abbreviation of tame

homomorphism.

VII. GRAPHS A(n, q) AND D(n, q), DIGITAL CONDENCED

MATTERS PHYSICS EFFECT

We can substitute graph A(n,K) for other linguistic graph

L of type (1, 1, n 2 1) defined over the commutative ring

K and rewrite the content of section VI. We use graphs

A(n,K) and well known linguistic graph D(n,K) of this

type to implement all algorithm of previous section. Graphs

D(n,K) are bipartite with set of vertices V = P * L,

|P + L = 0|. A subset of the vertices P is called the set

of points and another subset L is called the set of lines.

Let P and L be two copies of Cartesian power Kn, where

n g 2 is an integer. Two types of brackets are used in order to

distinguish points from lines. It has a set of vertices (collection

of points and lines), which are n-dimensional vectors over

K : (p) = (p1, p2, p3, p4, . . . , pi, pi+1, pi+2, pi+3, . . . , pn),
[l] = [l1, l2, l3, l4, . . . , li, li+1, li+2, li+3, . . . , ln]. The point (p)
is incident with the line [l], if the following relations between

their coordinates hold: l2 2 p2 = l1p1, l3 2 p3 = l2p1,

l4 2 p4 = l1p2, li 2 pi = l1pi22, li+1 2 pi+1 = li21p1,

li +22 pi+2 = lip1, li+3 2 pi+3 = l1pi+1 where i g 5. Con-

nected component of edge-transitive graph D(n, q) is denoted

by CD(n, q) [15]. Notice that all connected components of

the natural projective limit D(q) of graphs D(n, q), n ³ >
infinite graph D(q) are q-regular trees.

Let us denote as G2(n,K) the group of elements of kind

g = η(C) of irreducible computation computation C =
(a1, a2, . . . , at) in the case of graphs D(n,K).

We present time of generation (in ms) of element g from

G(n,K) and G2(n,K) in the cases of graphs A(n,K) and

D(n,K) and number M(g) of monomial terms for g.

We refer to parameter t as length of word. We can see the

“condensed matters physics” digital effect. If t is “sufficiently

large”, then M(g) is independent from t constant c. It means

that the density of cubical collision map in all algorithm is

simply c.

We have written a program for generating of elements

and for encrypting text using the generated public key. The

program is written in C++ and compiled with the gcc com-

piler. We used an average PC with processor Pentium 3.00

GHz, 2GB memory RAM and system Windows 7. We have

implemented three cases:

1) T and T1 are identities,

2) T and T1 are maps of kind x1 ³ x1 + a2x2 + a3x3 +
. . . + atxt, x2 ³ x2, x3 ³ x3, . . . , xt ³ xt, ai ;= 0,

i = 1, 2, . . . , t (linear time of computing for T and T1),

where t = n and t = m, respectively,

3) T = Ax+b, T1 = A1x+b1; matrices A, A1 and vectors

b, b1 have mostly nonzero elements.

The tables I–II present the number of monomials depending

on the number of variables (n) and the password length in

the second and third case and the family of graphs A(n,K),
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where K is a finite field of characteristic 2. The tables III–IV

present the time (in milliseconds) of the generation of public

key monomials depending on the number of variables n and

the length of the word in the second and third case and the

family of graphs A(n,K). In [8], [10], [9] the similar program

for the case when K is Boolean ring was used for investigation

of classical Diffie-Hellman protocol for cyclic group ïgð and

corresponding ElGamal cryptosystem. Currently, we expand

this computer package on the case of commutative rings Zm,

where m is the power of 2.

TABLE I
NUMBER OF MONOMIAL TERMS OF THE CUBIC MAP INDUCED BY THE

GRAPH A(n,F
232

), CASE II

length of the word

n 16 32 64 128 256

16 5623 5623 5623 5623 5623
32 53581 62252 62252 62252 62252
64 454375 680750 781087 781087 781087

128 3607741 6237144 9519921 10826616 10826616

TABLE II
NUMBER OF MONOMIAL TERMS OF THE CUBIC MAP INDUCED BY THE

GRAPH A(n,F
232

), CASE III

length of the word

n 16 32 64 128 256

16 6544 6544 6544 6544 6544
32 50720 50720 50720 50720 50720
64 399424 399424 399424 399424 399424

128 3170432 3170432 3170432 3170432 3170432

TABLE III
PUBLIC MAP GENERATION TIME (MS), A(n,F

232
), CASE II

length of the word

n 16 32 64 128 256

16 20 60 128 260 540
32 308 788 1776 3760 7716
64 3193 8858 23231 53196 113148
128 54031 137201 368460 950849 2164037

TABLE IV
PUBLIC MAP GENERATION TIME (MS), A(n,F

232
), CASE III

length of the word

n 16 32 64 128 256

16 76 148 288 576 1148
32 1268 2420 4700 9268 18405
64 22144 40948 78551 153784 304240

128 460200 819498 1532277 2970743 5836938

CONCLUSION

We propose Post Quantum Cryptography information se-

curity solutions based on the complexity of the following

problem Cremona Semigroup Word Decomposition (CSWD).

Thus we hope that introduced algorithms can be consid-

ered as serious candidates to be postquantum cryptographical

tools. We believe that future studies of cryptanalytics confirm

that CSWD problem remains unsolvable on ordinary Turing

Machine and Quantum Computer under the condition of

stability of platform S. Hope that the idea of an alternative

disclosure of hidden homomorphism will attract the attention

of cryptanalytics.

Complexity estimates for both correspondents demonstrate

the possibility of the current usage of algorithms. Computer

simulations demonstrate an interesting phase-transition effect

that allows predicting the density of the collision maps of

key exchange protocols and their inverse forms. This effect

also demonstrates the feasibility of proposed cryptographic

schemes. Direct and inverse protocols to elaborate collision

multivariate transformation of free module Kn of predictable

density can be used together with stream cipher working

with data written in alphabet K or passwords written in this

alphabet.

Correspondents can use collision maps to add them to part

of a password or part of a plaintext or part of a ciphertext.

There is an option to deform part of passwords, plaintext and

ciphertext by outcomes of inverse protocols.

Reader can find various examples of protocol usage in [29].

Applications of graphs A(n,K) to the development of stream

ciphers reader can find in [40], [41].
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