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Abstract4 Deep learning has been a trending topic during the 

last few years, notably in medical imaging that employs neural 
networks for image manipulation, computer-aided detection of 
diseases, and many other tasks depending on the clinical 
practices. One possible application that would benefit from these 
methods is the fetal cardiac view classification, where these 
different views are useful to obtain valuable information about 
the patient9s heart development. A trained network could help 
reduce variance in interpretation and speed up data annotation. 
Alas, in this context we can face two challenges: datasets may 
contain a lot of information not relevant to the outcome of the 
classifier9s training, and the view classes may be unbalanced in 
the sense that certain classes may have much more samples than 
others. This paper presents a series of attempts to solve these 
issues and can be used as a practical guide for training viable 
classifiers in this context. 

Index Terms4fetal echocardiography, cardiovascular 
imaging, image processing, machine learning, data 
augmentation. 

I. INTRODUCTION 
EEP learning has found a lot of traction in recent years, 
especially focusing on automating big data analysis. 

With the rise of new technologies, like more powerful GPU 
allowing faster parallel processing of data, many new 
applications can be explored [1]. One field that is taking 
advantage of these developments is Medical Imaging. It uses 
deep neural networks for image reconstruction, enhancement, 
segmentation, computer-aided detection of diseases, and 
many other tasks depending on the clinical practices, such as 
chest, neuro, cardiovascular, abdominal, and microscopy 
imaging. In this paper, we will be focusing on 
echocardiography tasks [2-4]. 

Echocardiography is the mainstay of cardiovascular 
imaging, as it is a fast method for image acquisition that 
avoids the use of radiation. The method produces grayscale 
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videos containing sufficient information to diagnose 
alterations in the development of the patient9s heart even in 
the gestational period [2]. The interpretation of the resulting 
images is typically made manually by a cardiologist, and it 
could take a lot of time and effort. To improve this method, 
many researchers are focusing on transforming this process 
into a partially automated pipeline for interpreting 
cardiovascular imaging using deep neural networks. 

One difficult task that would benefit from deep learning 
methods is the fetal cardiac view classification. These views 
are standardized imaging planes defined in the medical 
literature, which cardiologists use to obtain valuable 
information about the development of the different valves and 
chambers of the heart. A trained network could help reduce 
variance in interpretation and speed up data annotation [5-8]. 
Another noteworthy use would be to find a specific heart view 
among the frames of a fetal echocardiography video. This is 
very important for the detection of congenital heart diseases 
that are still being missed during diagnostics [9-10]. This 
analysis may be made by the cardiologist through the 
appraisal of the four standard heart views:  

÷ Four-chamber (4CH) view that contains aorta 
descendens, left atrium, left ventricle, right atrium, 
and right ventricle; 

÷  Left Ventricular Outflow Tract (LVOT) view that 
contains aorta ascendens, left atrium, left ventricle, 
right atrium, and right ventricle; 

÷  Right Ventricular Outflow Tract (RVOT) view that 
contains ductus arteriosus, superior vena cava, aorta 
ascendens, and main pulmonary artery; and 

÷  Three Vessels View (3VV) that contains ductus 
arteriosus, superior vena cava, aorta ascendens. The 
3VV can have a few variations, for example, in our 
dataset we also have the Three Vessels and Trachea 
(3VT) view. 

 

D

Treating Dataset Imbalance in Fetal Echocardiography 
Classification 

Guilherme Ferreira Gusmão 
Dept. of Informatics, PUC-Rio, 

Rio de Janeiro, Brazil 
Email: gusmaof@tecgraf.puc-

rio.br 

Renato Cherullo de Oliveira 
Tecgraf Institute, PUC-Rio, Rio de 

Janeiro, Brazil 
Email: cherullo@tecgraf.puc-rio.br 

Carlos Roberto Hall Barbosa 
Postgraduate Programme in 
Metrology, PUC-Rio, Rio de 

Janeiro, Brazil 
Email: hall@puc-rio.br 

 Alberto Barbosa Raposo 
Dept. of Informatics, PUC-Rio, 

Rio de Janeiro, Brazil 
Email: abraposo@inf.puc-rio.br 

 

  

Acknowledgments: The authors thank for the financial 
support provided by the Brazilian funding agencies CNPq, 
CAPES, FINEP, and FAPERJ. 

Communication Papers of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 3–9

DOI: 10.15439/2022F56

ISSN 2300-5963 ACSIS, Vol. 32

©2022, PTI 3



 
 

 

 

These five heart views are exemplified in Fig. 1.  

 
Fig. 1. The four standard fetal heart views: 3VV (+ 3VT), RVOT, LVOT 

and 4CH. 
 

However, in this context we face two challenges: first, 
echocardiography datasets contain a lot of information that 
may or may not influence the outcome of the classifier9s 
training, and there is not a default annotation format to follow. 
The second is that fetal echocardiography datasets typically 
have a large imbalance, in the sense that certain classes 
contain many more samples than others, as is the case of the 
4CH view in relation to the other more complex views, as it 
is the starting point and most important view in fetal 
echocardiography [5-8]. Meanwhile, other views may be used 
only when investigating rare, specific conditions. 

Unbalanced datasets are a very common issue in deep 
learning, not only in medical imaging, and many researchers 
tried to reduce its impact during training [11-14].  

In [11], the authors developed a self-contained deep 
architecture with the synthetic minority oversampling 
technique (SMOTE) for artificial instance generation that 
doesn9t need a discriminator during the synthetic image 
generation process, instead depending only upon a penalty 
function for improving the generator.   

The authors of [12] proposed a generative adversarial 
network (GAN) with a three-player adversarial game: a 
generator that produces synthetic images of the minority 
classes to fool both the discriminator of real/fake images and 
a multi-class classifier. This min-max game, in time, will 
adjust all players for better outputs, reducing 
misclassifications of the underrepresented classes. 

In [13], a training technique called ReMix leverages batch 
resampling, instance mixing and soft-labels to induct robust 
deep models from imbalanced and long-tailed datasets.  

The RetinaNet [14] tries to solve the problem of extreme 
foreground-background class imbalance encountered during 
training of dense detectors by reshaping the standard cross 
entropy loss to downplay the more prevalent classes. 

While most of the other works focus on the models9 
architectures and loss function, in this paper we tackle these 
imbalance challenges for training viable classifiers with a 
more data-centric approach, as our primary effort being on 
parsing, pruning, and organizing the fetal echocardiography 
dataset, while using readily available convolutional neural 
networks. 

This manuscript is structured as follows: Section II presents 
the dataset characteristics and a brief mention of the model 
used in our experiments; the methods for balancing the dataset 
and their impact upon training are shown in Section III; 
conclusions of the manuscript, including recommendations 
for future works, are described in Section IV. 

II. DATASET AND MODEL 
Deep learning applications have four fundamental 

cornerstones: the layers that build the network; the dataset, 
with the training and ground truth data; the loss function, 
which defines how well modeled the network is; and the 
optimizer, which reduces overall loss by helping better define 
the model weights [15]. 

The literature shows that we have reached a high level of 
maturity in the development of effective neural networks, 
optimizers, and loss functions, allowing for easy 
implementation and fine-tuning of the model 
hyperparameters. However, it is important to do more dataset-
driven explorations [15]. 

Usually, the modus operandi for neural networks is to train 
them with the largest number of samples possible, but, 
sometimes, we have only a small collection of relevant data 
to work with [15]. This is especially true in medical imaging 
when analyzing rare occurrences or rarely performed exams. 
It is still possible to successfully train a network with 
relatively little data if all samples are representative and 
correctly annotated. 

The dataset used for training our neural network model 
comes from private data supplied by another project in 
development at the Tecgraf Institute. It originally contained a 
set of Excel tables and DICOM files (Digital Imaging and 
Communications in Medicine) but it has been already pre-
processed into a single, consolidated Excel file describing the 
results of each exam and referencing a set of gray-scale PNG 
(Portable Network Graphics) files, each containing a single 
frame of an exam. Although it is possible to figure out if two 
images belong to the same exam or even if they belong to the 
same patient, it is worth noting that all data is anonymized. 

These exams were acquired using different machines and 
were annotated by different doctors. Each row contains a bit 
of information about either a point, a line, a region of a frame, 
a whole frame, a range of frames, or all the frames in an exam 
video. This means that there can be many rows related to a 
single exam frame, and some exam frames may not have any 
kind of annotation associated with them at all. 

To evaluate the dataset9s class balance, we selected all the 
frames annotated with view type information, and belonging 
to the classes 3VT, 3VV, 4CH, LVOT, and RVOT, producing 
the histogram presented in Fig. 2. 

Right off the bat, we can see how unbalanced the dataset is: 
there are around forty-five times more frames in the most 
represented class than in the least represented class. We will 
tackle this imbalance in the following sections. 
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Fig. 2 Histogram with classes distribution throughout the dataset. 

 
Inspecting the pixel value range in each image, that is, the 

value of the brightest pixel minus the value of the darkest 
pixel in each image, we produced the histogram in Fig. 3 that 
shows the images9 pixel value range, considering that the 
value 1.0 corresponds to white and that the value 0.0 
corresponds to black. 

 
Fig. 3 Histogram of the pixel value range in each image. 

 
Although it9s not perfect, most of the images have a pixel 
value range above 0.8, so simply adjusting for range should 
not have much impact on the classifier9s performance.  
 For our classifier model, we chose the EfficientNets [16] 
family of models. It is a convolutional neural network (CNN) 
and scaling method that uniformly scales all dimensions of 
depth/width/resolution using a compound coefficient, a user 
defined parameter that manages the resources availability, 
optimizing the network. We choose this architecture due to a 
few reasons: its baseline model has good performance and 
low resource requirements; it can be easily scaled up if 
needed; it9s flexible since it can run on Tensorflow 1.15, and 
it was known to work to classify fetal echocardiograms since 
it was formerly used in a previous project at the Tecgraf 
Institute. 

Finally, we can start rebalancing our dataset to better fit our 
training, as described in the next section. 

III. BALANCING THE DATA: PREPROCESSING AND 
AUGMENTATION 

As seen in Fig.2, the dataset is very unbalanced. Therefore, 
to counteract this, many methods found throughout the 
literature were tested. Since the goal of this paper is to present 
guidelines, we decided to present our findings in a 
streamlined manner: instead of showing the results of each 
dataset preprocessing or augmentation technique individually 
and additively, we packed those techniques in thematic, 
coherent sets. 

We created a baseline test using the first 8 % of the dataset 
for training and used the last 2 % for validation, preserving 
the class imbalances and without using any enhancement. We 
used a fraction of our data to reduce the time taken during 
training, so we could quickly iterate towards a working 
solution. It also prevents data leakage, when samples in the 
training set are equal or extremely similar to samples in the 
validation set, since the dataset was sorted by patient. 

The class distributions in both sets are shown in Fig. 4. 
 

 
Fig. 4 Class distribution in the training and validation sets. Both keep the 

imbalance of classes in the dataset. 
 
We used for training the EfficientNet B0 model with Adam 

as the optimizer with learning rate 0.001 (well known for its 
great performance in image classification problems). We 
reduced the learning rate on plateau monitoring the validation 
loss, with patience as 7, factor as 0.5 and minimum learning 
rate as 10-9. All these values were found through empirical 
experiments that provided the best results for training the 
model. Categorical cross-entropy was chosen, as our output 
has five possible outcomes. EfficientNet allows you to start 
training with pre-trained weights from ImageNet, but we 
opted for training without it. Beyond that, the EfficientNet 
family employs a softmax activation function, so the dataset 
labels were codified by one-hot encoding [16].  

 Looking at the baseline learning history, in Fig. 5, we can 
see that the network quickly overfits the training set with no 
further improvements to the validation set loss. Whereas the 
confusion matrix over the validation set, in Fig. 6, shows that 
most of the achieved accuracy was due to the 3VT and 4CH 
classes (the most represented ones). The LVOT class got a 
F1-score of 0.11 and the network didn9t predict a single image 
in the RVOT and 3VV classes. The weighted average F1-
score was 0.54, as seen in Table I. 

Things look dire for our dataset with these results, but the 
following subsections will bring techniques that will better 
improve the data quality. 
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Fig. 5 Learning history with accuracy, training loss, and validation loss. 

 
Fig. 6 Baseline Model9s Confusion Matrix. 

A. Preprocessing Selection 

Stride 
Echocardiogram exams are video data, but we opted, as 

suggested in other papers [5-6], to develop our classifier with 
still images sampled from the video. Consequently, in earlier 
experiments, we sampled all the images from each successive 
exam in a class, up to the desired frame count for that class. 
But, since consecutive video frames change very little from 
one another, the network was being fed with many similar 
frames, reducing the learning potential. So, instead of 
sampling frames contiguously in an exam, we tried sampling 
frames with a stride. In our case, one frame was selected every 
5 frames. This brought an increase in data diversity, as a 
greater volume of exams from a variety of patients were 
sampled. 

Shuffle 
First and foremost, never forget: always shuffle your data 

after every epoch! This will help escape bad batches and 
minimize variance, increasing the generalization of the model 
for unseen data. Disregarding this truth can hinder the 
advances in your research [15]. 

So, after striding, we shuffled the entire dataset before 
selecting 8 % of samples for training and 2 % for validation, 
avoiding shared frames between the sets and once again 
preserving the class distributions.  

This step greatly increased the diversity of the samples in 
each class again, by using frames from more exams and 
avoiding any bias that could be present at the beginning or the 
tail-end of the original dataset. 

Stratified Batch 
Another interesting technique used in unbalanced scenarios 

is to do what is called stratified batching [17]. It consists in, 
instead of feeding all images of the training set to the network 
every epoch, randomly choosing a fixed number of images of 
each class, so that at the end of each epoch, the network will 
have been trained with the same number of images from each 
class. This prevents bias toward predominant views, as it 
reduces the number of samples from the same patient to be 
used. These batches must have their size limited by the total 
amount of samples of the least prevalent class. In our case, we 
used batches of size 300. 

  New training was implemented with these three methods 
to better understand their impact on the model performance. 
In Fig. 7 and Fig. 8, the learning history and confusion matrix 
can be investigated. 

  
Fig. 7 Learning history after shuffling, striding, and stratified batching on the 
dataset. 

TABLE I. 
BASELINE TEST REPORT 

Class Precision Recall F1-score Number of Samples 
3VT 0.43 0.42 0.42 2426 
3VV 0.00 0.00 0.00 183 
4CH 0.65 0.72 0.68 4210 

LVOT 0.32 0.06 0.11 301 
RVOT 0.00 0.00 0.00 92 

Weighted Acc 0.53 0.57 0.54 7212 
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Fig. 8 Confusion Matrix after shuffling, striding, and stratified batching on 
the dataset. 
 

Although the results are still bad, as the accuracy and loss 
don9t even converge and the weighted average F1-score 
lowers to 0.27 in Table II, we can observe a reduction in bias 
towards most represented classes, as it can identify all the 
classes now and confounds itself more between them. 

B. Augmentation 
For the next improvement to the dataset, we can generate 

more instances of the less prevalent classes, so the model can 
see them more times during training. This is easily achieved 
with image augmentation techniques. Before going forth with 
our findings, we give a warning: any change to medical 
images should be evaluated by a professional in the area, as 
altering them too forcefully could result in unrealistic data 
being fed to the model and confounding the view classes 
features. We consulted a cardiologist that validated our 
proposed augmentation methods and other image 
manipulation techniques applied in our research. Not all of 
them will be presented here. For this paper, we chose only 
two: rotation and brightness. 

Different from other works where augmentation is applied 
to all images of the training set, we use augmentation to 
increase the number of samples in the underrepresented 
classes 3VV, LVOT, and RVOT, as further explained below. 

Rotation 
As the name suggests, we transformed our images by 

rotating samples of the underrepresented classes. This was 
accomplished by using the scikit-image library [18], which is 

an open-source image processing library for the Python 
programming language that includes segmentation, geometric 
transformations, and many others.  

We applied the rotate function, turning the images by a 
random angle in the range from -20ð to +20ðfor each epoch. 
Rotating an exam image makes sense during training because 
the orientation of the heart is not standardized in the views, 
and what matters is the section plane. 

Brightness 
We decided to implement multiplicative brightness change 

in part due to its simplicity [18]. This process is defined by 
the following brightness and contrast adjustment equation: ÿ(ÿ, ÿ)  =  ý. ý(ÿ, ÿ)  +  ý        (1) 
where i, j are pixels coordinates, I is the input image, T is the 
transformed image, ý represents gain, and ý represents bias. 
The change in brightness can easily be done by just 
multiplying each pixel by a set value close to 1 and then 
clipping it into the range [0, 1]. 

Small changes to the exam9s brightness help the network 
identify features affected by shadows and generalize 
equipment differences and/or tissue density differences. 

Another round of training was executed with all proposed 
methods. As mentioned before, the rotation and brightness 
augmentation were only applied to the less favored classes, 
effectively creating new samples. In Fig. 9, we can see the 
increase of those samples on the training set. This increase 
allows us to choose larger batch sizes for the stratified 
batching. Using all these techniques helped reduce the 
difference between the most prevalent class (4CH) and the 
less prevalent class (RVOT) from 45 to around 11 times more 
frames than the other. 

 
Fig. 9 Training set after preprocessing and augmentation methods. Blue are 
samples loaded normally, Orange are samples loaded with brightness 
augmentation with alpha = 0.8, Green are samples loaded with brightness 
augmentation with alpha = 1.2, and Red are samples loaded with rotation 
augmentation. 

TABLE II. 
SHUFFLE, STRIDE AND STRATIFIED BATCHING TEST REPORT 

Class Precision Recall F1-score Number of Samples 
3VT 0.38 0.26 0.31 1245 
3VV 0.05 0.23 0.08 96 
4CH 0.63 0.23 0.27 2136 

LVOT 0.08 0.70 0.14 158 
RVOT 0.08 0.75 0.15 48 

Weighted Acc 0.50 0.24 0.27 3683 
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In Fig. 10 and Fig. 11, the learning history and confusion 
matrix can be further examined. 

 
Fig. 10 Learning History after adding rotation and brightness augmentation 

 
Fig. 11 Confusion Matrix after rotation and brightness augmentation 
 
Finally, we can see accuracy and loss converging and a 

great leap in the model performance as seen in Table III. All 
the less prevalent classes have been learned by the model and 
the main view (4CH) has also increased to an astonishing F1-
score of 0.94.  

IV. CONCLUSIONS 
Recapping, we have proposed in this paper that enhancing 

the quality of a small and unbalanced dataset by use of 
preprocessing and augmentation methods could reduce class 
imbalance and improve the model performance. Through 
many experiments and setbacks, we were able to analyze the 

impact of these methods on the dataset, observing the model 
go from a very poor classification to a remarkable F1-Score 
of 0.94 with a confusion matrix with few false positives and 
false negatives. 

We can conclude that, if we take the time to understand 
better the data being used and apply the right methods for 
improvement of the dataset, like reducing redundancy, 
increasing diversity, and augmenting the images, it is possible 
to bring balance to a small, unbalanced dataset. Also, using a 
proven, efficient model is not enough to obtain good 
performance if your dataset is bad or too raw for use. 

Exploration of the quality of the dataset has a lot of 
potentials, especially in medical imaging. Some promising 
subjects that we are already discussing and researching for 
future work are using transfer learning in known models 
trained with computer vision datasets, for feature extraction 
and fine-tuning of our model [19]. 

Another possibility is to explore a weighted loss function 
in conjunction with the methods present here, as this loss 
would punish the network more accordingly weight defined 
for each class [20]. We already have some crude 
implementations of this technique but was not used in this 
paper. 

Also, many professionals in the medical field feel uneasy 
with the neural networks' black box nature and would give 
more credit for these solutions if they could understand how 
they have taken decisions. Explainable Artificial Intelligence 
(XAI) aims to solve these issues by bringing more 
transparency to the understanding of the model's bias, 
decisions impact and, as a result, generating better metrics 
[21]. 
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