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Abstract—We give an algebraic approach for defining rough
sets on incomplete information systems. The constructed ap-
proximation sets are based on objects. Given several attributes,
the value of each attribute can be known or unknown for
each object. In the current paper, we introduce four different
approaches, a real value, a binary, a ternary and a likelihood
approach. Furthermore, we define operations on the elements
of the introduced approximation sets. For all three cases we
can show that the achieved structure is a quasi-Brouwer-Zadeh
distributive lattice with the defined operations. We also show
that the introduced lower and upper approximations build up
commutative monoids with the introduced operations.

I. INTRODUCTION

D
IFFERENT systems of rough set theory were created in

the last forty years: Pawlak’s original theory of rough sets

(see in e.g. [1]–[3]), covering systems relying on tolerance

relations [4], general covering systems [5], [6], decision-

theoretic rough set theory [7], general partial approximation

spaces [8], similarity based approximation spaces [9]. There

is a very important common property:

" all systems rely on given background knowledge repre-

sented by the system of base sets;

" one cannot say more about an arbitrary set (representing

a ‘new’ property) or about its members than the lower

and upper approximations of the set make possible.

The members of a base set have to be treated in the same way

" absolutely in the Pawlak’s original theory,

" relatively in the systems with non pairwise disjoint base

sets.

It means generally that if something holds for a given object,

then it holds for all objects belonging to at least one same

base set containing the given object. Several researchers have

been considering algebraic structures of rough sets, e.g. [10],

[11], [12].

In real practice there is a huge amount of objects, and the

background knowledge corresponds to an information system.

The framework of an information system is given by attributes,

and their possible attribute values. An object can be embedded

in an information system by giving the attribute values of the

attributes of the information system. In many practical cases

some attribute values of an object are unknown and so these

values are missing, therefore the information system is not

complete. Recently researchers constructed partial approxima-

tion spaces for rough sets based on an incomplete information

system [13]. In the current paper we aim to give an approach

for rough sets based on

" an incomplete information system, especially on objects

whose properties of certain attributes can be known or

not known;

" taking into consideration all possible systems of attribute

values (not only those for which there is an object in the

information system with a system of attribute values).

We characterize a set by the approximation of its members

but we focus on their systems of attribute values, which

is a new idea in Rough Set Theory. The lower and upper

approximations are given with the help of possible systems

of attribute values (and not by the objects appearing in the

information system).

The paper is organized as follows. In Section II we introduce

all necessary definitions. In Section III we introduce operations

and in Section IV we show that the defined sets build a

quasi-BZ distributive lattice. In Section V we show some

arithmetics of the introduced lower and upper approximation

sets according to the introduced operations. Finally, in Section

VI we draw a first conclusion of the new definitions and proven

propositions and give some ideas for further research.

II. APPROXIMATION BY ROUGH SETS

Given a set of objects Ω, we assume that each object É * Ω
can be characterized by n attributes. We map a set of values

Σ to each attribute. For our purposes, we assume that the

elements of Σ are numbers, but the reader should be aware

of the fact that Σ can be any nonempty set. Each attribute

assigns a value of Σ for each object. Thus each object can

be represented by a vector of length n, each coordinate

representing the value of one attribute.

Definition 2.1: Let U be non-empty universe of objects,

(P1, . . . , Pn) be a system of attributes (n * N, n > 0), Σ be

a set of values, ÷ be a fixed distinguished member of Σ and

f : U ó Σn be a function which maps each object to a vector

of length n. Then I = (U,P,Σ, f) is an information system.

If for each i(1 f i f n) and o * U we have f(o)i ;= ÷, then

we say that I is complete, else I is said to be an incomplete

information system.

At this point, we need to remark that this representation is not

injective, which means that there can be two different objects

with the same vector of attributes. (The reader can think for

example of two people with the same hair colour and height.)

Our purpose is to give several different approaches for a rough

set approximation, depending on Σ. It depends strongly on the

given problem which of the following approaches is the most

suitable. Therefore we give a small motivating example for

each approach.
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A. The real value approximation

Let Ω be a set of objects, É * Ω and Σ = [0, 1] the

closed interval between 0 and 1. Further, let ¿ω be the vector

belonging to the object É,

¿ω = (¿1, . . . , ¿n)

where ¿i denotes the value of the ith attribute of the object É

and ¿i * Σ, "i * {1, . . . , n}. We determine

¿i = 0 ô we know nothing about the ith attribute of É,

i.e. 0 is the fixed distinguished member of Σ. In the following,

for the convenience of the reader we write ¿ instead of ¿ω.

Now we can define two sets for each object É : In one set we

collect all those n-long vectors which have the same "known

information" and in the other set we collect all those vectors

which have the same "unknown information".

Definition 2.2: Let ¿ = (¿1, . . . , ¿n) be a string of length n,

such that ¿i * Σ and ¿i = 0 ô the information about the ith

attribute is not known - for all i * {1, . . . , n}. Then we define

Çω = {v = (v1, . . . , vn) * Σn|

vj = ¿j ô ¿j ;= 0 and 0 < vi f 1 ô ¿i = 0}

and

¶ω = {v = (v1, . . . , vn) * Σn|

0 < vi f ¿i ô ¿i ;= 0 and vi = 0 ô ¿i = 0}.

Remark 1: With this definition, the sets Çω and ¶ω are infinite.

For a set of objects Ω, we can then define the following sets

× and ∆, build up on Ç and ¶ respectively, which means we

collect "all possible known information" and search for the

"unknown" in each object.

Definition 2.3: Let U be the universe of objects and Ω ¦ U.

Then each element of Ω can be represented by an n-long

vector in Σn. We define

×(Ω) =
�

ω*Ω

Çω

and

∆(Ω) =
!

ω*Ω

¶ω.

Remark 2: We have (0, 0, . . . , 0) * ∆(Ω).
Definition 2.4: Let Ω be a set of objects. Then we say that U
is an upper approximation of Ω if U ¦ ×(Ω) and L is a lower

approximation of Ω if L ¦ ∆(Ω).
Remark 3: It is clear that there are several objects, or subsets

of objects which can have the same upper and/or lower

approximation.

Remark 4: The pair (L,U) can be considered as a rough set.

Example 1:

Let ¿ = (0, 0.1, 0.2, 0.3, 0). Each ¿i denotes the value of a

medical indicator, such as bloodsugar, hemoglobin, etc. Then

we have

Çν = {v = (v1, . . . , v5) | v1, v5 * Σ,

v2 = ¿2, v3 = ¿3, v4 = ¿4}

and

¶ν = {v = (v1, . . . , v5) | v1 = 0, v5 = 0, v2 = 0

or ¿2, v3 = 0 or ¿3, v4 = 0 or ¿4}.

B. The binary approach

Let I be a complete information system. Further, let

Σ = {0, 1} and ¿ be the vector belonging to one object,

¿ = (¿1, . . . , ¿n)

where

¿i = 0 ô the object does not fulfill the ith attribute

and

¿i = 1 ô the object fulfills the ith attribute .

Definition 2.5: Let ¿ = (¿1, . . . , ¿n) be a string of length n,

such that ¿i * {0, 1} and ¿i = 1 ô the information about

the ith attribute is fulfilled. Then we define Çν and ¶ν in the

following way

Çν = {v = (v1, . . . , vn)|vj = 1 ô ¿j = 1 and

vi * {0, 1} ô ¿i = 0}

and

¶ν = {v = (v1, . . . , vn)|vj * {0, 1} ô ¿j = 1 and

vi = 0 ô ¿i = 0}.

Definition 2.6: Let Ω be a set of objects, each element is

represented by an n-long vector in Σn. Then we define

×(Ω) = {(v1, . . . , vn) | if #É * Ω : ¿ω[i] = 0 ó vi = 0 or 1,

otherwise vi = 1}

and

∆(Ω) = {(v1, . . . , vn) | if #É * Ω : ¿ω[i] = 1 ó vi = 0 or 1,

otherwise vi = 0}.

Remark 5: In this case ×(Ω) and ∆(Ω) are finite sets, since

| ×(Ω) |f 2n and | ∆(Ω) |f 2n.

Of course, in this case we can also use the definitions of upper

and lower approximations as in Definition 2.4, thus we get a

similar rough set as in Remark 4.

Example 2: Let ¿ = (¿1, ¿2), where ¿1 denotes if Disease X

test is positive and ¿2 denotes if Disease X antigen is positive.

Thus ¿ = (0, 1) means that current Disease X infection is not

fulfilled, and antigen exists. Then Ç = {(0, 1), (1, 1)} and

¶ = {(0, 1), (0, 0)}.
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C. The ternary approach

If we want to use the simplicity of a binary approach for

an incomplete information system, then we collide with the

problem that "no" and "not known" would be the same. Thus

it is advisable to include a third symbol for "not known" and

therefore we come to a ternary approach.

Let I be an incomplete information system, Further, let

Σ = {0, 1

2
, 1} and ¿ be the vector belonging to one object,

¿ = (¿1, . . . , ¿n)

where

¿i = 0 ô the object does not fulfill the ith attribute of ¿

and

¿i = 1 ô the object fulfills the ith attribute

and

¿i =
1

2
ô we don’t know if the ith attribute is fulfilled.

Definition 2.7: Let ¿ = (¿1, . . . , ¿n) be a string of length n,

such that ¿i * {0, 1

2
, 1} and ¿i = 1 ô the information about

the ith attribute is fulfilled. Then we define Çν and ¶ν in the

following way

Çν = {v = (v1, . . . , vn)|vj g ¿j}

and

¶ν = {v = (v1, . . . , vn)|vj f ¿j}.

Example 3: Let ¿ = (¿1, ¿2, ¿3), where ¿1 denotes if Disease

X test is positive, ¿2 denotes if Disease Y test is positive and

¿3 denotes if Disease Z test is positive. Let ¿ = (1, 0, 1

2
). Then

Ç =

��

1, 0,
1

2

�

,

�

1,
1

2
,
1

2

�

,

�

1, 1,
1

2

�

, (1, 0, 1) ,

�

1,
1

2
, 1

�

,

�

1, 1,
1

2

�

, (1, 1, 1)

�

and

¶ =

��

1, 0,
1

2

�

,

�
1

2
, 0,

1

2

�

,

�

0, 0,
1

2

�

, (0, 0, 0) , (1, 0, 0)

�

.

Remark 6: The ternary approach enables us to investigate

objects or a set of objects through attributes which can be

known or unknown. For example, we can draw consequences

of the relation between the infections with two or more

diseases, although we do not have the exact information about

each infection for every member of the set.

D. The likelihood approach

Let Σ = [0, 1] and ¿ be the vector belonging to one object,

¿ = (¿1, . . . , ¿n) where ¿i denotes the likelihood of ¿ fulfilling

the ith attribute. In this case ¿ * Σn.

Since the likelihood is a real value between 0 and 1, this case

is mathematically the same as in Section II-A. The likelihood

approach is for example useful if the value of an attribute is

binary and we know that an object has value 1 for an attribute

with the likelihood p, where p * Σ.
Example 4: Let ¿ = (¿1, ¿2), where ¿1 denotes if Disease

X antigen exists, ¿2 denotes if Disease X test is positive.

Then a = (0.4, 0.2) means that the object a has Covid antigen

with 40% probability and has active Covid infection with 20%
probability. If b = (0.2, 0.2), then L = {(x, y) | 0.1 f x f
0.2 and 0.01 f y f 0.2} is a lower approximation set for

both, a and b.

All of our approaches have in common that the sets ×(Ω) and

∆(Ω) contain information about Ω without containing Ω itself.

Therefore we are able to say something about a set without

knowing its elements, which is a good achievement with many

applications in real-life-problems.

III. OPERATIONS

In this section we introduce four operations on vectors. These

operations can be applied to any two vectors of the same

length, which implies they can be applied to our representation

of objects for any attribute set Σ.
Definition 3.1: Let a and b be two objects, each can be

represented by a vector of length n : a = (a1, . . . , an) and

b = (b1, . . . , bn), where ai, bi * Σ for some nonempty set Σ.
Then we define the following operations:

a ( b := (max{a1, b1}, . . . ,max{an, bn})

and

a ' b := (min{a1, b1}, . . . ,min{an, bn}).

Definition 3.2: For any a = (a1, . . . , an) * Σn we define the

following Kleene complementation:

2 : Σn ³ Σn, a2 = (12 a1, . . . , 12 an)

and the following Brouwer complementation:

> : Σn ³ Σn, a>i =

"

0, if ai ;= 0

1, if ai = 0
.

IV. QUASI-BROUWER-ZADEH DISTRIBUTIVE LATTICE

In [10] quasi-Brouwer-Zadeh (BZ) distributive lattices were

introduced. In this section we show that the set of objects

which we introduced in Section II is a quasi-BZ lattice under

the operations defined in Section III.

Proposition 4.1: ïΣn,(,',2 ,> , 0, 1ð is a quasi-Brouwer-

Zadeh distributive lattice in both cases Σ = [0, 1] and

Σ = {0, 1}.
Proof. We show that all properties of a quasi-BZ distribu-

tive lattice listed in ( [10], Section 3) are fulfilled. For the

convenience of the reader, we use the same notations for the

CAROLIN HANNUSCH, TAMÁS MIHÁLYDEÁK: ALGEBRAIC STRUCTURES GAINED FROM ROUGH APPROXIMATION 75



fulfilled points as the authors in Definition 7 in [10]. All steps

can be achieved by direct computation. Σ is a distributive

lattice with respect to ( and ', since min{ai,max{bi, ci}} =
max{min{ai, bi},min{ai, ci}} (see Table I).

TABLE I
VERIFICATION TABLE 1

case min{ai,max{bi, ci}} max{min{ai, bi},min{ai, ci}}

ai ≤ bi ≤ ci ai ai
ai ≤ ci ≤ bi ai ai
bi ≤ ai ≤ ci ai ai
bi ≤ ci ≤ ai ci ci
ci ≤ ai ≤ bi ai ai
ci ≤ bi ≤ ai bi bi

The property (K1) is fulfilled, since 1 2 (1 2 ai) = ai. We

verify (K2) by II. (K2) (a ( b)2 = a2 ' b2 means in our case

1 2max{ai, bi} = min{(1 2 ai), (1 2 bi)} must be fulfilled

in all possible cases (see Table II).

TABLE II
VERIFICATION TABLE 2

1−max{ai, bi} min{(1− ai), (1− bi)}
ai ≤ bi ≤ ci 1− bi 1− bi
ai ≤ ci ≤ bi 1− bi 1− bi
bi ≤ ai ≤ ci 1− ai 1− ai
bi ≤ ci ≤ ai 1− ai 1− ai
ci ≤ ai ≤ bi 1− bi 1− bi
ci ≤ bi ≤ ai 1− ai 1− ai

Further, property (K3) a ' a2 f b ( b2 is fulfilled if and only

if min{ai, 1 2 ai} f max{bi, 1 2 bi} in all possible cases.

This is clear since min{ai, 12 ai} f 0.5 f max{bi, 12 bi}.
Furthermore, the property (B1) a' a>> = a is fulfilled since

min{ai, 1} = ai and the property (B2) (a ( b)> = a> ' b>

is fulfilled since (a ( b)>[i] = 1 ô ai = bi = 0 and (a> '
b>)[i] = 1 ô ai = bi = 0. Finally, (B3) a ' a> = 0 holds

since either ai = 0 or a>i = 0. ¥

We can even say more about this quasi-BZ lattice, which the

next proposition will show.

Proposition 4.2: ïΣn,(,',2 ,> , 0, 1ð is a de Morgan BZ

(BZdM ) distributive lattice.

Proof. We have

(a ' b)>i =

"

0 ô ai ' bi ;= 0 ô min(ai, bi) ;= 0

1 ô ai ' bi = 0 ô min(ai, bi) = 0

and

(a> ( b>)i =

ù

üüüú

üüüû

0 ô max(a>i , b
>

i ) = 0 ô

a>i ' b>i = 0 ô ai ;= 0, bi ;= 0

1 ô max(a>i , b
>

i ) ;= 0 ô

a>i ' b>i ;= 0 ô ai = 0, bi = 0

.

Thus ïΣn,(,',2 ,> , 0, 1ð fulfills the ( de Morgan property

(B2a). ¥

V. ARITHMETICS OF APPROXIMATION SETS

In this section we investigate the connection between the op-

erations related to objects and the approximations introduced

in Section II.

Proposition 5.1: Let Ω be a set of objects, É1, É2 * Ω. Then

1) ¶ω1
+ ¶ω2

= ¶νω1
'νω2

2) ¶ω1
* ¶ω2

= ¶νω1
(νω2

Proof. We denote v = (v1, . . . , vn) and vi denotes the ith

coordinate of v for each i = 1, . . . , n. For the convenience of

the reader, we denote the ith coordinate of ¿ω1
by ¿ω1

[i] and

the ith coordinate of ¿ω2
by ¿ω2

[i].

1) By definition we have ¶ω1
+ ¶ω2

= {v | 0 f vi f
¿ω1

[i] ô ¿ω1
[i] ;= 0; vi = 0 ô ¿ω1

[i] = 0} + {v |
0 f vi f ¿ω2

[i] ô ¿ω2
[i] ;= 0; vi = 0 ô ¿ω2

[i] =
0} = {v | 0 f vi f min{¿ω1

[i], ¿ω2
[i]} ô ¿ω1

[i] ;=
0 and ¿ω2

[i] ;= 0; vi = 0 ô ¿ω1
[i] = 0 or ¿ω2

[i] = 0}
and since the latter case is included in the first case this

is equal to {v | 0 f vi f min{¿ω1
[i], ¿ω2

[i]}}, which is

¶νω1
'νω2

by definition.

2) Similarly to the previous case we have ¶ω1
* ¶ω2

= {v |
0 f vi f max{¿ω1

[i], ¿ω2
[i]}} = ¶νω1

(νω2
.

¥

Proposition 5.2: Let Ω be a set of objects, É1, É2 * Ω. Then

1) Çω1
+ Çω2

;= ' ô Çω1
¦ Çω2

or Çω2
¦ Çω1

2) Çνω1
'νω2

¦ Çω1
* Çω2

Proof. We denote v = (v1, . . . , vn) and vi denotes the ith

coordinate of v for each i = 1, . . . , n. For the convenience of

the reader, we denote the ith coordinate of ¿ω1
by ¿ω1

[i] and

the ith coordinate of ¿ω2
by ¿ω2

[i].

1) We have Çω1
+ Çω2

= {v | 0 f vi f 1 ô ¿ω1
[i] =

0 and ¿ω2
[i] = 0; vi = ¿ω1

[i] = ¿ω2
[i]( if ¿ω1

[i] =
¿ω2

[i])}.
2) The statement is true since Çνω1

'νω2
= {v |

0 f vi f 1 ô min{¿ω1
[i], ¿ω2

[i]} = 0; vi =
min{¿ω1

[i], ¿ω2
[i]}}.

¥

Let L and U be a lower and upper approximation of a set Ω
as defined in Definition 2.4. We denote the algebraic closure

of L by L and the algebraic closure of U by U . Then we gain

a commutative monoid for these algebraic closures with the

operations defined in Definition 3.1. Thus we can prove the

following propositions.

Proposition 5.3: Let Ω be a set of objects and É * Ω. If

(1, . . . , 1)
" "" "

n

* L, then ïL,'ð is a commutative monoid.

Proof. The operation ' is associative since

min{a,min{b, c}} = min{min{a, b}c}. Further we have a

unit element e = (1, . . . , 1)
" "" "

n

since min{a, 1} = a for all

a * [0, 1] . By assumption we have e * L. Finally, the

operation is commutative since min{a, b} = min{b, a}.
¥

Proposition 5.4: Let Ω be a set of objects and É * Ω. If

(0, . . . , 0)
" "" "

n

* L, then ïL,(ð is a commutative monoid.
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Proof. The operation ( is associative since

max{a,max{b, c}} = max{max{a, b}c}. Further we

have a unit element e = (0, . . . , 0)
" "" "

n

since max{a, 0} = a for

all a * [0, 1] . By assumption we have e * L. Finally, the

operation is commutative since max{a, b} = max{b, a}. ¥

Proposition 5.5: Let Ω be a set of objects and É * Ω. If

(1, . . . , 1)
" "" "

n

* U , then ïU ,'ð is a commutative monoid.

Proof. The operation ' is associative since

min{a,min{b, c}} = min{min{a, b}c}. Further we have a

unit element e = (1, . . . , 1)
" "" "

n

since min{a, 1} = a for all

a * [0, 1] . By assumption we have e * U . Finally, the

operation is commutative since min{a, b} = min{b, a}.
¥

Proposition 5.6: Let Ω be a set of objects and É * Ω. If

(0, . . . , 0)
" "" "

n

* U , then ïU ,(ð is a commutative monoid.

Proof. The operation ( is associative since

max{a,max{b, c}} = max{max{a, b}c}. Further we

have a unit element e = (0, . . . , 0)
" "" "

n

since max{a, 0} = a for

all a * [0, 1] . By assumption we have e * U . Finally, the

operation is commutative since max{a, b} = max{b, a}. ¥

VI. CONCLUSION

In the current paper, we introduce a representation for ob-

jects of an incomplete information system and we introduce

operations which make the gained structure a BZ-distributive

lattice. Since in ( [10] Proposition 14) a complete information

system is associated to a BZ-distributive lattice, this opens

the door to several possibilities for investigating rough sets

based on incomplete information systems. From a certain point

of view, an incomplete information system can be handled

mathematically similarly as a complete information system.

The literature of rough set theory is extremely large for

complete information systems, e.g. [10], [12], [14]. Given

a quasi-BZ lattice, a whole rough approximation space can

be constructed (see for example Proposition 8 and Definition

8 in [10]). Therefore the current paper can be considered

as a new idea how to represent an incomplete information

system in such a way that known algebraic structures will be

achieved. In this way, we can use good properties of algebraic

structures in order to handle sets of objects, even if we do

not have all important information. It seems to be surprising

that we find the algebraic structure of monoids when we

investigate rough sets, but actually monoids also appear in

algebraic approaches for complete information systems, see

for example [15] and [16]. Therefore it seems to be worthwhile

to investigate monoids when we investigate rough sets. A

research problem for the future is to find applications which

can help to solve problems representing and working with

information systems based on the algebraic structures gained

from the approaches which were represented in the current

paper.
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