Logo PTI Logo rice

Proceedings of the 2022 Seventh International Conference on Research in Intelligent and Computing in Engineering

Annals of Computer Science and Information Systems, Volume 33

Optimizing Reference Model for Disturbance Rejection Controller for 3-DoF Robot Manipulator

, , , , , ,

DOI: http://dx.doi.org/10.15439/2022R32

Citation: Proceedings of the 2022 Seventh International Conference on Research in Intelligent and Computing in Engineering, Vu Dinh Khoa, Shivani Agarwal, Gloria Jeanette Rincon Aponte, Nguyen Thi Hong Nga, Vijender Kumar Solanki, Ewa Ziemba (eds). ACSIS, Vol. 33, pages 121127 ()

Full text

Abstract. In this article, an method is proposed combining optimal control for linear system and disturbances observer to control a 3 degree of freedom (3DoF) robot manipulator. By making the tracking error follow a given stable linear reference model through the observer, an optimal controller LQR will be designed to solve the optimization problem for the reference system, thereby leading to good control quality for the original system. The effectiveness of the method is shown through simulation results performed on Matlab/Simulink.


  1. M. M. Gao, X. Z. Jin, L. J. Ding, “Robust adaptive backstepping INTSM control for robotic manipulators based on ELM”, Neural Computing and Applications volume , vol. 34, pp. 5029–5039, 2022
  2. K. Jayaswal, D. K. Palwalia, S. Kumar, “Performance investigation of PID controller in trajectory control of two-link robotic manipulator in medical robots”, Journal of Interdisciplinary Mathematics, vol. 24, pp. 467-478, 2021.
  3. E. V. L. Nunes, L. Hsu, “Global Tracking for Robot Manipulators using a Simple PD Controller Plus Feedforward”. Robotica, vol. 28, no.1, pp. 23-34, 2010.
  4. J. S. Milind., G. Arunkumar, T.C. Manjunath, “PID Control of a Double Link (2-link) Flexible Robotic Manipulator (2-DOF) in the 3 DE Space”. 2018 4th International Conference for Convergence in Technology (I2CT), 2018
  5. S. A. Ajwad, R. U. Islam, M. R. Azam, M. I. Ullah., J. Iqbal, “Sliding mode control of rigid-link anthropomorphic robotic arm”, 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), 2016
  6. S. Kasera, A. Kumar, L. B. Prasad, “Trajectory Tracking of 3-DOF Industrial Robot Manipulator by Sliding Mode Control”, 4th IEEE Uttar Pradesh Section International Conference on Electrical Computer and Electronics (UPCON), 2017.
  7. M. H. Korayem, R. Shiri, S. R. Nekoo, “Sliding Mode Control Design with Adaptable Gains for Robotic Manipulators” 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), 2015.
  8. P.R. Ouyang P.R., J. Acob, V. Pano, “PD with sliding mode control for trajectory tracking of robotic system”, Robotics and Computer-Integrated Manufacturing, vol. 30, no. 2, pp. 189-200, 2014.
  9. P. R. Ouyang, J. Tang, W. H. Yue, S. Jayasinghe, “Adaptive PD plus Sliding Mode Control for Robotic Manipulator”, IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2016.
  10. U. Zakia, M. Moallem, C. Menon, “PID-SMC controller for a 2-DOF planar robot”, 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2019.
  11. C. Urrea, J. Kern, J. Alvarado, “Design and Evaluation of a New Fuzzy Control Algorithm Applied to a Manipulator Robot”, Applied Sciences, vol. 10, no. 21, 2020.
  12. Q. Guo, Y. Zhang, B. G. Celler, S. W. Su, “Neural Adaptive Backstepping Control of a Robotic Manipulator With Prescribed Performance Constraint”, IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 12, pp. 3572 – 3583, 2019.
  13. M. Ramı́rez-Neria, R. Madonski, A. Luviano-Juárez, Z. Gao, H. Sira-Ramı́rez, “Design of ADRC for Second-Order Mechanical Systems without Time-Derivatives in the Tracking Controller”, 2020 American Control Conference (ACC), 2020.
  14. Z. Zhang, M. Leibold, D. Wollherr, “Integral Sliding-Mode Observer-Based Disturbance Estimation for Euler–Lagrangian Systems”, IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2377-2389, 2019.
  15. S. M. Ahmadi, M. M. Fateh, “Task-space control of robots using an adaptive Taylor series uncertainty estimator”, International Journal of Control, vol. 92, no. 9, pp. 2159-2169, 2018.
  16. E. Guechi, S. Bouzoualegh, Y. Zennir, S. Blažic, “MPC Control and LQ Optimal Control of A Two-Link Robot Arm: A Comparative Study”, Machines, vol. 6, pp. 409-414, 2018.
  17. B. Zhao, Y. Li, “Model-free Adaptive Dynamic Programming Based Near-optimal Decentralized Tracking Control of Reconfigurable Manipulators”, Int. J. Control Autom. Syst. 16, pp. 478–490, 2018.
  18. D. Kleinman, “On an iterative technique for riccati equation computations”, IEEE Transactions on Automatic Control, vol. 13, no. 1, pp. 114-115, 1968.