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Abstract—Anomaly detection has recently gained enormous
attention from the research community. It is widely applied in
many industrial areas, such as information security, financing,
banking, and insurance. The data in these fields can mainly
be represented as time series data, the corollary being that
time series anomaly detection plays an essential role in these
applications. Therefore, many authors have tried to solve the
problem of collective anomaly detection in time series. They
have proposed several approaches, from classical methods such as
Isolation Forests to modern deep learning networks such as Au-
toencoders. However, a comprehensive framework for handling
this problem is still lacking. In this work, firstly, we propose
using an Attention-based Bidirectional LSTM Autoencoder (Att-
BiLSTM-AE) as an anomaly detection model. Furthermore, in
the essential part of this paper, we developed a comprehensive
unsupervised deep learning framework, udCATS, to solve the
problem of detecting collective anomalies in time series. Our
experiments show that the Att-BiLSTM-AE outperforms other
detection models, and using it within the udCATS framework
increases the detection accuracy.

Index Terms—collective anomaly, time series, unsupervised,
deep learning

I. INTRODUCTION

Anomaly detection plays an essential role in many industrial

areas, for example, financing, banking, information security,

and insurance. Many data in these domains can be represented

as time series. Because of that, anomaly detection in time

series data has recently gained massive attention from the

research community.

A time series can be univariate or multivariate, discrete or

continuous. In this work, we focus only on discrete univariate

time series. Therefore, the term ”time series” used in the rest

of this article refers to a discrete univariate time series. Time

series by its definition, is a set of data collected at successive,

discrete timestamps and can be written as {Xt, t ∈ Z} [1].

The term anomaly of a time series can be considered an

outlier. From the traditional point of view, an outlier/anomaly

is an observation that varies ”extensively from the other one

as to produce suspicions that it was generated by a different

mechanism [2].”

An anomaly in time series can deliver important informa-

tion. For example, it could be some unwanted data points

that were produced or collected incorrectly. In this case,

anomaly detection is essential for data cleaning, which is

crucial for developing proper machine learning models. In

addition, the anomaly can also represent the events of interest,

such as machine breakdowns, cyber-attacks, and insurance

frauds, which are the main applications of anomaly detection

in time series.

The anomalies in time series can be divided into three main

categories: point, collective, and contextual anomaly [3]. A

time series data point is an anomaly when it behaves out of the

ordinary compared to most other points. The term collective

anomaly refers to consecutive data points with unusual be-

havior. It is crucial to mention that each point of an abnormal

sub-sequence is not necessary an outlier. Contextually anomaly

is used when some time series points are typical in a specific

context but anomalous in another context [3].

We focus here on collective anomaly detection because

detecting the collective outliers is much more challenging than

detecting the unusual points. As mentioned above, a single

data point in a sub-sequence may not be an outlier; however,

they will build up an abnormal sub-sequence when considering

them in consecutive order. That makes the research problem

much more challenging. Besides that, the problem of point

anomaly detection is already well-researched [4]. In contrast,

the detection accuracy can still be improved in the problem

of collective anomaly detection by proposing or applying

contemporary deep learning networks. In our work, firstly,

we propose using an attention-based bidirectional LSTM Au-
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toencoder (Att-BiLSTM-AE) as an anomaly detection model.

Furthermore, in the essential part of this paper, we developed

a comprehensive unsupervised deep learning framework called

udCATS to solve the problem of detecting collective anomalies

in time series. Our experiments show that the Att-BiLSTM-

AE outperforms other detection models while using it within

the udCATS framework increases the detection accuracy.

The rest of this paper is organized as follows. First, section

II concerns some selected unsupervised learning approaches

to detect collective anomalies. Next, the udCATS framework,

which includes four primary processes, is described in Section

III. Finally, section IV details our experiments and discusses

their results before we clarify in Section V how we would like

to improve the framework continually.

II. RELATED WORK

Many methods and approaches have been proposed to detect

collective anomalies in time series. They can be grouped

into two categories: supervised and unsupervised detection

methods. In comparison, the approaches can be divided into

three groups: statistical, classical machine learning, and deep

learning models [3].

Supervised methods typically produce increased detection

precision; however, they are pretty unuseful because they

require labeled data sets, which are usually unrealistic. The

labeling process is nowadays one of the most costly steps in a

Machine Learning Pipeline. On the other hand, unsupervised

methods are much more practical and valuable. However,

receiving a high accuracy with unsupervised learning models

is very demanding. Deep learning models have demonstrated

their robustness and accuracy in an unsupervised manner

compared to statistical and classical machine learning models

[5], [6]. In this section, unsupervised approaches applied for

collective anomaly detection problems and time series are

discussed briefly [6]–[11].

One of the most straightforward ideas to detect the anoma-

lies in an unsupervised manner is applying clustering al-

gorithms such as K-Means Clustering [8] or Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) [9].

The detailed descriptions of these clustering algorithms are

provided by [12], [13] and [14].

C. Mete, F. Dadaşer-Çelik, and A. Dokuz [9] applied

DBSCAN to detect anomalies in a dataset that contains the

daily average temperature over 33 years. The author segmented

the time series into monthly sequences, normalized them

by their mean and variance, and then clustered them with

DBCAN. The results show that DBSCAN can detect collective

anomalies even if there is no significance between them

and the usual data points. Keogh and Lin [8], nevertheless,

have indicated that using clustering algorithms for collective

anomalies detection is senseless. They showed that the cluster

centers discovered for several runs of the K-means algorithm

on the same dataset are not remarkably contrasting to the one

of a random walk process. Some authors tried to analyze and

overcome this problem. However, it remains unsolved [15].

L. Bontemps, V.L. Cao, J. McDermott and N.A. Le-Khac

[7] proposed a LSTM-based collective anomaly detection

model. Firstly, the time series is modeled with an LSTM

RNN [16]. The predictive model is then adapted to propose a

circular array containing prediction errors from several recent

time steps. Finally, a predetermined threshold is applied to

indicate a collective anomaly. To evaluate the model, the

authors converted the KDD 1999 dataset [17] into a time series

version. The results showed that without any false alarm, the

model could detect 86% of the collective anomalies. If the

threshold is set to capture all the anomalies, the number of

false alarms is increased to 63.

Besides LSTM Network, some other deep learning models

are also proposed for detecting collective anomalies in time

series, such as Convolutional Neural Networks (CNN) [6],

Gated recurrent unit (GRU) [10], and Autoencoder [11]. The

results show that, in general, deep learning models perform

very well for collective anomaly detection problems in time

series data.

We can make some important conclusions based on the

knowledge gained from a comprehensive literature review,

especially from the selected publications discussed above:

• There is still no comprehensive framework for detecting

time series collective anomalies. The task of detecting

collective anomalies is not trivial as putting the time

series into a detection model to get the results. It requires

several steps, for example, splitting the time series into

sub-sequences, reducing the data dimension, scaling the

features, etc.

• Clustering-based approaches are not suitable for this kind

of problem.

• Deep learning models produce highly accurate results

when solving the problem of collective anomaly detec-

tion.

For these reasons, we propose a comprehensive framework,

called udCATS, for detecting collective anomalies in time

series in an unsupervised manner. The framework uses an

Attention-based Bidirectional Long Short-Term Memory Au-

toencoder as the anomaly detection engine. All the compo-

nents of the udCATS framework are essential for solving the

problem.

III. UDCATS FRAMEWORK

This section explains the udCATS framework in detail. It

first clarifies the architecture and then each component of the

framework.

A. Framework Architecture

The framework contains four components: time series seg-

mentation, representation, scaling, and anomaly detector en-

gine. The time series is first segmented into sub-sequences,

later transformed to reduce the high dimensionality. These pro-

cesses are called segmentation and representation. The output

of the representation process is then used as the input for the

data scaling process. In the end, an Attention Bidirectional
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Fig. 1. Architecture of the udCATS Framework

Long Short-Term Memory Autoencoder is used to detect ab-

normal samples. For example, suppose a sample is classified as

an anomaly. In that case, it can be used to identify the original

sub-sequence to determine the collective abnormalities. Figure

1 illustrates the architecture of the udCATS framework.

Each of the components mentioned above is a selection

process, which means different methods can be selected based

on the nature of the input time series. For time series seg-

mentation, top-down, button-up, or sliding windows can be

selected, while non-data adaptive, data-adaptive, and model-

based approaches are the most prominent time series repre-

sentation approaches. Data-dictated representation can also be

discovered in the literature. However, it is not widely used for

this task. We experimentally recommend an Attention Bidirec-

tional Long Short Term Memory Autoencoder as an anomaly

detection engine. Although it is not mandatory, another deep

learning network can also be used for this part. It depends,

as explained, on the nature of the input data. Last, udCATS

establishes standardization, normalization, and robust scaling

for the data scaling process.

The remainder of this section expresses each element of the

framework in detail.

B. Time Series Segmentation

Time series segmentation is a method of time-series analysis

in which an input time series is divided into a sequence of

discrete segments, called sub-sequence, to reveal the under-

lying properties of its source [18]. An optimal segmentation

algorithm is defined as the one with minimal approximation er-

ror, calculated based on the difference between the segmented

sub-sequences and the original time series. Figure 2 visualizes

the segmentation process of the proposed udCATS framework.

This is inspired by the work of M. Lovric, M. Milanovic, and

M. Stamenkovi [18].

Fig. 2. The time series segmentation process

The following paragraphs describe the most well-known

segmentation algorithms: sliding windows, top-down, and

bottom-up [18].

Sliding Windows, also called ”brute-force” or ”one-pass”

algorithm [18], it is one of the most widely involved time

series segmentation algorithms. It starts with appointing the

first data point as the anchor. Afterward, the window size is

initially determined, and based on this size, the approximation

error for the potential segment is calculated. Next, the window

size is increased until the approximation error exceeds a

predetermined threshold. Finally, a segment is created with

the possible largest window size. This process is repeated

until the sliding windows are across the entire time series.

The new anchor is updated as the next data point right behind

the created segment.

The Top-Down algorithm considers the original time series

as one major segment. It starts with finding the breaking

point, which divides the time series into two parts with the

maximal difference between them. The approximation error

is then calculated for both segments and compared with the

predetermined threshold. These steps are repeated for all of the

segments until the approximation error exceeds the threshold

[18].
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The Bottom-Up algorithm is the opposite of the top-down

algorithm described above. It starts with segmenting the time

series of length n into n − 1 segments. Then, a segment

is decided to merge with the one on the left or the right

based on increasing the approximation error. Finally, it takes

the one with a minor error increase. The merging process is

repeated until the approximation error of a segment exceeds a

predetermined threshold [18].

C. Time Series Representation

Unsupervised detection methods often do not directly use

the original time series data points as the input. Instead, repre-

sentations of the time series will be used. The representation

is helpful for dimension reduction and similarity measurement

and often helps produce better results [19].

There are four main approaches to time series representa-

tion: non-data adaptive, data-adaptive, model-based, and data-

dictated representation [20]. The parameters can be fine-tuned

with the first three approaches to find the best time series

compression for the particular application. However, the time

series dictates the compression itself with the last one. For this

reason, only non-data adaptive, data-adaptive, model-based

approaches are used for the selection process of the time series

representation process.

In non-data adaptive algorithms, the represented param-

eters remain the same for all time series, independent of

their nature. Some of the most widely used non-data adap-

tive algorithms are Discrete Fourier Transform (DFT), Piece-

wise Aggregate Approximation (PAA), DCT (Discrete Cosine

Transform), or Wavelets [20].

In data adaptive representations, the parameters vary de-

pending on the available data. In the literature, we can find

some well-known methods for data-adaptive representation,

such as Symbolic Aggregate Approximation, Piecewise Linear

Approximation, or Singular Value Decomposition [20]

The model-based approaches assume that the observed time

series was created based on the basic model. The aim is

to find the parameters of such a model as a representation.

Two time series are then considered similar if an identical set

of parameters can model them. The model can be a Hidden

Markov, statistical, or even deep learning one [20].

D. Data Scaling

For the scaling process, we propose selecting from three

of the most famous and standard techniques: normalization,

standardization, and robust scaling. Readers are referred to

[21] for more detailed explanations of these scaling methods

and how to select the right one based on the data distribution

and the applications.

E. Attention-based Bidirectional Long Short Term Memory

Autoencoder as the Anomaly Detection Engine

As mentioned above, several detection models can detect

collective anomalies after the segmentation, representation,

and scaling process. Some examples are the One-Class Support

Vector Machine, Isolation Forest, or AutoEncoder. However,

we recommend using an Attention-based Bidirectional Long

Short Term Memory Autoencoder as the anomaly detection

engine. The previous works [22]–[25] also inspire this rec-

ommendation. The authors have proved the efficiency and

robustness of LSTM- and Bidirectional LSTM- Autoencoder

for the anomaly detection problem. Figure 3 illustrates a

simplified structure of an Attention-based Bidirectional Long

Short Term Memory Autoencoder.

Fig. 3. Attention-based Bidirectional Long Short Term Memory Autoencoder

Because of the limitation of the pages, we will not describe

the network in detail. Instead, readers, who are interested in

this network, are referred to [25]–[27] for more information.

IV. EXPERIMENTS AND RESULTS

This section describes the dataset, accuracy measurement,

and the results of the experiments.

A. Dataset Description and Experiment Settings

The data used for the experiments in this article is the S5

dataset, provided by Yahoo [28]. This is a labeled bench-

mark dataset for anomaly detection. We compared the above-

mentioned unsupervised methods based on their performance

with this dataset. Therefore, it is essential to mention that the

data labels are only used for the performance evaluation and

not for the model training process.

The time series dataset represents the traffic of Yahoo

services. The anomalies were labelled by experts. This dataset

consists of 67 different time series. Each of them has 1400

data points, which were recorded hourly. About 1.9% of the

data are anomalies. The dataset is divided into training and

test sets where 70% of the data are used for training and 30%

for testing. The training set does not contain any abnormal

sub-sequence. Figure 4 visualizes a time series with collective

anomalies colored red.

B. Accuracy Measurement

Because we have the labeled anomalies in the test set,

AUC can be used to evaluate the framework’s performance.
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Fig. 4. A Time series with collective anomalies

AUC is the abbreviation of ”Area under the ROC (Receiver

Operating Characteristic) curve.” That is, AUC represents the

entire two-dimensional area under the ROC curve. ROC curve

is a diagram showing the performance of a detection model at

all values of thresholds. This curve illustrates two parameters:

true positive rate (TPR) and false positive rate (FPR). The true

positive rate is also known as the recall.

C. Results

In this part of the section, the results of the experiments are

discussed. After the segmentation process, which is mandatory,

the optimal length of a sub-sequence is experimentally set

to 4. The most suitable segmentation method for this dataset

is the sliding windows algorithm. Because the window size

is tiny, the non-data adaptive method was applied for the

representation process. The transformed vectors are at the end

scaled with a robust scaler. The experimental results show that

all four main processes of the framework are essential for high

detection accuracy. Missing one of them will lead to lower

performance.

Fig. 5. Importance of the representation process

Figure 5 illustrates the importance of the representation

process. The figure shows that the accuracy of six models

(out of seven) is improved while applying the representation

process, while the accuracy of the last one remains the same.

Another critical remark is, together with LSTM AutoEncoder,

Attention Bidirectional Long Short-Term Memory Autoen-

coder outperformed other detection models in both cases, with

or without the time series representation process.

Figure 6 visualizes the performance ace of the udCATS

framework with different detection models.

Fig. 6. Performance of udCATS Framework

From the graphic, it is crucial to observe that the scaling

process of the comprehensive udCATS framework improved

the accuracy of five detection models. The remaining two

models performed at the same level. Besides, the udCATS

framework with Attention-based Bidirectional Long Short

Term Memory Autoencoder as the anomaly detection engine

received the highest accuracy, represented by the AUC values.

To obtain the best results, the confidence interval of the

detection model is predetermined with a value of 0.95.

Table I shows the averaging AUCs of the models in different

settings, while figure 7 illustrates the box plot of the udCATS

framework’s AUCs over the whole dataset. Besides the mean

of the AUCs, which is 0.91, the box plot also shows their

median. The median is very high, around 0.97. The box plot

is short, which means the udCATS framework performs with

a high level of agreement over the whole data set of 67 time

series.

TABLE I
EXPERIMENTAL RESULTS

Detection

Model
Without TS

Representation

With TS

Representation
udCATS

K-Means 0.83 0.86 0.86

DBSCAN 0.56 0.59 0.87

IF 0.84 0.86 0.86

OC-SVM 0.81 0.81 0.81

AutoEncoder 0.85 0.86 0.87

LSTM AE 0.87 0.86 0.88

Att-Bi-
LSTM-AE

0.87 0.86 0.91

V. CONCLUSION AND OUTLOOK

In this work, we provided two main contributions. Firstly,

we experimentally demonstrated that an Attention-based Bidi-
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Fig. 7. Performance of udCATS Framework with Att-Bi-LSTM-AE

rectional LTSM Autoencoder could handle the collective

anomaly detection of a time series. Secondly, and most im-

portantly, we proposed a comprehensive framework, called

udCATS, for solving the problem, which contains four main

selecting processes: time series segmentation, representation,

data scaling, and anomaly detection. To the best of our

knowledge, this is the first comprehensive framework to

handle this problem. The experimental results show that the

Attention-based Bidirectional LTSM Autoencoder model per-

formed better than the other detection models. Using it within

the udCATS framework significantly improved the detection

accuracy.

The following steps will assess the framework with more

benchmark data sets. First, this would guide to an improvement

of the framework architecture. Afterward, we will extend the

selection processes with other methods and try to find a

method to implement these processes to work fully automati-

cally. Last but not least, we could combine the loss function of

the four individual processes into one total loss function. The

idea is to develop an end-to-end training process that improves

accuracy.
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methods for segmentation of time series: An overview. Journal of

Contemporary Economic and Business Issues, 1(1):31–53, 2014.
[19] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter

Scheuermann, and Eamonn Keogh. Experimental comparison of rep-
resentation methods and distance measures for time series data. Data

Mining and Knowledge Discovery, 26(2):275–309, 2013.
[20] Chotirat Ratanamahatana, Eamonn Keogh, Anthony J Bagnall, and

Stefano Lonardi. A novel bit level time series representation with impli-
cation of similarity search and clustering. In Pacific-Asia conference on

knowledge discovery and data mining, pages 771–777. Springer, 2005.
[21] Pallavi Pandey and Avinash Navlani. Feature scaling: Minmax, standard

and robust scaler, Nov 2020.
[22] Sanket Mishra, Varad Kshirsagar, Rohit Dwivedula, and Chittaranjan

Hota. Attention-based bi-lstm for anomaly detection on time-series data.
In International Conference on Artificial Neural Networks, pages 129–
140. Springer, 2021.

[23] Mahmoud Said Elsayed, Nhien-An Le-Khac, Soumyabrata Dev, and
Anca Delia Jurcut. Network anomaly detection using lstm based
autoencoder. In Proceedings of the 16th ACM Symposium on QoS and

Security for Wireless and Mobile Networks, pages 37–45, 2020.
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